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Abstract

We present a methodology for automatic synthesis of embedded control software that incorporates

a class of linear temporal logic (LTL) specifications sufficient to describe a wide range of properties

including safety, stability, progress, obligation, response and guarantee. To alleviate the associated

computational complexity of LTL synthesis, we propose a receding horizon framework that effectively

reduces the synthesis problem into a set of smaller problems. The proposed control architecture consists

of a goal generator, a trajectory planner, and a continuous controller. The goal generator reduces the

trajectory generation problem into a sequence of smaller problems of short horizon while preserving the

desired system-level temporal properties. Subsequently, in each iteration, the trajectory planner solves the

corresponding short-horizon problem with the currently observed state as the initial state and generates

a feasible trajectory to be implemented by the continuous controller. Based on the simulation property,

we show that the composition of the goal generator, trajectory planner and continuous controller and

the corresponding receding horizon framework guarantee the correctness of the system with respect to

its specification regardless of the environment in which the system operates. In addition, we present a

response mechanism to handle failures that may occur due to a mismatch between the actual system

and its model. The effectiveness of the proposed technique is demonstrated through an example of an

autonomous vehicle navigating an urban environment. This example also illustrates that the system is

not only robust with respect to exogenous disturbances but is also capable of properly handling violation

of the environment assumption that is explicitly stated as part of the system specification .
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I. INTRODUCTION

Design and verification of modern engineered systems with a tight link between computational

and physical elements have become increasingly complex due to the interleaving between the

high-level logics and the low-level dynamics. Consider, for example, an autonomous driving

problem, particularly the 2007 DARPA Urban Challenge [1]. In this competition, all the com-

peting vehicles had to navigate, in a fully autonomous manner, through a partially known urban-

like environment populated with static and dynamic obstacles, including live traffic, and perform

different tasks such as road and off-road driving, parking and visiting certain areas while obeying

traffic rules. These tasks are specified by a sequence of checkpoints that the vehicle had to cross.

For the vehicles to successfully complete the race, they need to be capable of negotiating an

intersection, handling changes in the environment or operating condition (e.g. newly discovered

obstacles) and reactively replanning in response to those changes (e.g. making a U-turn and

finding a new route when the newly discovered obstacles fully block the road).

Alice, Team Caltech’s entry in the DARPA Urban Challenge, is shown in Fig. 1. It was

equipped with 25 CPUs and utilized a networked control system architecture to provide high

performance and modular design. The planner-controller subsystem of Alice is shown in Fig. 1.

This hierarchical planning architecture comprises the following modules [2], [3], [4]:

● Mission Planner computes the route, i.e., a sequence of roads the vehicle has to navigate

in order to cross a given sequence of checkpoints. It is also capable of re-computing the

route when the response from Traffic Planner indicates that the previously computed route

cannot be navigated successfully. This type of failure occurs, for example, when the road

is blocked.

● Traffic Planner makes decisions to guide Alice at a high level. Specifically, based on the

traffic rules and the current environment, it determines how Alice should navigate the

Mission Planner generated route, that is, whether it should stay in the travel lane or perform

a passing maneuver, whether it should go or stop and whether it is allowed to reverse. In

addition, it is responsible for intersection handling (e.g. keeping track of whether it is Alice’s

turn to go through an intersection). Based on these decisions, it sets up the constraints for

the path planning problem.

● Path Planner generates a path that satisfies the constraints determined by Traffic Planner.
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● Path Follower computes control signals (acceleration and steering angle) such that the

vehicle closely follows the path generated by Path Planner.

● Gcdrive is the overall driving software for Alice. It contains a set of logics to protect the

physical hardware and only allows valid actuation commands computed by Path Follower to

be executed by the actuators. Examples of these hardware protection logics include limiting

the steering rate at low speeds and preventing shifting from occuring while the vehicle is

moving. Furthermore, Gcdrive implements the emergency stop functionality for Alice and

stops the vehicle when an externally produced emergency stop command is received.
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Gcdrive

Vehicle

route

path planning problem
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response
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Fig. 1. Left. Alice, Team Caltech’s entry in the 2007 DARPA Urban Challenge. Right. Alice’s planner-controller subsystem.

This planner-controller subsystem was designed and implemented completely by hand in an

ad-hoc manner. Furthermore, it was verified only through simulations and tests. Hence, there

was absolutely no formal guarantee that the system would work as desired. Nevertheless, Alice

successfully accomplished two of the three tasks at the National Qualifying Event (NQE). During

the third task, which involved making left-turns while merging into traffic, its behavior was unsafe

and almost led to a collision. The detailed analysis of the design flaw that led to this behavior

can be found in [5]. In fact, this design flaw was partially known shortly before the second

run of this particular test. However, it was difficult to modify and verify the design during the

NQE due to the complexity of the system and the lack of sufficient time. Although it might be

impossible to make such a system simple, part of the complexity could be avoided if the system

had been designed in a systematic way.
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Motivated by the difficulty of modifying and verifying complex systems such as Alice, in this

paper, we investigate the problem of automatically synthesizing a planner-controller subsystem to

provide a formal guarantee that, by construction, the system satisfies its specification expressed in

linear temporal logic [6], [7], [8]. A common approach to such synthesis problem is to construct

a finite transition system that serves as an abstract model of the physical system (which typically

has infinitely many states) [9]–[17]. Then based on this abstract model, synthesize a strategy,

represented by a finite state automaton, satisfying the specification. This leads to a hierarchical,

two-layer design with a discrete planner computing a discrete plan based on the abstract model

and a continuous controller computing a sequence of control signals based on the physical model

to continuously implement the plan. Simulations/bisimulations [18] provide the proof that the

continuous execution preserves the correctness of the discrete plan.

The correctness of this hierarchical approach relies on the abstraction of systems evolving

on a continuous domain into equivalent (in the simulation sense) finite state models. If the

abstraction is done properly such that the continuous controller is capable of implementing any

discrete plan computed by the discrete planner, then it is guaranteed that the correctness of the

plan is preserved in the continuous execution.

Several abstraction methods have been proposed based on a fixed abstraction. For example,

a continuous-time, time-invariant model was considered in [10], [11] and [12] for special cases

of fully actuated (ṡ(t) = u(t)), kinematic (ṡ(t) = A(s(t))u(t)) and piecewise affine (PWA)

dynamics, respectively, while a discrete-time, time-invariant model was considered in [15] and

[13] for special cases of PWA and controllable linear systems respectively. Reference [14] deals

with more general dynamics by relaxing the bisimulation requirement and using the notions of

approximate simulation and simulation functions [19]. More recently, a sampling-based method

has been proposed for µ-calculus specifications [9]. However, these approaches do not take into

account the presence of exogenous disturbances and the resulting system may fail to satisfy its

specification if its evolution does not exactly match its model.

Another challenge of this hierarchical approach that remains an open problem and has received

less attention in literature is the computational complexity in the synthesis of finite state automata.

In particular, the synthesis problem becomes significantly harder when the interaction with

the (potentially dynamic and not a priori known) environment has to be taken into account.

Piterman et al. [20] treated this problem as a two-player game between the system and the
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environment and proposed an algorithm for the synthesis of a finite state automaton that satisfies

its specification regardless of the environment in which it operates (subject to certain assumptions

on the environment that need to be stated in the specification). Although for a certain class

of properties, known as Generalized Reactivity[1], such an automaton can be computed in

polynomial time, the applications of the synthesis tool are limited to small problems due to

the state explosion issue.

Similar computational complexity is also encountered in the area of constrained optimal con-

trol. In the controls domain, an effective and well-established technique to address this problem

is to design and implement control strategies in a receding horizon manner, i.e., optimize over a

shorter horizon, starting from the currently observed state, implement the initial control action,

move the horizon one step ahead, and re-optimize. This approach reduces the computational

complexity by essentially solving a sequence of smaller optimization problems, each with a

specific initial condition (as opposed to optimizing with any initial condition in traditional

optimal control). Under certain conditions, receding horizon control strategies are known to lead

to closed-loop stability [21], [22], [23]. See, e.g., [24] for a detailed discussion on constrained

optimal control, including finite horizon optimal control and receding horizon control.

This paper concerns both the abstraction and the computational complexity issues. The re-

mainder of the paper is organized as follows. In Section II, we present the key definitions and

notations. The planner-controller synthesis problem is formulated in Section III. The hierarchical

approach is described in detail in Section IV. To increase the robustness of the system against

the effects of direct, external disturbances and a mismatch between the actual system and its

model, in Section V, we provide an approach to automatically compute a finite state abstraction

for a discrete-time linear time-invariant system, taking into account exogenous disturbances.

To reduce the complexity of the synthesis problem, in Section VI, we propose the receding

horizon framework for executing finite state automata while ensuring system correctness with

respect to a given linear temporal logic specification. The proposed framework allows the

synthesis problem to be reduced to a set of smaller problems of short horizon. Its implementation,

presented in Section VII, leads to the decomposition of the discrete planner into a goal generator

and a trajectory planner. The goal generator reduces the synthesis problem to a sequence of short

horizon problems while preserving the desired system-level temporal properties. Subsequently,

in each iteration, the trajectory planner solves the corresponding short-horizon problem with the
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currently observed state as the initial state and generates a feasible trajectory to be implemented

by the continuous controller. Observe how this design corresponds to Alice’s planner-controller

subsystem with the goal generator having similar functionality as Mission Planner, the trajectory

planner having similar functionality as the composition of Traffic Planner and Path Planner,

and the continuous controller having similar functionality as Path Follower. Also presented in

Section VII is a response mechanism that potentially increases the robustness of the system with

respect to a mismatch between the actual system and its model and violation of the environment

assumptions. Finally, in Section VIII, we demonstrate the effectiveness of the proposed technique

through an example of an autonomous vehicle navigating an urban environment. This example

also illustrates that the system is not only robust with respect to exogenous disturbances but also

capable of handling violation of the environment assumptions.

Preliminary versions of this work have appeared in [15], [16], [17].

II. PRELIMINARIES

We use linear temporal logic (LTL) to specify properties of systems. In this section, we first

give formal definitions of terminology and notations used throughout the paper. Then, based on

these definitions, we briefly describe LTL and some important classes of LTL formulas.

Definition 1. A system consists of a set V of variables. The domain of V , denoted by dom(V ),

is the set of valuations of V . A state of the system is an element v ∈ dom(V ).

We describe an execution of a system by an infinite sequence of its states. Specifically, for a

discrete-time system whose state is only evaluated at time t ∈ {0,1, . . .}, its execution σ can be

written as σ = v0v1v2 . . . where for each t ≥ 0, vt ∈ dom(V ) is the state of the system at time t.

Definition 2. A finite transition system is a tuple T ∶= (V ,V0,→) where V is a finite set of states,

V0 ⊆ V is a set of inital states, and → ⊆ V × V is a transition relation. Given states νi, νj ∈ V , we

write νi → νj if there is a transition from νi to νj in T.

Observe that in this paper, we use ν to represent a state of a finite transition system and v to

represent a state of a general, possibly non-finite state system.

Definition 3. A partially ordered set (V,⪯) consists of a set V and a binary relation ⪯ over the

set V satisfying the following properties: for any v1, v2, v3 ∈ V , (a) v1 ⪯ v1; (b) if v1 ⪯ v2 and

v2 ⪯ v1, then v1 = v2; and (c) if v1 ⪯ v2 and v2 ⪯ v3, then v1 ⪯ v3.
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Definition 4. An atomic proposition is a statement on system variables υ that has a unique truth

value (True or False) for a given value of υ. Let v ∈ dom(V ) be a state of the system and p be

an atomic proposition. We write v ⊩ p if p is True at the state v. Otherwise, we write v ⊮ p.

Linear temporal logic [6], [7], [8] is a powerful specification language for unambiguously and

concisely expressing a wide range of properties of systems. LTL is built up from (a) a set of

atomic propositions, (b) the logic connectives: negation (¬), disjunction ( ∨ ), conjunction ( ∧ )

and material implication (Ô⇒), and (c) the temporal modal operators: next (#), always (◻),

eventually (3) and until ( U ). An LTL formula is defined inductively as follows: (1) any atomic

proposition p is an LTL formula; and (2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, #ϕ and

ϕ U ψ are also LTL formulas. Other operators can be defined as follows: ϕ ∧ ψ ≜ ¬(¬ϕ ∨ ¬ψ),

ϕ Ô⇒ ψ ≜ ¬ϕ ∨ ψ, 3ϕ ≜ True U ϕ, and ◻ϕ ≜ ¬3¬ϕ. A propositional formula is one that

does not include temporal operators. Given a set of LTL formulas ϕ1, . . . , ϕn, their Boolean

combination is an LTL formula formed by joining ϕ1, . . . , ϕn with logic connectives.

Semantics of LTL: An LTL formula is interpreted over an infinite sequence of states. Given

an execution σ = v0v1v2 . . . and an LTL formula ϕ, we say that ϕ holds at position i ≥ 0 of

σ, written vi ⊧ ϕ, if and only if (iff) ϕ holds for the remainder of the execution σ starting at

position i. The semantics of LTL is defined inductively as follows: (a) For an atomic proposition

p, vi ⊧ p iff vi ⊩ p; (b) vi ⊧ ¬ϕ iff vi ⊭ ϕ; (c) vi ⊧ ϕ ∨ ψ iff vi ⊧ ϕ or vi ⊧ ψ; (d) vi ⊧ #ϕ iff

vi+1 ⊧ ϕ; and (e) vi ⊧ ϕ U ψ iff there exists j ≥ i such that vj ⊧ ψ and ∀k ∈ [i, j), vk ⊧ ϕ. Based

on this definition, #ϕ holds at position vi iff ϕ holds at the next state vi+1, ◻ϕ holds at position

i iff ϕ holds at every position in σ starting at position i, and 3ϕ holds at position i iff ϕ holds

at some position j ≥ i in σ.

Definition 5. An execution σ = v0v1v2 . . . satisfies ϕ, denoted by σ ⊧ ϕ, if v0 ⊧ ϕ.

Definition 6. Let Σ be the set of all executions of a system. The system is said to be correct

with respect to its specification ϕ, written Σ ⊧ ϕ, if all its executions satisfy ϕ, that is, (Σ ⊧ ϕ)
iff (∀σ, (σ ∈ Σ) Ô⇒ (σ ⊧ ϕ)).

Examples of LTL formulas: Given propositional formulas p and q describing the states of

interest, important and widely-used properties can be defined in terms of their corresponding

LTL formulas as follows.
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(a) Safety (invariance): A safety formula is of the form ◻p, which asserts that the property p

remains invariantly true throughout an execution. Typically, a safety property ensures that

nothing bad happens. A classic example of safety property frequently used in the robot

motion planning domain is obstacle avoidance.

(b) Guarantee (reachability): A guarantee formula is of the form 3p, which guarantees that the

property p becomes true at least once in an execution. Reaching a goal state is an example

of a guarantee property.

(c) Obligation: An obligation formula is a disjunction of safety and guarantee formulas, ◻p ∨
3q. It can be shown that any safety and progress property can be expressed using an

obligation formula. (By letting q ≡ False, we obtain a safety formula and by letting p ≡ False,

we obtain a guarantee formula.)

(d) Progress (recurrence): A progress formula is of the form ◻3p, which essentially states

that the property p holds infinitely often in an execution. As the name suggests, a progress

property typically ensures that the system makes progress throughout an execution.

(e) Response: A response formula is of the form ◻(p Ô⇒ 3q), which states that following

any point in an execution where the property p is true, there exists a point where the property

q is true. A response property can be used, for example, to describe how the system should

react to changes in the operating conditions.

(f) Stability (persistence): A stability formula is of the form 3 ◻ p, which asserts that there

is a point in an execution where the property p becomes invariantly true for the remainder

of the execution. This definition corresponds to the definition of stability in the controls

domain since it ensures that eventually, the system converges to a desired operating point

and remains there for the remainder of the execution.

Remark 1. Properties typically studied in the control and hybrid systems domains are safety

(usually in the form of constraints on the system state) and stability (i.e., convergence to an

equilibrium or a desired state). LTL thus offers extensions to properties that can be expressed.

Not only can it express a more general class of properties, but it also allows more general safety

and stability properties than constraints on the system state or convergence to an equilibrium

since p in ◻p and 3 ◻ p can be any propositional formula.
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III. PROBLEM FORMULATION

We consider a system that comprises the physical component, which we refer to as the plant,

and the (potentially dynamic and not a priori known) environment in which the plant operates.

Assuming that the system specification ϕ is expressed in LTL, we are interested in automatically

synthesizing a planner-controller subsystem that generates control signals to the plant in order

to ensure that ϕ is satisfied in the presence of exogenous disturbances for any initial condition

and any environment in which the plant operates. Specifically, we define the system model S

and the specification ϕ as follows.

System Model: Consider a system model S with a set V = S ∪ E of variables where S and

E are disjoint sets that represent, respectively, the set of plant variables that are regulated by

the planner-controller subsystem and the set of environment variables whose values may change

arbitrarily throughout an execution. The domain of V is given by dom(V ) = dom(S)×dom(E)
and a state of the system can be written as v = (s, e) where s ∈ dom(S) ⊆ Rn and e ∈ dom(E).

Throughout the paper, we call s the controlled state and e the environment state.

Assume that the controlled state evolves according to the following discrete-time linear time-

invariant state space model: for t ∈ {0,1,2, . . .},

s[t + 1] = As[t] +Bu[t] +Ed[t]
u[t] ∈ U

d[t] ∈ D

s[0] ∈ dom(S)

(1)

where U ⊆ Rm is the set of admissible control inputs, D ⊆ Rp is the set of exogenous disturbances

and s[t], u[t] and d[t] are the controlled state, the control signal, and the exogenous disturbance,

respectively, at time t.

Example 1. Consider a robot motion planning problem where a robot needs to navigate an

environment populated with (potentially dynamic) obstacles and explore certain areas of interest.

S typically includes the state (e.g. position and velocity) of the robot while E typically includes

the positions of obstacles (which are generally not known a priori and may change over time).

The evolution of the controlled state (i.e., the state of the robot) is governed by its equations of

motion, which can be written in the form of (1) (after linearization, if necessary).
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System Specification: We assume that the specification ϕ consists of the following components:

(a) the assumption ϕinit on the initial condition of the system,

(b) the assumption ϕe on the environment, and

(c) the desired behavior ϕs of the system.

Specifically, we assume that ϕ can be written as

ϕ = (ϕinit ∧ ϕe) Ô⇒ ϕs. (2)

Let Π be a finite set of atomic propositions of variables from V . Each of the atomic proposi-

tions in Π essentially captures the states of interest. We assume that the desired behavior ϕs is

an LTL specification built from Π and can be expressed as a conjunction of safety, guarantee,

obligation, progress, response and stability properties as follows

ϕs = ⋀j∈J1
◻ps1,j ∧ ⋀j∈J2

3ps2,j ∧

⋀j∈J3
(◻ps3,j ∨ 3qs3,j) ∧ ⋀j∈J4

◻3ps4,j ∧

⋀j∈J5
◻(ps5,j Ô⇒ 3qs5,j) ∧ ⋀j∈J6

3 ◻ ps6,j,

(3)

where J1, . . . , J6 are finite sets and for any i and j, psi,j and qsi,j are propositional formulas of

variables from V that are built from Π.

Furthermore, we assume that ϕinit is a propositional formula built from Π and ϕe can be

expressed as a conjunction of safety and justice requirements as follows

ϕe = ⋀
i∈I1

◻pef,i ∧ ⋀
i∈I2

◻3pes,i, (4)

where pef,i and pes,i are propositional formulas built from Π and only contain variables from E.

Example 2. Consider the robot motion planning problem described in Example 1. Suppose the

workspace of the robot is partitioned into cells C1, . . . ,CM and the robot needs to explore (i.e.,

visit) the cells C1 and C2 infinitely often. In addition, we assume that one of the cells C1, . . . ,CM

may be occupied by an obstacle at any given time and this obstacle-occupied cell may change

arbitrarily throughout an execution but infinitely often, C1 and C2 are not occupied. Let s and

o represent the position of the robot and the obstacle, respectively. In this case, the desired

behavior of the system can be written as

ϕs = ◻3(s ∈ C1) ∧ ◻3(s ∈ C2) ∧ ◻((o ∈ C1) Ô⇒ (s /∈ C1)) ∧
◻((o ∈ C2) Ô⇒ (s /∈ C2)) ∧ . . . ∧ ◻((o ∈ CM) Ô⇒ (s /∈ CM)).
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Assuming that initially, the robot does not occupy the same cell as the obstacle, we simply let

ϕinit = ((o ∈ C1) Ô⇒ (s /∈ C1)) ∧ ((o ∈ C2) Ô⇒ (s /∈ C2)) ∧ . . . ∧ ((o ∈ Cm) Ô⇒ (s /∈ Cm)).

Finally, the assumption on the environment can be expressed as ϕe = ◻3(o /∈ C1) ∧ ◻3(o /∈ C2).

Planner-Controller Synthesis Problem: Given the system model S and the system specifica-

tion ϕ, synthesize a planner-controller subsystem that generates a sequence of control signals

u[0], u[1], . . . ∈ U to the plant to ensure that starting from any initial condition, ϕ is satisfied for

any sequence of exogenous disturbances d[0], d[1], . . . ∈ D and any sequence of environment

states.

Remark 2. We restrict ϕs and ϕe to be of the form (3) and (4), respectively, for the clarity of

presentation. Our framework only requires that the specification (2) can be reduced to the form

of equation (6), presented later.

Remark 3. The specification ϕ has to be satisfied for any initial condition and environment,

including those that violate the assumptions ϕinit and ϕe. However, according to (2), satisfying

ϕ ensures that the system exhibits the desired behavior ϕs only when ϕinit and ϕe are satisfied.

IV. HIERARCHICAL APPROACH

As described in Section I, we follow a hierarchical approach to attack the Planner-Controller

Synthesis Problem defined in Section III. First, we construct a finite transition system D (e.g.

a Kripke structure) that serves as an abstract model of S (which typically has infinitely many

states). With this abstraction, the problem is then decomposed into (1) synthesizing a discrete

planner that computes a discrete plan satisfying the specification ϕ based on the abstract, finite-

state model D, and (2) designing a continuous controller that implements the discrete plan. The

success of this abstraction-based approach thus relies on the following two critical steps:

(a) an abstraction of an infinite-state system into an equivalent (in the simulation sense) finite

state model such that any discrete plan generated by the discrete planner can be imple-

mented (i.e., simulated; see, for example, [25] for the exact definition of simulation) by the

continuous controller, provided that the evolution of the controlled state satisfies (1), and

(b) synthesis of a discrete planner (i.e., a strategy), represented by a finite state automaton, that

ensures the correctness of the discrete plan.
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In Section V, we present an approach to handle step (a), assuming that the physical system

is modeled as described in Section III. To handle step (b) and ensure the system correctness for

any initial condition and environment, we apply the two-player game approach presented in [20]

to synthesize a discrete planner as in [10], [15]. In summary, consider a class of LTL formulas

of the form
⎛
⎝
ψinit ∧ ◻ψe ∧ ⋀

i∈If
◻3ψf,i

⎞
⎠
Ô⇒ (⋀

i∈Is
◻ψs,i ∧ ⋀

i∈Ig
◻3ψg,i) , (5)

known as Generalized Reactivity[1] (GR[1]) formulas. Here, ψinit, ψf,i and ψg,i are propositional

formulas of variables from V ; ψe is a Boolean combination of propositional formulas of variables

from V and expressions of the form #ψte where ψte is a propositional formula of variables from

E that describes the assumptions on the transitions of environment states; and ψs,i is a Boolean

combination of propositional formulas of variables from V and expressions of the form #ψts

where ψts is a propositional formula of variables from V that describes the constraints on the

transitions of controlled states. The approach presented in [20] allows checking the realizability

of this class of specifications and synthesizing the corresponding finite state automaton to be

performed in time O(∣V ∣3) where ∣V ∣ is the size of the state space of the finite state abstraction

D of the system. We refer the reader to [20] and references therein for a detailed discussion.

Proposition 1. A specification of the form (2) can be reduced to a subclass of GR[1] formula

of the form
⎛
⎝
ψinit ∧ ◻ψee ⋀

i∈If
◻3ψef,i

⎞
⎠
Ô⇒ (⋀

i∈Is
◻ψs,i ∧ ⋀

i∈Ig
◻3ψg,i) , (6)

where ψinit, ψs,i and ψg,i are as defined above and ψee and ψef,i are propositional formulas of

variables from E.

Throughout the paper, we call the left hand side and the right hand side of (6) the “assumption”

part and the “guarantee” part, respectively. The proof of Proposition 1 is based on the fact that

all safety, guarantee, obligation and response properties are special cases of progress formulas

◻3p, provided that p is allowed to be a past formula [6]. Hence, these properties can be reduced

to the guarantee part of (6) by introducing auxiliary Boolean variables. For example, a guarantee

property 3ps2,j can be reduced to the guarantee part of (6) by introducing an auxiliary Boolean

variable x, initialized to ps2,j . 3ps2,j can then be equivalently expressed as a conjunction of

◻((x ∨ ps2,j) Ô⇒ #x), ◻(¬(x ∨ ps2,j) Ô⇒ #(¬x)) and ◻3x. Obligation and response
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properties can be reduced to the guarantee part of (6) using a similar idea. In addition, a stability

property 3◻ps6,j can be reduced to the guarantee part of (6) by introducing an auxiliary Boolean

variable y, initialized to False. 3 ◻ ps6,j can then be equivalently expressed as a conjunction

of ◻(y Ô⇒ ps6,j), ◻(y Ô⇒ #y), ◻(¬y Ô⇒ (#y ∨ #(¬y))) and ◻3y. Note that these

reductions lead to equivalent specifications. However, for the case of stability, the reduction may

lead to an unrealizable specification even though the original specification is realizable. Roughly

speaking, this is because the auxiliary Boolean variable y needs to make clairvoyant (prophecy),

non-deterministic decisions. For other properties, the realizability remains the same after the

reduction since the synthesis algorithm [20] is capable of handling past formulas. The detail

of this discussion is beyond the scope of this paper and we refer the reader to [20] for more

detailed discussion on the synthesis of GR[1] specification.

In Section VI, we describe an extension of traditional receding horizon control to incorporate

linear temporal logic specification of the form (6) in order to reduce the computational complexity

of the synthesis problem. Its implementation and a response mechanism that enables the system

to handle certain failures and continue to exhibit a correct behavior are presented in Section VII.

V. COMPUTING FINITE STATE ABSTRACTION

To construct a finite transition system D from the physical model S, we first partition dom(S)
and dom(E) into finite sets S and E , respectively, of equivalence classes or cells such that the

partition is proposition preserving [18]. Roughly speaking, a partition is said to be proposition

preserving if for any atomic proposition π ∈ Π and any states v1 and v2 that belong to the same

cell in the partition, v1 satisfies π iff v2 also satisfies π. We denote the resulting discrete domain

of the system by V = S × E . We call v ∈ dom(V ) a continuous state and ν ∈ V a discrete state

of the system. For a discrete state ν ∈ V , we say that ν satisfies an atomic proposition π ∈ Π,

denoted by ν ⊩d π, if and only if there exists a continuous state v contained in the cell labeled

by ν such that v satisfies π. Given an infinite sequence of discrete states σd = ν0ν1ν2 . . . and LTL

formula ϕ built from Π, we say that ϕ holds at position i ≥ 0 of σd, written νi ⊧d ϕ, if and only

if ϕ holds for the remainder of σd starting at position i. With these definitions, the semantics

of LTL for a sequence of discrete states can be derived from the general semantics of LTL [6],

[7], [8].

Next, we need to determine the transition relations → of D. In Section V-A, we use a variant
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of the notion of reachability that is sufficient to guarantee that if a discrete controlled state ςj

is reachable from ςi, the transition from ςi to ςj can be continuously implemented or simulated

by a continuous controller. A computational scheme that provides a sufficient condition for

reachability between two discrete controlled states and subsequently refines the state space

partition is also presented in Sections V-B and V-C.

A. Finite Time Reachability

Let S = {ς1, ς2, . . . , ςl} be a set of discrete controlled states. We define a map Ts ∶ dom(S)→ S
that sends a continuous controlled state to a discrete controlled state of its equivalence class.

That is, T −1
s (ςi) ⊆ dom(S) is the set of all the continuous controlled states contained in the cell

labeled by ςi and {T −1
s (ςi), . . . , T −1

s (ςn)} is the partition of dom(S). We define the reachability

relation, denoted by ↝, as follows.

Definition 7. A discrete state ςj is reachable from a discrete state ςi, written ςi ↝ ςj , only if

starting from any point s[0] ∈ T −1
s (ςi), there exists a horizon length N ∈ {0,1, . . .} and a sequence

of control signals u[0], u[1], . . . , u[N −1] ∈ U that takes the system (1) to a point s[N] ∈ T −1
s (ςj)

satisfying the constraint s[t] ∈ T −1
s (ςi)∪T −1

s (ςj),∀t ∈ {0, . . . ,N} for any sequence of exogenous

disturbances d[0], d[1], . . . , d[N − 1] ∈D. We write ςi   ςj if ςj is not reachable from ςi.

In general, for two discrete states ςi and ςj , verifying the reachability relation ςi ↝ ςj is

hard because it requires searching for a proper horizon length N . Therefore, we consider the

restricted case where the horizon length is fixed and given and U , D and T −1
s (ςi), i ∈ {1, . . . , l}

are polyhedral sets. Our approach relies on solving the following problem.

Reachability Problem: Given an initial continuous controlled state s[0] ∈ Rn, discrete controlled

states ςi, ςj ∈ S , the set of admissible control inputs U ⊆ Rm, the set of exogenous disturbances

D ⊆ Rp, the matrices A, B and E as in (1), a horizon length N ≥ 0, determine a sequence of

control signals u[0], u[1], . . . , u[N − 1] ∈ Rm such that for all t ∈ {0, . . . ,N − 1} and d[t] ∈D,

s[t + 1] = As[t] +Bu[t] +Ed[t],
s[t] ∈ T −1

s (ςi),
u[t] ∈ U

s[N] ∈ T −1
s (ςj).

(7)
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B. Verifying the Reachability Relation

Given two discrete controlled states ςi, ςj ∈ S , to determine whether ςi ↝ ςj , we essentially

have to verify that T −1
s (ςi) ⊆ S0 where S0 is the set of s[0] starting from which the Reachability

Problem defined in Section V-A is feasible. In this section, we describe how S0 can be computed

using an idea from constrained robust optimal control [26].

We assume that U , D and T −1
s (ςi), i ∈ {1, . . . , l} are polyhedral sets, i.e., there exist matrices

L1, L2 and L3 and vectors M1, M2 and M3 such that T −1
s (ςi) = {s ∈ Rn ∣ L1s ≤M1}, U = {u ∈

Rm ∣ L2u ≤M2} and T −1
s (ςj) = {s ∈ Rn ∣ L3s ≤M3}. Then, by substituting

s[t] = Ats[0] +
t−1

∑
k=0

(AkBu[t − 1 − k] +AkEd[t − 1 − k])

and replacing s[t] ∈ T −1
s (ςi), u[t] ∈ U and s[N] ∈ T −1

s (ςj) with L1s[t] ≤M1, L2u[t] ≤M2 and

L3s[N] ≤M3, respectively, in (7), it can be easily checked that (7) can be rewritten in the form

L

⎡⎢⎢⎢⎢⎢⎣

s[0]
û

⎤⎥⎥⎥⎥⎥⎦
≤M −Gd̂, (8)

where û ≜ [u[0]′, . . . , u[N − 1]′]′ ∈ RmN , d̂ ≜ [d[0]′, . . . , d[N − 1]′]′ ∈ DN and the matrices

L ∈ Rr×n+mN and G ∈ Rr×pN and the vector M ∈ Rr can be obtained from L1, L2, L3, M1, M2,

M3, A, B and E.

Using properties of polyhedral convexity, we can prove the following result.

Theorem 1. Suppose D is a closed and bounded polyhedral subset of Rp and D is the set of all

its extreme points. Let P ≜ {y ∈ Rn+mN ∣ Ly ≤ M −Gd̂,∀d̂ ∈ DN} and let S0 be the projection

of P onto its first n coordinates, i.e.,

S0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
s ∈ Rn ∣ ∃û ∈ RmN s.t. L

⎡⎢⎢⎢⎢⎢⎣

s

û

⎤⎥⎥⎥⎥⎥⎦
≤M −Gd̂,∀d̂ ∈DN

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Then, the Reachability Problem defined in Section V-A is feasible for any s[0] ∈ S0.

Using Theorem 1, the problem of computing the set S0 such that the Reachability Problem is

feasible for any s[0] ∈ S0 is reduced to computing a projection of the intersection of finite sets

and can be automatically solved using off-the-shelf software, for example, the Multi-Parametric

Toolbox (MPT) [27].
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C. State Space Discretization and Correctness of the System

In general, given the previous partition of dom(S) and any i, j ∈ {1, . . . , n}, the reachability

relation between ςi and ςj may not be established through the set S0 of s[0] starting from which

the Reachability Problem defined in Section V-A is feasible since T −1
s (ςi) is not necessarily

covered by S0 (due to the constraints on u and a specific choice of the finite horizon N ). To

partially alleviate this limitation, we refine the partition based on the reachability relation defined

earlier to increase the number of valid discrete state transitions of D. The underlying idea is

that starting with an arbitrary pair of ςi and ςj , we determine the set S0 of feasible s[0] for

the Reachability Problem. Then, we partition T −1
s (ςi) into T −1

s (ςi) ∩ S0, labeled by ςi,1, and

T −1
s (ςi)/S0, labeled by T −1

s (ςi,2), and obtain the following reachability relations: ςi,1 ↝ ςj and

ςi,2   ςj . This process is continued until some pre-specified termination criteria are met. Table I

shows the pseudo-code of the algorithm where a prescribed lower bound Volmin on the volume

of each cell in the new partition is used as a termination criterion. The algorithm terminates

when no cell can be partitioned such that the volumes of the two resulting new cells are both

greater than Volmin . Larger Volmin causes the algorithm to terminate sooner. Other termination

criteria such as the maximum number of iterations can be used as well. Note that the point at

which the algorithm terminates affects the reachability between discrete controlled states of the

new partition and as a result, affects the realizability of the specification. Generally, a coarse

partition makes the specification unrealizable but a fine partition causes state space explosion.

A way to decide when to terminate the algorithm is to start with a coarse partition and keep

refining it until the specification is realizable.

We denote the set of all the discrete controlled states corresponding to the resulting partition of

dom(S) after applying the discretization algorithm by S ′. Since the partition obtained from the

proposed algorithm is a refined partition of {T −1
s (S1), . . . , T −1

s (Sn)} and V = S×E is proposition

preserving, it is trivial to show that V ′ = S ′ × E is also proposition preserving. For simplicity of

notation, we call S ′ as S and V ′ as V for the rest of the paper. We define the finite transition

system D that serves as the abstract model of S as: V = S×E is the set of states of D and for any

two states νi = (ςi, εi) and νj = (ςj, εj), νi → νj (i.e., there exists a transition from νi to νj) only

if ςi ↝ ςj . Using the abstract model D, a discrete planner that guarantees the satisfaction of ϕ

while ensuring that the discrete plans are restricted to those satisfying the reachability relations

can be automatically constructed using the digital design synthesis tool [20].
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TABLE I

DISCRETIZATION ALGORITHM

Discretization Algorithm

input: The lower bound on cell volume (Volmin ), the parameters A, B, E, U , D, N of the Reachability Problem,

and the original partition ({T −1s (ςi) ∣ i ∈ {1, . . . , n}})

output: The new partition sol

sol = {T −1s (ςi) ∣ i ∈ {1, . . . , n}}; IJ = {(i, j) ∣ i, j ∈ {1, . . . , n}};

while (size(IJ) > 0)

Pick arbitrary ςi and ςj where (i, j) ∈ IJ ;

Compute the set S0 of s[0] starting from which the Reachability Problem is feasible for the previously chosen ςi and ςj ;

if (volume(sol[i] ∩ S0) > Volmin and volume(sol[i]/S0 > Volmin ) then

Replace sol[i] with sol[i] ∩ S0 and append sol[i]/S0 to sol ;

For each k ∈ {1, . . . , size(sol)}, add (i, k), (k, i), (size(sol), k) and (k, size(sol)) to IJ ;

else

Remove (i, j) from IJ ;

endif

endwhile

From the stutter invariant property of ϕ [28], the formulation of the Reachability Problem and

the proposition preserving property of V , it is straightforward to prove the following proposition.

Proposition 2. Let σd = ν0ν1 . . . be an infinite sequence of discrete states of D where for each

natural number k, νk → νk+1, νk = (ςk, εk), ςk ∈ S is the discrete controlled state and εk ∈ E is

the discrete environment state. If σd ⊧d ϕ, then by applying a sequence of control signals, each

corresponding to a solution of the Reachability Problem with ςi = ςk and ςj = ςk+1, the infinite

sequence of continuous states σ = v0v1v2 . . . satisfies ϕ.

A solution u[0], . . . , u[N −1] of the Reachability Problem can be computed by formulating a

constrained optimal control problem, which can be solved using off-the-shelf software such as

MPT [27], YALMIP [29] or NTG [22].

VI. RECEDING HORIZON FRAMEWORK

The main limitation of the synthesis of finite state automata from their LTL specifications

[20] is the state explosion problem. In the worst case, the resulting automaton may contain all

the possible states of the system. For example, if the system has N variables, each can take any
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value in {1, . . . ,M}, then there may be as many as MN nodes in the automaton. This type of

computational complexity limits the application of the systhesis to relatively small problems.

To reduce computational complexity in the synthesis of finite state automata, we apply an

idea similar to the traditional receding horizon control [24]. First, we observe that in many

applications, it is not necessary to plan for the whole execution, taking into account all the

possible behaviors of the environment since a state that is very far from the current state of the

system typically does not affect the near future plan. Consider, for example, the robot motion

planning problem described in Example 2. Suppose C1 or C2 is very far away from the initial

position of the robot. Under certain conditions, it may be sufficient to only plan out an execution

for only a short segment ahead and implement it in a receding horizon fashion, i.e., re-compute

the plan as the robot moves, starting from the currently observed state (rather than from all initial

conditions satisfying ϕinit as the original specification (2) suggests). In this section, we present a

sufficient condition and a receding horizon strategy that allows the synthesis to be performed on

a smaller domain; thus, substantially reduces the number of states (or nodes) of the automaton

while still ensuring the system correctness with respect to the LTL specification (2).

ν1ν2

ν3ν4

ν5

ν6

ν7

Wi
3

Wi
2

Wi
1

Wi
0

ν8

Wi
4

ν9

ν10

Fig. 2. Illustration of the receding hori-

zon framework showing the relationships

between the states of V and between the

subsets Wi
0, . . . ,Wi

p

We assume that a finite state abstraction D of the physical

model S of the system has been constructed using, for example,

the discretization algorithm presented in Section V-C. Let V
be the finite set of states of D. We consider a specification of

the form (6) since, from Proposition 1, the specification (2)

can be reduced to this form. Let Φ be a propositional formula

of variables from V such that ψinit Ô⇒ Φ is a tautology,

i.e., any state ν ∈ V that satisfies ψinit also satisfies Φ. For

each progress property ◻3ψg,i, i ∈ Ig, suppose there exists a

collection of subsets W i
0, . . . ,W i

p of V such that

(a) W i
0 ∪W i

1 ∪ . . . ∪W i
p = V ,

(b) ψg,i is satisfied for any ν ∈ W i
0, i.e., W i

0 is the set of the

states that constitute the progress of the system, and

(c) P i ∶= ({W i
0, . . . ,W i

p},⪯ψg,i) is a partially ordered set

defined such that W i
0 ≺ψg,i W i

j,∀j /= 0.
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Define a function F i ∶ {W i
0, . . . ,W i

p}→ {W i
0, . . . ,W i

p} such that F i(W i
j) ≺ψg,i W i

j,∀j ≠ 0.

Consider a simple case where {ν1, . . . , ν10} is the set V of states, ν10 satisfies ψg,i, and the

states in V are organized into 5 subsets W i
0, . . . ,W i

4. The relationships between the states in V
and the subsets W i

0, . . . ,W i
4 are illustrated in Fig. 2. The partial order may be defined as W i

0 ≺
W i

1 ≺ . . . ≺ W i
4 and the mapping F i may be defined as F i(W i

j) = W i
j−2,∀j ≥ 2, F i(W i

1) = W i
0

and F i(W i
0) = W i

0. Suppose ν1 is the initial state of the system. The key idea of the receding

horizon framework, as described later, is to plan from ν1 to any state in F i(W i
4) = W i

2, rather

than planning from the initial state ν1 to the goal state ν10 in one shot, taking into account all

the possible behaviors of the environment. Once a state in W i
3, i.e., ν5 or ν6 is reached, we then

replan from that state to a state in F i(W i
3) = W i

1. We repeat this process until ν10 is reached.

Under certain sufficient conditions presented later, this strategy ensures the correctness of the

overall execution of the system.

Formally, with the above definitions of Φ, W i
0, . . . ,W i

p and F i, we define a short-horizon

specification Ψi
j associated with W i

j for each i ∈ Ig and j ∈ {0, . . . , p} as

Ψi
j ≜ ((ν ∈W i

j) ∧ Φ ∧ ◻ψee ∧ ⋀k∈If ◻3ψef,k)
Ô⇒ (⋀k∈Is ◻ψs,k ∧ ◻3(ν ∈ F i(W i

j)) ∧ ◻Φ) ,
(9)

where ν is the state of the system and ψee , ψef,k and ψs,k are defined as in (6).

An automaton Aij satisfying Ψi
j defines a strategy for going from a state ν1 ∈ W i

j to a state

ν2 ∈ F i(W i
j) while satisfying the safety requirements ⋀i∈Is ◻ψs,i and maintaining the invariant

Φ (see Remark 5 for the role of Φ in this framework). Roughly speaking, the partial order

P i provides a measure of “closeness” to the states satisfying ψg,i. Since each specification Ψi
j

asserts that the system eventually reaches a state that is smaller in the partial order, it ensures that

each automaton Aij brings the system “closer” to the states satisfying ψg,i. The function F i thus

defines the horizon length for these short-horizon problems. In general, the size of Aij increases

with the horizon length. However, with too short horizon, the specification Ψi
j is typically not

realizable. A good practice is to choose the shortest horizon, subject to the realizability of Ψi
j ,

so that the automaton Aij contains as small number of states as possible.

Receding Horizon Strategy: For each i ∈ Ig and j ∈ {0, . . . , p}, construct an automaton Aij
satisfying Ψi

j , defined in (9). Let Ig = {i1, . . . , in} and define a corresponding ordered set

(i1, . . . , in). Note that this order only affects the sequence of progress properties ψg,i1 , . . . , ψg,in
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that the system tries to satisfy. Hence, it can be picked arbitrarily without affecting the correctness

of the receding horizon strategy.

(1) Determine the index j1 such that the current state ν0 ∈ W i1
j1

. If j1 /= 0, then execute the

automaton Ai1j1 until the system reaches a state ν1 ∈ W i1
k where W i1

k ≺ψg,i1 W
i1
j1

. Note that

since the union of W i1
1 , . . . ,W i1

p is the set V of all the states, given any ν0, ν1 ∈ V , there exist

j1, k ∈ {0, . . . , p} such that ν0 ∈W i1
j1

and ν1 ∈W i1
k . This step corresponds to going from W i1

j1

to W i1
j1−1 in Fig. 3.

(2) If the current state ν1 /∈W i1
0 , switch to the automaton Ai1k where the index k is chosen such

that the current state ν1 ∈W i1
k . Execute Ai1k until the system reaches a state that is smaller

in the partial order P i1 . Repeat this step until a state ν2 ∈ W i1
0 is reached. Note that it is

guaranteed that a state ν2 ∈ W i1
0 is eventually reached because of the finiteness of the set

{W i1
0 , . . . ,W i1

p } and its partial order. See the proof of Theorem 2 for more details. This step

corresponds to going all the way down the leftmost column in Fig. 3.

(3) Switch to the automaton Ai2j2 where the index j2 is chosen such that the current state ν2 ∈W i2
j2

.

Repeat step (2) with i1 replaced by i2 for the partial order P i2 until a state ν3 ∈W i2
0 is reached.

Repeat this step with i2 replaced by i3, i4, . . . , in, respectively, until a state νn ∈ W in
0 is

reached. In Fig. 3, this step corresponds to moving to the next column, going all the way

down this column and repeating this process until we reach the bottom of the rightmost

column.

(4) Repeat steps (1)–(3).

Theorem 2. Suppose Ψi
j is realizable for each i ∈ Ig, j ∈ {0, . . . , p}. Then the proposed receding

horizon strategy ensures that the system is correct with respect to the specification (6), i.e., any

execution of the system satisfies (6).

Proof: Consider an arbitrary execution σ of the system that satisfies the assumption part of
(6). We want to show that the safety properties ψs,i, i ∈ Is, hold throughout the execution and

for each i ∈ Ig, a state satisfying ψg,i is reached infinitely often.

Let ν0 ∈ V be the initial state of the system and let the index j1 be such that ν0 ∈W i1
j1

. From

the tautology of ψinit Ô⇒ Φ, it is easy to show that σ satisfies the assumption part of Ψi1
j1

as defined in (9). Thus, if j1 = 0, then Ai10 ensures that a state ν2 satisfying ψg,i1 is eventually

reached and the safety properties ψs,i, i ∈ Is hold at every position of σ up to and including the
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Wi1
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0
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p
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p
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Fig. 3. A graphical description of the receding horizon strategy for a special case where for each i ∈ Ig ,Wi
j ≺ψg,i W

i
k,∀j < k,

F i(Wi
j) =Wi

j−1,∀j > 0 and F i(Wi
0) =Wi

0. Starting from a state ν0, the system executes the automaton Ai1j1 where the index

j1 is chosen such that ν0 ∈ Ai1j1 . Repetition of step (2) ensures that a state ν2 ∈Wi1
0 (i.e., a state satisfying ψg,i1 ) is eventually

reached. This state ν2 belongs to some set, say, Wi2
j2

in the partial order Pi2 . The system then works through this partial order

until a state ν3 ∈ Wi2
0 (i.e., a state satisfying ψg,i2 ) is reached. This process is repeated until a state νn satisfying ψg,in is

reached. At this point, for each i ∈ Ig , a state satisfying ψg,i has been visited at least once in the execution. In addition, the

state νn belongs to some set in the partial order Pi1 and the whole process is repeated, ensuring that for each i ∈ Ig , a state

satisfying ψg,i is visited infinitely often in the execution.

point where ν2 is reached. Otherwise, j1 /= 0 and Ai1j1 ensures that eventually, a state ν1 ∈ W i1
k

where W i1
k ≺ψg W i1

j1
is reached, i.e., ν1 is the state of the system at some position l1 of σ. In

addition, the invariant Φ and all the safety properties ψs,i, i ∈ Is, are guaranteed to hold at all the

positions of σ up to and including the position l1. According to the receding horizon strategy,

the planner switches to the automaton Ai1k at position l1 of σ. Since ν1 ∈W i1
k and ν1 satisfies Φ,

the assumption part of Ψi1
k as defined in (9) is satisfied. Using the previous argument, we get

that Ψi1
k ensures that all the safety properties ψs,i, i ∈ Is, hold at every position of σ starting from

position l1 up to and including position l2 at which the planner switches the automaton (from

Ai1k ) and Φ holds at position l2. By repeating this procedure and using the finiteness of the set

{W i1
0 , . . . ,W i1

p } and its partial order condition, eventually the automaton Ai10 is executed which

ensures that σ contains a state ν2 satisfying ψg,i1 and step (2) terminates.

Applying the previous argument to step (3), we get that step (3) terminates and before it

terminates, the safety properties ψs,i, i ∈ Is, and the invariant Φ hold throughout the execution

and for each i ∈ Ig, a state satisfying ψg,i has been reached at least once. By continually repeating

steps (1)–(3), the receding horizon strategy ensures that ψs,i, i ∈ Is, hold throughout the execution
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and for each i ∈ Ig, a state satisfying ψg,i is reached infinitely often.

Remark 4. Traditional receding horizon control is known to not only reduce computational com-

plexity but also increase the robustness of the system with respect to exogenous disturbances and

modeling uncertainties [22]. With disturbances and modeling uncertainties, an actual execution

of the system usually deviates from a reference trajectory sd. Receding horizon control allows

the current state of the system to be continually re-evaluated so sd can be adjusted accordingly

based on the externally received reference if the actual execution of the system does not match

it. Such an effect may be expected in our extension of the traditional receding horizon control.

Verifying this property is subject to current study.

Remark 5. The propositional formula Φ can be viewed as an invariant of the system. It adds

an assumption on the initial state of each automaton Aij and is introduced in order to make

Ψi
j realizable. Without Φ, the set of initial states of Aij includes all states ν ∈ W i

j . However,

starting from some “bad” state (e.g. unsafe state) in W i
j , there may not exist a strategy for the

system to satisfy Ψi
j . Φ is essentially used to eliminate the possibility of starting from these

“bad” states. Given a partially order set P i and a function F i, one way to determine Φ is to

start with Φ ≡ True and check the realizability of the resulting Ψi
j . If there exist i ∈ Ig and

j ∈ {0, . . . , p} such that Ψi
j is not realizable, the synthesis process provides the initial state ν∗

of the system starting from which there exists a set of moves of the environment such that

the system cannot satisfy Ψi
j . This information provides guidelines for constructing Φ, i.e., we

can add a propositional formula to Φ that prevents the system from reaching the state ν∗. This

procedure can be repeated until Ψi
j is realizable for any i ∈ Ig and j ∈ {0, . . . , p} or until Φ

excludes all the possible states, in which case either the original specification is unrealizable or

the proposed receding horizon strategy cannot be applied with the given partially order set P i

and function F i.

Remark 6. For each i ∈ Ig and j ∈ {0, . . . , p}, checking the realizability of Ψi
j requires

considering all the initial conditions in W i
j satisfying Φ. However, as will be further discussed

in Section VII, when a strategy (i.e., a finite state automaton satisfying Ψi
j) is to be extracted,

only the currently observed state needs to be considered as the initial condition. Typically,

the realizability can be checked symbolically and enumeration of states is only required when a
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strategy needs to be extracted [20]. Symbolic methods are known to handle large number of states,

in practice, significantly better than enumeration-based methods. Hence, state explosion usually

occurs in the synthesis (i.e., strategy extraction) stage rather than the realizability checking stage.

By considering only the currently observed state as the initial state in the synthesis stage, the

receding horizon strategy delays state explosion both by considering a short-horizon problem

and a specific initial state.

Remark 7. The proposed receding horizon approach is not complete. Even if there exists a

control strategy that satisfies the original specification in (6), there may not exist an invariant

Φ or a collection of subsets W i
0, . . . ,W i

p that allow the receding horizon strategy to be applied

since the corresponding Ψi
j may not be realizable for all i ∈ Ig and j ∈ {0, . . . , p}.

VII. IMPLEMENTATION OF THE RECEDING HORIZON FRAMEWORK

In order to implement the receding horizon strategy described in Section VI, a partial order

P i and the corresponding function F i need to be defined for each i ∈ Ig. In this section, we

present an implementation of this strategy, allowing P i and F i to be automatically determined

for each i ∈ Ig while ensuring that all the short-horizon specifications Ψi
j, i ∈ Ig, j ∈ {0, . . . , p},

as defined in (9) are realizable.

Given an invariant Φ and subsets W i
0, . . . ,W i

p of V for each i ∈ Ig, we first construct a

finite transition system Ti with the set of states {W i
0, . . . ,W i

p}. For each j, k ∈ {0, . . . , p}, there

is a transition W i
j → W i

k in Ti only if j /= k and the specification in (9) is realizable with

F i(W i
j) = W i

k. The finite transition system Ti can be regarded as an abstraction of the finite

state model D of the physical system S, i.e., a higher-level abstraction of S.

Suppose Φ is defined such that there exists a path in Ti from W i
j to W i

0 for all i ∈ Ig,
j ∈ {1, . . . , p}. (Verifying this property is basically a graph search problem. If a path does not

exist, Φ can be re-computed using a procedure described in Remark 5.) We propose a planner-

controller subsystem with three components (cf. Fig. 4): goal generator, trajectory planner, and

continuous controller.
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Goal

Generator

Trajectory

Planner

Continuous

Controller

Local

Control

Plant

∆

noise

“Receding Horizon Control”

environment

environment

ς∗

G

response

response

u

δu

sd

Fig. 4. A system with the planner-controller subsystem implemented in a receding horizon manner. In addition to the components

discuss in this paper, ∆ which captures uncertainties in the plant model may be added to make the model more realistic. In

addition, the local control may be implemented to account for the effect of noise, disturbances, and unmodeled dynamics. The

inputs and outputs of these two components are drawn in dashed since they are not considered in this paper.

Goal generator: Pick an order1 (i1, . . . , in) for the elements of the unordered set Ig = {i1, . . . , in}
and maintain an index k ∈ {1, . . . , n} throughout the execution. Starting with k = 1, in each

iteration, the goal generator performs the following tasks.

(a1) Receive the currently observed state of the plant (i.e. the controlled state) and environment.

(a2) If the abstract state corresponding to the currently observed state belongs to W ik
0 , update

k to (k mod n) + 1.

(a3) If k was updated in step (a2) or this is the first iteration, then based on the higher level

abstraction Tik of the physical system S, compute a path from W ik
j to W ik

0 where the index

j ∈ {0, . . . , p} is chosen such that the abstract state corresponding to the currently observed

state belongs to W ik
j .

(a4) If a new path is computed in step (a3), then issue this path (i.e., a sequence G =W ik
l0
, . . . ,W ik

lm

for some m ∈ {0, . . . , p} where l0, . . . lm ∈ {0, . . . , p}, l0 = j, lm = 0, lα /= lα′ for any α /= α′,
and there exists a transition W ik

lα
→W ik

lα+1
in Tik for any α <m) to the trajectory planner.

Note that the problem of finding a path in Tik fromW ik
j toW ik

0 can be efficiently solved using any

graph search or shortest-path algorithm [30], such as Dijkstra’s, A*, etc. To reduce the original

synthesis problem to a set of problems with short horizon, the cost on each edge (W ik
lα
,W ik

lα′
)

1As discussed in the description of the receding horizon strategy in Section VI, this order can be picked arbitrarily. In general,

its definition affects a strategy the system chooses to satisfy the specification (6) as it corresponds to the sequence of progress

properties ψg,i1 , . . . , ψg,in the system tries to satisfy.
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of the graph built from Tik may be defined, for example, as an exponential function of the

“distance” between the sets W ik
lα

and W ik
lα′

so that a path with smaller cost contains segments of

shorter “distance”.

Trajectory planner: The trajectory planner maintains the latest sequence G =W ik
l0
, . . . ,W ik

lm
of

goal states received from the goal generator, an index q ∈ {1, . . . ,m} of the current goal state in

G, a strategy F represented by a finite state automaton, and the next abstract state ν∗ throughout

the execution. Starting with q = 1, F being an empty finite state automaton and ν∗ being a null

state, in each iteration, the trajectory planner performs the following tasks.

(b1) Receive the currently observed state of the plant and environment.

(b2) If a new sequence of goal states is received from the goal generator, update G to this latest

sequence of goal states, update q to 1, and update ν∗ to null. Otherwise, if the abstract state

corresponding to the currently observed state belongs to W ik
lq

, update q to q + 1 and ν∗ to

null.

(b3) If ν∗ is null, then based on the abstraction D of the physical system S, synthesize a strategy

that satisfies the specification in (9) with F i(W i
j) = W ik

lq
, starting from the abstract state

ν0 corresponding to the currently observed state, i.e., replace the assumption ν ∈W i
j with

ν = ν0. Assign this strategy to F and update ν∗ to the state following the initial state in F

based on the current environment state.

(b4) If the controlled state ς∗ component of ν∗ corresponds to the currently observed state of the

plant, update ν∗ to the state following the current ν∗ in F based on the current environment

state.

(b5) If ν∗ was updated in step (b3) or (b4), then issue the controlled state ς∗ to the continuous

controller.

Continuous controller: The continuous controller maintains the most recent (abstract) final

controlled state ς∗ from the trajectory planner. In each iteration, it receives the currently observed

state s of the plant. Then, it computes a control signal u such that the continuous execution of

the system eventually reaches the cell of D corresponding to the abstract controlled state ς∗

while always staying in the cell corresponding to the abstract controlled state ς∗ and the cell

containing s. Essentially, the continuous execution has to simulate the abstract plan computed

by the trajectory planner. As discussed at the end of Section V-C, such a control signal can
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be computed by formulating a constrained optimal control problem, which can be solved using

off-the-shelf software such as MPT [27], YALMIP [29] or NTG [22].

From the construction of Ti, i ∈ Ig, it can be verified that the composition of the goal generator

and the trajectory planner correctly implements the receding horizon strategy described in Section

VI. Roughly speaking, the path G from W i
j to W i

0 computed by the goal generator essentially

defines the partial order P i and the corresponding function F i. For a set W i
lα

/=W i
0 contained in

G, we simply let W i
lα+1

≺W i
lα

and F i(W i
lα
) =W i

lα+1
where W i

lα+1
immediately follows W i

lα
in G.

In addition, since, by assumption, for any i ∈ Ig and l ∈ {0, . . . , p}, there exists a path in Ti from

W i
l to W i

0, it can be easily verified that the specification Ψi
l is realizable with F(W i

l ) = W i
0.

Thus, to be consistent with the previously described receding horizon framework, we assign

W i
l ≻ W i

0 and F(W i
l ) = W i

0 for a set W i
l not contained in G. Note that such W i

l that is not in

the path G does not affect the computational complexity of the synthesis algorithm. With this

definition of the partial order P i and the corresponding function F i, we can apply Theorem 2

to conclude that the abstract plan generated by the trajectory planner ensures the correctness of

the system with respect to the specification in (6). In addition, since the continuous controller

simulates this abstract plan, the continuous execution is guaranteed to preserve the correctness

of the system.

The resulting system is depicted in Fig. 4. Note that since it is guaranteed to satisfy the

specification in (6), the desired behavior (i.e. the guarantee part of (6)) is ensured only when the

environment and the initial condition respect their assumptions. To moderate the sensitivity to

violation of these assumptions, the trajectory planner may send a response to the goal generator,

indicating the failure of executing the last received sequence of goals as a consequence of

assumption violation. The goal generator can then remove the problematic transition from the

corresponding finite transition system Ti and re-compute a new sequence G of goals. This

procedure will be illustrated in the example presented in Section VIII. Similarly, a response

may be sent from the continuous controller to the trajectory planner to account for the mismatch

between the actual system and its model. In addition, a local control may be added in order to

account for the effect of the noise and unmodeled dynamics captured by ∆.
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VIII. EXAMPLE

Motivated by the challenges faced in the design and verification of a DARPA Urban Challenge

vehicle such as Alice, as described in Section I, we consider an autonomous vehicle navigating

an urban environment while avoiding obstacles and obeying certain traffic rules. The state of the

vehicle is the position (x, y) whose evolution is governed by

ẋ(t) = ux(t) + dx(t) and ẏ(t) = uy(t) + dy(t)

where ux(t) and uy(t) are control signals and dx(t) and dy(t) are external disturbances at time

t. The control effort is subject the constraints ux(t), uy(t) ∈ [−1,1],∀t ≥ 0. We assume that the

disturbances are bounded by dx(t), dy(t) ∈ [−0.1,0.1],∀t ≥ 0.

We consider the road network shown in Fig. 5 with 3 intersections, I1, I2 and I3, and 6 roads,

R1, R2 (joining I1 and I3), R3, R4 (joining I2 and I3), R5 (joining I1 and I3) and R6 (joining

I1 and I2). Each of these roads has two lanes going in opposite directions. The positive and

negative directions for each road are shown in Fig. 5. We partition the roads and intersections

into N = 282 cells (cf. Fig. 5), each of which may be occupied by an obstacle.

R1 R2

R4R3
R6

R5

I1

I2

I3
+

-

+

-

+

-

+

-

+
-

W1
0

Wi
j

W2
0Wi

j−1Wi
j+1

Fig. 5. The road network and its partition for the autonomous vehicle example. The solid (black) lines define the states in the

set V of the finite state model D used by the trajectory planner. Examples of subsets Wi
j are drawn in dotted (red) rectangles.

The stars indicate the positions that need to be visited infinitely often.

As described in Section I, a planner-controller subsystem of Alice is implemented in a

hierarchical fashion with Mission Planner computing a route (i.e., a sequence of roads to be

navigated) to achieve the given tasks, the composition of Traffic Planner and Path Planner

computing a path (i.e., a sequence of desired positions) that describes how the vehicle should

navigate the route generated by Mission Planner while satisfying the traffic rules, and Path

Follower computing a control signal such that the vehicle closely follows the path generated by
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Traffic Planner. Observe how this hierarchical approach naturally follows our general framework

for designing a planner-controller subsystem (cf. Fig. 4) with Mission Planner being an instance

of a goal generator and each of the sets W i
1, . . . ,W i

p being an entire road. However, these

components are typically designed by hand and validated through extensive simulations and

field tests. Although a correct-by-construction approach has been applied in [31], it is based

on building a finite state abstraction of the physical system and synthesizing a planner that

computes a strategy for the whole execution, taking into account all the possible behaviors of

the environment. As discussed in Section IV, this approach fails to handle even modest size

problems due to the state explosion issue. In this section, we apply the receding horizon scheme

to substantially reduce computational complexity of the correct-by-construction approach.

Given this system model, we want to design a planner-controller subsystem for the vehicle

based on the following desired behavior and assumptions.

Desired Behavior: Following the terminology and notations used in Section III, the desired

behavior ϕs in (2) includes the following properties.

(P1) Each of the two cells marked by star needs to be visited infinitely often.

(P2) No collision, i.e., the vehicle cannot occupy the same cell as an obstacle.

(P3) The vehicle stays in the travel lane (i.e., right lane) unless there is an obstacle blocking

the lane.

(P4) The vehicle can only proceed through an intersection when the intersection is clear.

Assumptions: We assume that the vehicle starts from an obstacle-free cell on R1 with at least

one obstacle-free cell adjacent to it. This constitutes the assumption ϕinit on the initial condition

of the system. The environment assumption ϕe encapsulates the following statements which are

assumed to hold throughout each execution.

(A1) Obstacles may not block a road.

(A2) An obstacle is detected before the vehicle gets too close to it, i.e., an obstacle may not

instantly pop up right in front of the vehicle.

(A3) Sensing range is limited, i.e., the vehicle cannot detect an obstacle that is away from it

farther than certain distance. In this example, we let this sensing range be 2 cells ahead in

the driving direction.

(A4) To make sure that the stay-in-lane property is achievable, we assume that an obstacle does
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not disappear while the vehicle is in its vicinity.

(A5) Obstacles may not span more than a certain number of consecutive cells in the middle of

the road.

(A6) Each of the intersections is clear infinitely often.

(A7) Each of the cells marked by star and its adjacent cells are not occupied by an obstacle

infinitely often.

It can be shown [32] that the properties (P2) and (P3) and the assumptions (A1)–(A4) can

be expressed in the form of the guarantee and the assumption parts of (6). Property (P4) can

be expressed as a safety formula and property (P1) is a progress property. Finally, assumption

(A5) can be expressed as a safety assumption on the environment while assumptions (A6) and

(A7) can be expressed as justice requirements on the environment.

We follow the approach described in Section IV. First, we compute a finite state abstraction

D of the system. Following the scheme in Section V, a state ν of D can be written as ν =
(ς, ρ, o1, o2, . . . , oM) where ς ∈ {1, . . . ,M} and ρ ∈ {+,−} are the controlled state components

of ν, specifying the cell occupied by the vehicle and the direction of travel, respectively, and

for each i ∈ {1, . . . ,M}, oi ∈ {0,1} indicates whether the ith cell is occupied by an obstacle.

This leads to the total of 2M2M possible states of D. With the horizon length N = 12, it can

be shown that based on the Reachability Problem defined in Section V-A, there is a transition

ν1 → ν2 in D if the controlled state components of ν1 and ν2 correspond to adjacent cells (i.e.,

they share an edge in the road network of Fig. 5).

Since the only progress property is to visit the two cells marked by star infinitely often, the

set Ig in (6) has two elements, say, Ig = {1,2}. We let W1
0 be the set of abstract states whose

ς component corresponds to one of these two cells and define W2
0 similarly for the other cell

as shown in Fig. 5. Other W i
j is defined such that it includes all the abstract states whose ς

component corresponds to cells across the width of the road (cf. Fig. 5).

Next, we define Φ such that it excludes states where the vehicle is not in the travel lane

while there is no obstacle blocking the lane and states where the vehicle is in the same cell

as an obstacle or none the cells adjacent to the vehicle are obstacle-free. Using this Φ, the

specification in (9) is realizable with F i(W i
j) = W i

k where W i
j and W i

k correspond to adjacent

dotted (red) rectangles in Fig. 5. The finite transition system Ti used by the goal planner can then

be constructed such that there is a transition W i
j →W i

k for any adjacent W i
j and W i

k. With this
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transition relation, for any i ∈ Ig and j ∈ {0, . . . , p}, there exists a path in Ti from W i
j to W i

0 and

the trajectory planner essentially only has to plan one step ahead. Thus, the size of finite state

automata synthesized by the trajectory planner to satisfy the specification in (9) is completely

independent of M . Using JTLV [20], each of these automata has less than 900 states and only

takes approximately 1.5 seconds to compute on a MacBook with a 2 GHz Intel Core 2 Duo

processor. In addition, with an efficient graph search algorithm, the computation time requires

by the goal generator is in the order of milliseconds. Hence, with a real-time implementation

of optimization-based control such as NTG [33] at the continuous controller level, our approach

can be potentially implemented in real-time.

A simulation result is shown in Fig. 6(a), illustrating a correct execution of the vehicle even

in the presence of exogenous disturbances when all the assumptions on the environment and

initial condition are satisfied. Note that without the receding horizon strategy, there can be as

many as 1087 states in the automaton, making this problem practically impossible to solve.

To illustrate the benefit of the response mechanism, we add a road blockage on R2 to violate

the assumption (A1). The result is shown in Fig. 6(b). Once the vehicle discovers the road

blockage, the trajectory planner cannot find the current state of the system in the finite state

automaton synthesized from the specification in (9) since the assumption on the environment

is violated. The trajectory planner then informs the goal generator of the failure to satisfy the

corresponding specification with the associated pair of W i
j and F(W i

j). Subsequently, the goal

generator removes the transition from W i
j to F(W i

j) in Ti and re-computes a path to W i
0. As a

result, the vehicle continues to exhibit a correct behavior by making a U-turn and completing

the task using a different path.

Fig. 6. Simulation results with (left) no road blockage, (right) a road blockage on R2.
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Fig. 7. Simulation result with the presence of disturbances not

incorporated in the planner-controller subsystem synthesis.

The result with exactly the same setup is

also shown in Fig. 7 where the presence of

exogenous disturbances is not incorporated

in the planner-controller subsystem synthesis.

Once the vehicle overtakes the obstacles on

R1, the continuous controller computes the

sequence of control inputs that is expected

to bring the vehicle back to its travel lane as

commanded by the trajectory planner. However, due to the disturbance, the vehicle remains in

the opposite lane. As a consequence, the trajectory planner keeps sending commands to the

continuous controller to bring the vehicle back to its travel lane but even though the control

inputs computed by the continuous controller are supposed to bring the vehicle back to its travel

lane, the vehicle remains in the opposite lane due to the disturbance. In the meantime, the

disturbance also causes the vehicle to drift slowly to the right. This cycle continues, leading to

violation of the desired property that the vehicle has to stay in the travel lane unless there is an

obstacle blocking the lane.

IX. CONCLUSIONS AND FUTURE WORK

Motivated by the DARPA Urban Challenge, we considered the planner-controller synthesis

problem. Specifically, we proposed an approach to automatically synthesizing a planner-controller

subsystem that ensures system correctness with respect to its specification expressed in linear

temporal logic regardless of the environment in which the system operates. A receding-horizon-

based framework that allows a computationally complex synthesis problem to be reduced to

a set of significantly smaller problems was presented. An implementation of the proposed

framework leads to a hierarchical, modular design with a goal generator, a trajectory planner

and a continuous controller. A response mechanism that increases the robustness of the system

with respect to a mismatch between the system and its model and between the actual behavior

of the environment and its assumptions was discussed. By taking into account the presence of

exogenous disturbances in the synthesis process, the resulting system is provably robust with

respect to bounded exogenous disturbances.

Future work includes further investigation of the robustness of the receding horizon framework.
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Specifically, we want to formally identify the types of properties and faults/failures that can be

correctly handled using the proposed response mechanism. This type of mechanism has been

implemented on Alice, an autonomous vehicle built at Caltech for the DARPA Urban Challenge,

for distributed mission and contingency management [4]. Based on extensive simulations and

field tests, it has been shown to handle many types of failures and faults at different levels of

the system, including inconsistency of the states of different software modules and hardware and

software failures.

Another direction of research is to study an asynchronous execution of the goal generator, the

trajectory planner and the continuous controller. As described in this paper, these components are

to be executed sequentially. However, with certain assumptions on the communication channels, a

distributed, asynchronous implementation of these components may still guarantee the correctness

of the system. Finally, we want to extend the proposed receding horizon framework to other

class of temporal logics that allow better specification of temporal properties.
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