
Automatic Synthesis of Robust Embedded Control Software

Tichakorn Wongpiromsarn, Ufuk Topcu and Richard M. Murray
California Institute of Technology

Pasadena, California 91125

Abstract

We propose a methodology for automatic synthesis of
embedded control software that accounts for exogenous
disturbances. The resulting system is guaranteed, by
construction, to satisfy a given specification expressed
in linear temporal logic. The embedded control soft-
ware consists of three components: a goal generator,
a trajectory planner, and a continuous controller. We
demonstrate the effectiveness of the proposed technique
through an example of an autonomous vehicle navigat-
ing an urban environment. This example also illustrates
that the system is not only robust with respect to exoge-
nous disturbances but also capable of handling violation
of the environment assumptions.

1. Introduction
Design and verification of modern engineered systems with
a tight link between computational and physical elements
have become increasingly difficult due to their complex-
ity and the interleaving between the high-level logics and
the low-level controllers. Recently, there have been grow-
ing interests in integrating the methodologies from com-
puter science and control to allow automatic synthesis of
embedded control software for such systems (Karaman and
Frazzoli 2009; Kress-Gazit, Fainekos, and Pappas 2007;
Conner et al. 2007; Kloetzer and Belta 2008; Wongpirom-
sarn, Topcu, and Murray 2009; 2010). The goal of the
synthesis is to guarantee that, by construction, the system
satisfies its specification regardless of the environment in
which it operates (subject to certain assumptions on the en-
vironment that need to be stated in the specification). The
specification is usually expressed in the language of tem-
poral logic (Manna and Pnueli 1992; Huth and Ryan 2004;
Emerson 1990). With its expressive power, a wider class of
properties than safety and stability, typically studied in con-
trol, can be specified. As a consequence, the system will be
capable of performing much more complex tasks than, e.g.,
converging to a desired operating point while always staying
within a safe set. For example, in (Wongpiromsarn, Topcu,
and Murray 2009) and (Wongpiromsarn, Topcu, and Murray
2010), we described how tasks such as reaching certain ar-
eas and visiting certain areas infinitely often and traffic rules
such as avoiding obstacles, staying in the travel lane and re-
specting precedence order at intersections can be expressed

in linear temporal logic.
A common approach to automatic synthesis of embedded

control software that guarantees the correctness of the re-
sulting system is to construct a finite transition system that
serves as an abstract model of the physical system (which
typically has infinitely many states) and synthesize a strat-
egy, represented by a finite state automaton, satisfying the
specification based on the abstract model. This leads to a hi-
erarchical, two-layer design with a discrete planner comput-
ing a strategy based on the abstract model and a continuous
controller computing a control signal based on the physical
model to continuously implement the strategy. Simulation-
s/bisimulations (Alur et al. 2000) provide the proof that the
continuous execution preserves the desired properties.

The correctness of this hierarchical approach relies on the
abstraction of systems evolving on a continuous domain into
equivalent (in the simulation sense) finite state models. If the
abstraction is done properly such that the continuous con-
troller is capable of implementing any strategy computed by
the trajectory planner, then it is guaranteed that the correct-
ness of the strategy is preserved in the continuous execution.

Several abstraction methods have been proposed based on
a fixed abstraction. For example, a continuous-time, time-
invariant model was considered in (Kress-Gazit, Fainekos,
and Pappas 2007), (Conner et al. 2007) and (Kloetzer and
Belta 2008) for special cases of fully actuated (ṡ(t) = u(t)),
kinematic (ṡ(t) = A(s(t))u(t)) and piecewise affine (PWA)
dynamics, respectively, while a discrete-time, time-invariant
model was considered in (Wongpiromsarn, Topcu, and Mur-
ray 2009) and (Tabuada and Pappas 2006) for special cases
of PWA and controllable linear systems respectively. Ref-
erence (Girard and Pappas 2009) deals with more general
dynamics by relaxing the bisimulation requirement and us-
ing the notions of approximate simulation and simulation
functions (Girard, Julius, and Pappas 2008). More recently,
a sampling-based method has been proposed for µ-calculus
specifications (Karaman and Frazzoli 2009). However, these
approaches do not take into account the presence of exoge-
nous disturbances and the resulting system may fail to sat-
isfy its specification if its evolution does not exactly match
its model.

To increase the robustness of the system against the ef-
fects of direct, external disturbances and a mismatch be-
tween the actual system and its model, in this paper, we ex-

AAAI Spring Symposium on Embedded Reasoning (22-24 Mar 2010, Stanford)
http://www.cds.caltech.edu/~murray/papers/wtm10-aaai.html

tend our work in (Wongpiromsarn, Topcu, and Murray 2009;
2010) to deal with a discrete-time linear time-invariant state
space model with exogenous disturbances and provide an
approach to automatically compute a finite state abstraction
for such a model. We demonstrate the effectiveness of the
proposed technique through an example of an autonomous
vehicle navigating an urban environment. This example also
illustrates that the system is not only robust with respect to
exogenous disturbances but also capable of handling viola-
tion of the environment assumptions.

2. PRELIMINARIES
We use linear temporal logic (LTL) to describe the desired
properties of the system. In this section, we first give for-
mal definitions of terminology and notations used through-
out the paper. Then, based on these definitions, we briefly
describe LTL and some important classes of LTL formulas.
The exposition in this section is parallel to (Wongpiromsarn,
Topcu, and Murray 2010) and is provided for the complete-
ness of the paper.

Definition 1. A system consists of a set V of variables. The
domain of V , denoted by dom(V), is the set of valuations of
V . A state of the system is an element v ∈ dom(V).

Definition 2. A finite transition system is a tuple T :=
(V,V0,→) where V is a finite set of states, V0 ⊆ V is a
set of inital states, and→ ⊆ V × V is a transition relation.
Given states νi, νj ∈ V , we write νi → νj if there is a tran-
sition from νi to νj .

Definition 3. An atomic proposition is a statement on sys-
tem variables υ that has a unique truth value (True or
False) for a given value of υ. Let v ∈ dom(V) be a state of
the system and p be an atomic proposition. We write v
 p
if p is True at the state v. Otherwise, we write v 1 p.

Definition 4. An execution σ of a discrete-time system is
an infinite sequence of the system states over a particular
run, i.e., σ can be written as σ = v0v1v2 . . . where for each
t ≥ 0, vt ∈ dom(V) is the state of the system at time t.

Linear Temporal Logic
Linear temporal logic (Manna and Pnueli 1992; Huth and
Ryan 2004; Emerson 1990) is a powerful specification lan-
guage for unambiguously and concisely expressing a wide
range of properties of systems. LTL is built up from a set
of atomic propositions, the logic connectives (¬, ∨ , ∧ ,
=⇒), and the temporal modal operators (#,�, 3, U which
are read as “next,” “always,” “eventually,” and “until,” re-
spectively). An LTL formula is defined inductively as fol-
lows: (1) any atomic proposition p is an LTL formula; and
(2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, #ϕ and ϕ U ψ
are also LTL formulas.

Other operators can be defined as follows: ϕ ∧ ψ =
¬(¬ϕ ∨ ¬ψ), ϕ =⇒ ψ = ¬ϕ ∨ ψ, 3ϕ = True U ϕ,
and �ϕ = ¬3¬ϕ. A propositional formula is one that does
not include temporal operators. Given a set of LTL formulas
ϕ1, . . . , ϕn, their Boolean combination is an LTL formula
formed by joining ϕ1, . . . , ϕn with logic connectives.

Semantics of LTL: An LTL formula is interpreted over
an infinite sequence of states. Given an execution σ =
v0v1v2 . . . and an LTL formula ϕ, we say that ϕ holds at
position i ≥ 0 of σ, written vi |= σ, if and only if (iff) ϕ
holds for the remainder of the execution σ starting at posi-
tion i. The semantics of LTL is defined inductively as fol-
lows: (a) For an atomic proposition p, vi |= p iff vi
 p;
(b) vi |= ¬ϕ iff vi |6= ϕ; (c) vi |= ϕ ∨ ψ iff vi |= ϕ or
vi |= ψ; (d) vi |= #ϕ iff vi+1 |= ϕ; and (e) vi |= ϕ U ψ iff
∃j ≥ i, vj |= ψ and ∀k ∈ [i, j), vk |= ϕ. Based on this def-
inition, #ϕ holds at position vi iff ϕ holds at the next state
vi+1,�ϕ holds at position i iff ϕ holds at every position in σ
starting at position i, and 3ϕ holds at position i iff ϕ holds
at some position j ≥ i in σ.

Definition 5. An execution σ = v0v1v2 . . . satisfies ϕ, de-
noted by σ |= ϕ, if v0 |= ϕ.

Definition 6. Let Σ be the set of all executions of a system.
The system is said to be correct with respect to its specifica-
tion ϕ, written Σ |= ϕ, if all its executions satisfy ϕ, that is,
(Σ |= ϕ) ⇐⇒

(
∀σ, (σ ∈ Σ) =⇒ (σ |= ϕ)

)
.

Examples: Given propositional formulas p and q describing
the states of interest, important and widely-used properties
can be defined in terms of their corresponding LTL formulas
as follows.

Safety (invariance): A safety formula is of the form �p,
which simply asserts that the property p remains invariantly
true throughout an execution. Typically, a safety property
ensures that nothing bad happens. A classic example of
safety property frequently used in the robot motion planning
domain is obstacle avoidance.

Guarantee (reachability): A guarantee formula is of the
form 3p, which guarantees that the property p becomes true
at least once in an execution, i.e., a state satisfying p is reach-
able. Reaching a goal state is an example of a guarantee
property.

Obligation: An obligation formula is a disjunction of
safety and guarantee formulas, �p ∨ 3q. It can be eas-
ily shown that any safety and progress property can be ex-
pressed using an obligation formula. (By letting q ≡ False ,
we obtain a safety formula and by letting p ≡ False , we
obtain a guarantee formula.)

Progress (recurrence): A progress formula is of the form
�3p, which essentially states that the property p holds in-
finitely often in an execution. As the name suggests, a
progress property typically ensures that the system keeps
making progress throughout the execution.

Response: A response formula is of the form �(p =⇒
3q), which states that following any point in an execution
where the property p is true, there exists a point where the
property q is true. A response property can be used to de-
scribe how the system should react to changes in the operat-
ing conditions.

Stability (persistence): A stability formula is of the form
3�p, which asserts that there is a point in an execution
where the property p becomes invariantly true for the re-
mainder of the execution. This definition corresponds to the
definition of stability in the controls domain since it essen-
tially ensures that eventually, the system converges to a de-

sired operating point and remains there for the remainder of
the execution.

Remark 1. Properties typically studied in the control and
hybrid systems domains are safety (usually in the form of
constraints on the system state) and stability (i.e., conver-
gence to an equilibrium or a desired state). LTL thus offers
extensions to properties that can be expressed. Not only can
it express other classes of properties, but it also allows more
general safety and stability properties than constraints on
the system state or convergence to an equilibrium since p in
�p and 3�p can be any propositional formula.

3. Problem Formulation
We are interested in designing embedded control software
for a system that interacts with its (potentially dynamic and
not a priori known) environment. This software needs to en-
sure that the system satisfies the desired property ϕs in the
presence of exogenous disturbances for any initial condition
and any environment in which it operates, provided that the
initial condition and the environment satisfy certain assump-
tions, ϕinit and ϕe, respectively.

We assume that the desired property ϕs and the assump-
tions ϕinit and ϕe are expressed in LTL. Specifically, we
define the system model S, the desired property ϕs and the
assumptions ϕinit and ϕe as follows.
System Model: Consider a system model S with a set V =
S∪E of variables where S andE are disjoint sets that repre-
sent the set of variables controlled by the system and the set
of variables controlled by the environment respectively. The
domain of V is given by dom(V) = dom(S) × dom(E)
and a state of the system can be written as v = (s, e) where
s ∈ dom(S) ⊆ Rn and e ∈ dom(E). Throughout the
paper, we call s the controlled state and e the environment
state.

Assume that the controlled state evolves according to
the following discrete-time linear time-invariant state space
model:

s[t+ 1] = As[t] +Bu[t] + Ed[t]
u[t] ∈ U
d[t] ∈ D
s[0] ∈ dom(S)

∀t ∈ N (1)

where U ⊆ Rm is the set of admissible control inputs, D ⊆
Rp is the set of exogenous disturbances and s[t], u[t] and d[t]
are the controlled state, the control signal, and the exogenous
disturbance, respectively, at time t.

Example 1. Consider a robot motion planning problem
where a robot needs to navigate an environment populated
with (potentially dynamic) obstacles and explore certain ar-
eas of interest. S typically includes the state (e.g. position
and velocity) of the robot while E typically includes the po-
sitions of obstacles (which are generally not known a priori
and may change over time). The evolution of the controlled
state (i.e., the state of the robot) is simply governed its equa-
tions of motion.

Desired Properties and Assumptions: Let Π be a finite set
of atomic propositions of variables from V . Each of the

atomic propositions in Π essentially captures the states of
interest. We assume that the desired property ϕs is an LTL
specification built from Π and can be expressed as a con-
junction of safety, guarantee, obligation, progress, response
and stability properties as follows:

ϕs =
∧
j∈J1
�ps1,j ∧

∧
j∈J2

3ps2,j ∧∧
j∈J3

(�ps3,j ∨ 3qs3,j) ∧
∧
j∈J4
�3ps4,j ∧∧

j∈J5
�(ps5,j =⇒ 3qs5,j) ∧

∧
j∈J6

3�ps6,j ,
(2)

where J1, . . . , J6 are finite sets and for any i and j, psi,j and
qsi,j are propositional formulas of variables from V that are
built from Π.

We further assume that the initial condition of the system
satisfies a propositional formula ϕinit built from Π and the
environment satisfies an assumption ϕe where ϕe can be ex-
pressed as a conjunction of justice requirements and propo-
sitions that are assumed to be true throughout an execution
as follows:

ϕe =
∧
i∈I1

�pef,i ∧
∧
i∈I2

�3pes,i, (3)

where pef,i and pes,i are propositional formulas built from Π
and only contain variables from E (i.e., environment vari-
ables).

In summary, the specification ϕ of S is given by

ϕ =
(
ϕinit ∧ ϕe) =⇒ ϕs. (4)

Observe, from (4), that the desired property ϕs is guaranteed
only when the assumptions on the initial condition and the
environment are satisfied.

Remark 2. We restrict ϕs and ϕe to be of the form (2) and
(3), respectively, for the clarity of presentation. Our frame-
work only requires that the specification (4) can be reduced
to a subclass of GR[1] formula of the form:(

ψinit ∧ �ψee
∧
i∈If
�3ψef,i

)
=⇒

(∧
i∈Is
�ψs,i ∧

∧
i∈Ig
�3ψg,i

)
,

(5)

where (a) ψinit and ψg,i are propositional formulas of vari-
ables from V , (b) ψee is a Boolean combination of proposi-
tional formulas of variables from E and expressions of the
form #ψte where ψte is a propositional formula of variables
from E that describes the assumptions on the transitions of
environment states, (c) ψef,i is a propositional formulas of
variables from E, and (d) ψs,i is a Boolean combination
of propositional formulas of variables from V and expres-
sions of the form #ψts where ψts is a propositional formula
of variables from V that describes the constraints on the
transitions of controlled states. Throughout the paper, we
call the left hand side and the right hand side of (5) the “as-
sumption” part and the “guarantee” part, respectively.

In (Wongpiromsarn, Topcu, and Murray 2010), we
showed that the specification (4) can be reduced to the form
of equation (5). Hence, for the rest of the paper, we will only
consider a specification of the form (5).

4. Embedded Control Software
A common approach to automatic synthesis of embedded
control software as described in Section 3. is to construct a
finite transition system D that serves as an abstract model of
the physical system S (which typically has infinitely many
states) and synthesize a strategy, represented by a finite state
automaton, satisfying the specification (5) based on the ab-
stract model D. This leads to a hierarchical, two-layer de-
sign with a discrete planner computing a strategy based on
the abstract model D and a continuous controller comput-
ing a control signal based on the physical model S to con-
tinuously implement the strategy. Simulations/bisimulations
provide the proof that the continuous execution preserves the
desired properties.

One of the main challenges of this approach is the compu-
tational complexity in the synthesis of finite state automata
(i.e., discrete planners). Although it has been shown that for
a specification of the form (5), an automaton can be auto-
matically computed in polynomial time (Piterman, Pnueli,
and Sa’ar 2006), the applications of the synthesis tool are
limited to small problems due to the state explosion issue.
To address this problem, in (Wongpiromsarn, Topcu, and
Murray 2010), we described an extension of traditional re-
ceding horizon control to incorporate linear temporal logic
specifications of the form (5). Its implementation leads to
the decomposition of the discrete planner into a goal gen-
erator and a trajectory planner and the resulting embedded
control software consists of three components as depicted
in Figure 1. The goal generator essentially reduces the syn-
thesis problem to a sequence of smaller problems of short
horizon while preserving the desired system-level tempo-
ral properties. Subsequently, in each iteration, the trajec-
tory planner solves the corresponding short-horizon prob-
lem with the currently observed state as the initial state and
generates a feasible trajectory to be implemented by the con-
tinuous controller. We showed that the sequence of trajec-
tories generated by the trajectory planner satisfies the given
specification (5), provided that all the assumptions on the
environment stated in (5) hold throughout the execution. To
handle failures that may occur due to direct, external distur-
bances, a mismatch between the actual system and its model
and violation of the environment assumptions, we proposed
a response mechanism that enables the system to respond to
certain failures and continue to exhibit a correct behavior.

The correctness of this hierarchical approach relies on the
abstraction of systems evolving on a continuous domain into
equivalent (in the simulation sense) finite state models. If the
abstraction is done properly such that the continuous con-
troller is capable of implementing any strategy computed by
the trajectory planner, then it is guaranteed that the correct-
ness of the strategy is preserved in the continuous execution.

Several abstraction methods have been proposed for dif-
ferent cases of system dynamics (Kress-Gazit, Fainekos, and
Pappas 2007; Conner et al. 2007; Kloetzer and Belta 2008;
Wongpiromsarn, Topcu, and Murray 2009; Tabuada and
Pappas 2006; Girard and Pappas 2009; Karaman and Fraz-
zoli 2009). However, these approaches do not take into ac-
count the presence of exogenous disturbances and the result-
ing system may fail to satisfy its specification if its evolution

does not exactly match its model.
To increase the robustness of the system with respect to

exogenous disturbances, in the next section, we extend our
work in (Wongpiromsarn, Topcu, and Murray 2009) to deal
with a discrete-time linear time-invariant state space model
with bounded disturbances as in (1) and provide an approach
to automatically compute a finite state abstraction D of S.

Goal Gen-
erator

Trajectory
Planner

Continuous
Controller

Local Control

Plant

∆

noise

“Receding Horizon Control”

environment

environment

ς∗

G

response

response

u

δu

sd

Figure 1: A system with the proposed embedded control
software. ∆ models uncertainties in the plant model. The
local control is implemented to account for the effect of the
noise and unmodeled dynamics captured by ∆.

5. Computing Finite State Abstraction
To construct a finite transition system D from the physi-
cal model S, we first partition dom(S) and dom(E), as
in (Kress-Gazit, Fainekos, and Pappas 2007; Kloetzer and
Belta 2008), into a finite number of equivalence classes or
cells S and E , respectively, such that the partition is propo-
sition preserving (Alur et al. 2000). Roughly speaking, this
means that for any atomic proposition π ∈ Π and any states
v1 and v2 that belong to the same cell in the partition, if v1

satisfies π, then v2 also satisfies π. We denote the resulting
discrete domain of the system by V = S × E . Through-
out the paper, we call v ∈ dom(V) a continuous state and
ν ∈ V a discrete state of the system. For a discrete state
ν ∈ V , we say that ν satisfies an atomic proposition π ∈ Π,
denoted by ν
d π, if and only if there exists a contin-
uous state v contained in the cell labeled by ν such that
v satisfies π. Given an infinite sequence of discrete states
σd = ν0ν1ν2 . . . and an LTL formula ϕ built from Π, we say
that ϕ holds at position i ≥ 0 of σd, written νi |=d ϕ, if and
only if ϕ holds for the remainder of σd starting at position i.
With these definitions, the semantics of LTL for a sequence
of discrete states can be derived from the general seman-
tics of LTL (Manna and Pnueli 1992; Huth and Ryan 2004;
Emerson 1990).

Next, we need to determine the transition relations→ of
D. In Section 5.1, we use a variant of the notion of reach-
ability that is sufficient to guarantee that if a discrete con-
trolled state ςj is reachable from ςi, the transition from ςi to
ςj can be continuously implemented or simulated by a con-
tinuous controller. See, for example, (Tanner and Pappas
2002) for the exact definition. A computational scheme that
provides a sufficient condition for reachability between two

discrete controlled states and subsequently refines the state
space partition is also presented in Sections 5.3 and 5.4.

5.1 Finite Time Reachability
Let S = {ς1, ς2, . . . , ςl} be a set of discrete controlled
states. We define a map Ts : dom(S) → S that sends
a continuous controlled state to a discrete controlled state
of its equivalence class. That is, T−1

s (ςi) ⊆ dom(S) is
the set of all the continuous controlled states contained in
the cell labeled by ςi and {T−1

s (ςi), . . . , T−1
s (ςn)} is the

partition of dom(S). We define the reachability relation,
denoted by , as follows: a discrete state ςj is reachable
from a discrete state ςi, written ςi ςj , only if starting
from any point s[0] ∈ T−1

s (ςi), there exists a horizon length
N ∈ N and a control law u[t] ∈ U that takes the sys-
tem (1) to a point s[N] ∈ T−1

s (ςj) satisfying the constraint
s[t] ∈ T−1

s (ςi) ∪ T−1
s (ςj),∀t ∈ {0, . . . , N} for any ex-

ogenous disturbances d[t] ∈ D. Note that this is stronger
than the usual definition of reachability (Vinter 1980; Prajna
2005) since we also impose the requirement that the trajec-
tory always remain within the “safe” set. We write ςi 6 ςj
if ςj is not reachable from ςi.

In general, for two discrete states ςi and ςj , verifying the
reachability relation ςi ςj is hard. Therefore, we con-
sider the restricted case where the horizon length is fixed and
given and U , D and T−1

s (ςi), i ∈ {1, . . . , l} are polyhedral
sets. Our approach relies on solving the following problem:
Given discrete controlled states ςi, ςj ∈ S , the set of admis-
sible control inputs U ⊆ Rm, the set of exogenous distur-
bancesD ⊆ Rp, the matricesA,B andE as in (1), a horizon
lengthN ≥ 0, find the set of initial states S0 ⊆ Rn such that
for any s[0] ∈ S0, there exist u[0], u[1], . . . , u[N − 1] ∈ Rm
such that

s[t+ 1] = As[t] +Bu[t] + Ed[t]
s[t] ∈ T−1

s (ςi) ∪ T−1
s (ςj), s[N] ∈ T−1

s (ςj), u[t] ∈ U,
∀t ∈ {0, . . . , N − 1}, d[0], . . . , d[N − 1] ∈ D

(6)

5.2 Preliminaries on Polyhedral Convexity
We consider the case where U , D and T−1

s (ςi), i ∈
{1, . . . , l} are polyhedral sets defined as follows.
Definition 7. A subset P of Rn is said to be a polyhedral
set if it is nonempty and has the form P = {p | Gp ≤ h} for
some G ∈ Rr×n and h ∈ Rr.
Definition 8. Let P be a nonempty convex set. A point p ∈
P is an extreme point of P if and only if it does not lie strictly
between the endpoints of any line segment contained in the
set, i.e.,

p = λp1+(1−λ)p2, p1, p2 ∈ P, λ ∈ (0, 1) =⇒ p = p1 = p2.

To compute the set S0 of initial states for which (6) is fea-
sible, we apply the following results on polyhedral convex-
ity. The proofs for the next three propositions can be found
in (Bertsekas, Nedić, and Ozdaglar 2003).
Proposition 1. Let P be a polyhedral subset of Rn. If P
has the form P = {p ∈ Rn | g′jp ≤ hj , j = 1, . . . , r} where
gj ∈ Rn and hj ∈ R, then a point p ∈ P is an extreme

point of P if and only if the set Gp ,
{
gj | g′jp = hj , j ∈

{1, . . . , r}
}

contains n linearly independent vectors.
Proposition 2. Let P be a nonempty convex subset of Rn.
If P is closed, then P has at least one extreme point if and
only if it does not contain a line, i.e., a set of the form {p +
λh | λ ∈ R}, where h ∈ Rn is nonzero and p ∈ P .
Proposition 3 (Fundamental Theorem of Linear Program-
ming). Let P be a polyhedral set that has at least one ex-
treme point. A linear function that is bounded below over P
attains a mininum at some extreme point of P .

Using Proposition 1, we can derive the following propo-
sition. The proof is omitted owing to limited space.
Proposition 4. Let P be a polyhedral subset of Rn and let P
be the set of all its extreme points. For any natural number
N , PN , P × . . .× P︸ ︷︷ ︸

Ntimes

is a polyhedral subset of RnN and

P
N
, P × . . .× P︸ ︷︷ ︸

Ntimes

is the set of all its extreme points.

In addition, the following proposition can be proved using
Proposition 2.
Proposition 5. Let P be a polyhedral subset of Rn. If P is
closed and bounded, then P has at least one extreme point.

Proof. Assume, to arrive at a contradiction, that P does not
have an extreme point. Then, from Proposition 2, P contains
a line L = {p+ λh | λ ∈ R} where h ∈ Rn is nonzero and
p ∈ P . This contradicts the assumption that P is bounded.

Finally, the next three propositions can be found in stan-
dard textbooks on topology, e.g., (Rudin 1976).
Proposition 6 (Heine-Borel Theorem). A subset of Eu-
clidean space Rn is compact if and only if it is closed and
bounded.
Proposition 7 (Tychonoff’s Theorem). The product of any
collection of compact topological spaces is compact.
Proposition 8 (Extreme Value Theorem). A continuous
real-valued function on a nonempty compact space is
bounded and attains its supremum.

5.3 Verifying the Reachability Relation
Given the discrete controlled states ςi, ςj ∈ S , to deter-
mine whether ςi ςj , we essentially have to verify that
T−1
s (ςi) ⊆ S0 where S0 is the set of initial states for which

(6) is feasible. In this section, we describe how S0 can
be computed using an idea from constrained robust optimal
control (Borrelli 2003).
Lemma 1. Suppose U , D and T−1

s (ςi), i ∈ {1, . . . , l} are
polyhedral sets, i.e., there exist matrices L1, L2 and L3

and vectors M1, M2 and M3 such that T−1
s (ςi) = {s ∈

Rn | L1s ≤ M1}, U = {u ∈ Rm | L2u ≤ M2} and
T−1
s (ςj) = {s ∈ Rn | L3s ≤M3}. Then, (6) can be rewrit-

ten in the form

L

[
s[0]
û

]
≤M −Gd̂ (7)

where û , [u[0]′, . . . , u[N − 1]′]′ ∈ RmN , d̂ ,
[d[0]′, . . . , d[N − 1]′]′ ∈ DN and the matrices L ∈
Rr×n+mN and G ∈ Rr×pN and the vector M ∈ Rr can
be obtained from L1, L2, L3, M1, M2, M3, A, B and E.

Proof. Equation (7) can be obtained by substituting

s[t] = Ats[0]+
t−1∑
k=0

(
AkBu[t− 1− k] +AkEd[t− 1− k]

)
and replacing s[t] ∈ T−1

s (ςi) ∪ T−1
s (ςj), u[t] ∈ U and

s[N] ∈ T−1
s (ςj) with L1s[t] ≤ M1, L2u[t] ≤ M2 and

L3s[N] ≤M3, respectively, in (6).

Theorem 1. SupposeD is a closed and bounded polyhedral
subset of Rp and D is the set of all its extreme points. Let
P , {y ∈ Rn+mN | Ly ≤ M − Gd̂i,∀d̂i ∈ D

N} and let
S0 be the projection of P onto its first n coordinates, i.e.,

S0 =
{
s ∈ Rn

∣∣ ∃û ∈ RmN s.t. L
[
s
û

]
≤M −Gd̂i,

∀d̂i ∈ D
N
}
.

(8)
Then, the problem in (6) is feasible for any s[0] ∈ S0.

Proof. Using Lemma 1, to show that the problem in (6) is
feasible for any s ∈ S0 defined in (8), we will show that
for any s[0] ∈ S0, there exists û ∈ RmN such that for all

d̂ ∈ DN , L
[
s[0]
û

]
≤M −Gd̂.

From the Heine-Borel theorem, the Tychonoff’s theorem
and Proposition 4, we get that DN is compact. For each
j ∈ {1, . . . , r}, let mj be the jth element of M and g′j be
the jth row of G and define a linear function fj : DN → R
by fj(d̂) = mj − g′j d̂. Since fj is continuous and DN is
compact, from the extreme value theorem, fj is bounded
below over DN . In addition, since DN is compact, from
the Heine-Borel theorem and Proposition 5, DN has at least
one extreme point. Using the fundamental theorem of linear
programming, we can conclude that fj attains a minimum at
some extreme point of DN .

Assume, for the sake of contradiction, that there exists
s[0] ∈ S0 and d̂ ∈ DN such that for any û ∈ RmN ,

L

[
s[0]
û

]
> M − Gd̂. Then, there exists j ∈ {1, . . . , r}

such that l′j

[
s[0]
û

]
> fj(d̂) where l′j is the jth row of L.

But since fj attains a minimum at some extreme point of

DN , there exists d̂i ∈ D
N

such that l′j

[
s[0]
û

]
> fj(d̂i).

This contradicts the assumption that s[0] ∈ S0.

Using Theorem 1, the problem of computing the set S0 of
initial states for which (6) is feasible is reduced to computing
a projection of the intersection of finite sets and can be au-
tomatically solved using, for example, the Multi-Parametric
Toolbox (MPT) (Kvasnica, Grieder, and Baotić 2004).

5.4 State Space Discretization and Correctness of
the System

In general, given the previous partition of dom(S) and any
i, j ∈ {1, . . . , n}, the reachability relation between ςi and ςj
may not be established through the set S0 of initial states for
which (6) is feasible since T−1

s (ςi) is not necessarily cov-
ered by S0 (due to the constraints on u and a specific choice
of the finite horizonN). Hence, we refine the partition based
on the reachability relation defined earlier to increase the
number of valid discrete state transitions of D. The underly-
ing idea is that starting with an arbitrary pair of ςi and ςj , we
determine the set S0 of feasible initial states of (6). Then,
we partition T−1

s (ςi) into T−1
s (ςi) ∩ S0, labeled by ςi,1, and

T−1
s (ςi)\S0, labeled by T−1

s (ςi,2), and obtain the following
reachability relations: ςi,1 ςj and ςi,2 6 ςj . This process
is continued until some pre-specified termination criteria are
met. More details on the discretization algorithm, including
the pseudo-code, can be found in (Wongpiromsarn, Topcu,
and Murray 2009).

We denote the resulting set of all the discrete controlled
states corresponding to the resulting partition of dom(S) af-
ter applying the discretization algorithm by S ′. From the
definition of reachability, we can follow the argument in
(Wongpiromsarn, Topcu, and Murray 2009) to show that for
any strategy computed by the trajectory planner and exoge-
nous disturbances d[t] ∈ D, there exists a sequence of con-
trol signal u[t], t ∈ {0, . . . , N − 1} that enables the con-
tinuous evolution of the system to simulate the given strat-
egy. Hence, from the correctness of the strategy proved in
(Wongpiromsarn, Topcu, and Murray 2010), the resulting
system is guaranteed, by construction, to be correct with re-
spect to the specification (5).
Proposition 9. Let σd = ν0ν1 . . . be an infinite sequence of
discrete states of D where for each natural number k, νk →
νk+1, νk = (ςk, εk), ςk ∈ S ′ is the discrete controlled state
and εk ∈ E is the discrete environment state. If σd |=d ϕ,
then by applying a sequence of control laws, each corre-
sponding to a solution of (6) with ςi = ςk and ςj = ςk+1,
the infinite sequence of continuous states σ = v0v1v2 . . .
satisfies ϕ.

A solution u[0], . . . , u[N − 1] of (6) can be computed by
formulating a constrained optimal control problem, which
can be automatically solved using a computational software
package such as MPT (Kvasnica, Grieder, and Baotić 2004),
YALMIP (Löfberg 2004) or NTG (Murray et al. 2003).

6. Example
We revisit the problem of autonomous vehicle navigating
an urban environment studied in (Wongpiromsarn, Topcu,
and Murray 2010) where the effect of disturbances was not
taken into account. Here, we add exogenous disturbances
dx and dy to the system model, i.e., we assume that the
state (x, y) of the vehicle follows a fully actuated model
ẋ(t) = ux(t)+dx(t) and ẏ(t) = uy(t)+dy(t) subject to the
following constraints on the control effort and disturbance:
ux(t), uy(t) ∈ [−1, 1] and dx(t), dy(t) ∈ [−0.1, 0.1],∀t ≥
0. The desired properties of the system include visiting cer-
tain areas infinitely often and obeying traffic rules (no col-

lision, staying in the travel lane, stopping at a stop line and
proceeding through an intersection only when it is clear). To
illustrate that the system is capable of handling certain vio-
lation of environment assumptions, we design the embed-
ded control software based on the assumption that obstacles
may not block a road. We refer the reader to (Wongpirom-
sarn, Topcu, and Murray 2010) for more details on this ex-
ample, including assumptions on the environment and the
initial state of the system.

In (Wongpiromsarn, Topcu, and Murray 2010), we
showed that the system is capable of responding to certain
failures caused by violation of environment assumptions. In
this section, we show that if the presence of disturbances
is incorporated in the embedded control software synthesis,
then the resulting system will also be robust with respect to
exogenous disturbances and always exhibit a correct behav-
ior regardless of the disturbances, provided that the distur-
bances remain within the set D = [−0.1, 0.1]× [−0.1, 0.1].

We consider the road network shown in Figure 2 with 3
intersections, I1, I2 and I3, and 6 roads, R1, R2 (joining
I1 and I3), R3, R4 (joining I2 and I3), R5 (joining I1 and
I3) and R6 (joining I1 and I2). Based on the specification
of the system, we partition the roads and intersections into
N = 282 cells as shown in Figure 2.

R1 R2

R4R3
R6

R5

I1

I2

I3
+

-

+

-

+

-

+

-

+
-

Figure 2: The road network and its partition for the au-
tonomous vehicle example. The solid (black) lines define
the states in the set V of the finite state model D used by the
trajectory planner. The stars indicate the areas that need to
be visited infinitely often.

We start by computing the corresponding discrete-time
model of the vehicle and compute its finite state abstraction
D as described in Section 5.. It can be shown that with the
horizon length N = 12, each of the states of D corresponds
to a cell in the road network and for any two states νi, νj of
D, νi νj if νi and νj are adjacent cells (i.e., they share an
edge in the road network of Figure 2).

Given this finite abstraction D of the vehicle, we follow

the approach in (Wongpiromsarn, Topcu, and Murray 2010)
to synthesize the trajectory planner and the goal generator. A
simulation result is shown in Figure 3 (top) where the pres-
ence of exogenous disturbances is incorporated in the em-
bedded control software synthesis. In the first loop, there
is no obstacle blocking R2 so the vehicle picks the shorter
route. In the second loop, a road blockage is added. Once the
vehicle detects it, the trajectory planner cannot find a strat-
egy for the system to satisfy its specification since the as-
sumption on the environment that a road may not be blocked
is violated. The trajectory planner then informs the goal gen-
erator of the failure. Subsequently, the goal generator re-
computes a path to the areas marked by star. As a result, the
vehicle continues to exhibit a correct behavior by making a
U-turn and completing the task using a different path.

The result with exactly the same setup is also shown in
Figure 3 (bottom) where the presence of exogenous distur-
bances is not incorporated in the embedded control software
synthesis. Once the vehicle overtakes the obstacles on R1,
the continuous controller computes the sequence of control
inputs that is expected to bring the vehicle back to its travel
lane as commanded by the trajectory planner. However, due
to the disturbance, the vehicle remains in the opposite lane.
As a consequence, the trajectory planner continues to tell the
continuous controller to bring the vehicle back to its travel
lane but even though the control inputs computed by the con-
tinuous controller are supposed to bring the vehicle back to
its travel lane, the vehicle remains in the opposite lane due
to the disturbance. In the meantime, the disturbance also
causes the vehicle to drift slowly to the right. This cycle
continues, leading to violation of the desired property that
the vehicle has to stay in the travel lane unless there is an
obstacle blocking the lane.

Figure 3: Simulation results with (top) the presence of dis-
turbances incorporated, and (bottom) the presence of distur-
bances not incorporated in the embedded control software
synthesis.

7. Conclusions
We proposed an approach to automatically compute a finite
state abstraction of a discrete-time linear time-invariant sys-
tem, taking into account the presence of exogenous distur-
bances. This allows us to automatically synthesize embed-
ded control software for the system that is guaranteed, by
construction, to satisfy its specification regardless of the en-
vironment in which it operates (subject to certain assump-
tions on the environment that need to be stated in the spec-
ification). The resulting system is provably robust with re-
spect to bounded exogenous disturbances. In certain cases,
the system is also capable of properly responding to failures
that may occur due to violation of the environment assump-
tions.

Acknowledgments
This work is partially supported by AFOSR and the Boeing
Corporation.

References
Alur, R.; Henzinger, T. A.; Lafferriere, G.; and Pappas,
G. J. 2000. Discrete abstractions of hybrid systems. In
Proc. of the IEEE, 971–984.
Bertsekas, D. P.; Nedić, A.; and Ozdaglar, A. E. 2003.
Convex Analysis and Optimization. Athena Scientific.
Borrelli, F. 2003. Constrained Optimal Control of Lin-
ear and Hybrid Systems, volume 290 of Lecture Notes in
Control and Information Sciences. Springer.
Conner, D.; Kress-Gazit, H.; Choset, H.; Rizzi, A.; and
Pappas, G. 2007. Valet parking without a valet. In Proc. of
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 572–577.
Emerson, E. A. 1990. Temporal and modal logic. In
Handbook of theoretical computer science (vol. B): formal
models and semantics. Cambridge, MA, USA: MIT Press.
995–1072.
Girard, A., and Pappas, G. J. 2009. Brief paper: Hierar-
chical control system design using approximate simulation.
Automatica 45(2):566–571.
Girard, A.; Julius, A. A.; and Pappas, G. J. 2008. Ap-
proximate simulation relations for hybrid systems. Dis-
crete Event Dynamic Systems 18(2):163–179.
Huth, M., and Ryan, M. 2004. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge Uni-
versity Press, 2nd edition.
Karaman, S., and Frazzoli, E. 2009. Sampling-based mo-
tion planning with deterministic µ-calculus specifications.
In Proc. of IEEE Conference on Decision and Control.
Kloetzer, M., and Belta, C. 2008. A fully automated frame-
work for control of linear systems from temporal logic
specifications. IEEE Transaction on Automatic Control
53(1):287–297.
Kress-Gazit, H.; Fainekos, G.; and Pappas, G. 2007.
Where’s waldo? Sensor-based temporal logic motion plan-
ning. In Proc. of IEEE International Conference on
Robotics and Automation, 3116–3121.

Kvasnica, M.; Grieder, P.; and Baotić, M. 2004.
Multi-Parametric Toolbox (MPT). Software available at
http://control.ee.ethz.ch/∼mpt/.
Löfberg, J. 2004. Yalmip : A toolbox for mod-
eling and optimization in MATLAB. In Proceed-
ings of the CACSD Conference. Software available at
http://control.ee.ethz.ch/∼joloef/yalmip.php.
Manna, Z., and Pnueli, A. 1992. The temporal logic of
reactive and concurrent systems. Springer-Verlag.
Murray, R. M.; Hauser, J.; Jadbabaie, A.; Milam,
M. B.; Petit, N.; Dunbar, W. B.; and Franz, R.
2003. Online control customization via optimization-
based control. In Software-Enabled Control: In-
formation Technology for Dynamical Systems, 149–
174. Wiley-Interscience. Software available at
http://www.cds.caltech.edu/∼murray/software/2002a ntg.html.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of
reactive(1) designs. In Verification, Model Checking and
Abstract Interpretation, volume 3855 of Lecture Notes in
Computer Science, 364 – 380. Springer-Verlag. Software
available at http://jtlv.sourceforge.net/.
Prajna, S. 2005. Optimization-based methods for nonlin-
ear and hybrid systems verification. Ph.D. Dissertation,
California Institute of Technology.
Rudin, W. 1976. Principles of mathematical analysis. New
York: McGraw-Hill Book Co., third edition.
Tabuada, P., and Pappas, G. J. 2006. Linear time logic
control of linear systems. IEEE Transaction on Automatic
Control 51(12):1862–1877.
Tanner, H., and Pappas, G. J. 2002. Simulation relations
for discrete-time linear systems. In Proc. of the IFAC World
Congress on Automatic Control, 1302–1307.
Vinter, R. 1980. A characterization of the reachable set for
nonlinear control systems. SIAM Journal on Control and
Optimization 18(6):599–610.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. M. 2009.
Receding horizon temporal logic planning for dynamical
systems. In Proc. of IEEE Conference on Decision and
Control.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. M. 2010.
Receding horizon control for temporal logic specifications.
In Proc. of the 13th International Conference on Hybrid
Systems: Computation and Control. submitted.

