
DISTRIBUTEDMISSION AND CONTINGENCY MANAGEMENT
FOR THE DARPA URBAN CHALLENGE

Tichakorn Wongpiromsarn and Richard M. Murray
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA

nok@caltech.edu, murray@cds.caltech.edu

Keywords: mission management, contingency planning, autonomous driving, fault handling, DARPA Urban Challenge

Abstract: We present an approach that allows mission and contingency management to be achieved in a distributed and
dynamic manner without any central control over multiple software modules. This approach comprises two
key elements—a mission management subsystem and a Canonical Software Architecture (CSA) for a planning
subsystem. The mission management subsystem works in conjunction with the planning subsystem to dynam-
ically replan in reaction to contingencies. The CSA ensures the consistency of the states of all the software
modules in the planning subsystem. System faults are identified and replanning strategies are performed dis-
tributedly in the planning and the mission management subsystems through the CSA. The approach has been
implemented and tested on Alice, an autonomous vehicle developed by the California Institute of Technology
for the 2007 DARPA Urban Challenge.

1 INTRODUCTION

One of the major challenges in urban autonomous
driving is the ability of the system to reason about
complex, uncertain, spatio-temporal environments
and to make decisions that enable autonomous mis-
sions to be accomplished safely and efficiently, with
ample contingency planning. Due to the complexity
of the system and a wide range of environments in
which the system must be able to operate, an unpre-
dictable performance degradation of the system can
quickly cause critical system failure. In a distributed
system such as Alice, an autonomous vehicle devel-
oped by the California Institute of Technology for the
2007 DARPA Urban Challenge, performance degra-
dation of the system may result from changes in the
environment, hardware and software failures, incon-
sistency in the states of different software modules,
and faulty behaviors of a software module. To ensure
vehicle safety and mission success, there is a need for
the system to be able to properly detect and respond
to these unexpected events which affect vehicle’s op-
erational capabilities.
Mission and contingency management is often

achieved using a centralized approach where a cen-

tral module communicates with nearly every software
module in the system and directs each module se-
quentially through its various modes in order to re-
cover from failures. Examples of such a central mod-
ule are the behavior managementmodule of the Terra-
Max Autonomous Vehicle (Braid et al., 2006), the su-
pervisory controller (SuperCon) module of Alice pre-
viously developed for the 2005 DARPA Grand Chal-
lenge (Cremean et al., 2006) and the Fault Manager
subsystem of the vehicle Theseus (Antonelli, 2003).
A drawback of this approach is that the central mod-
ule usually has so much functionality and responsibil-
ity and easily becomes unmanageable and error prone
as the system gets more complicated. In fact, Team
Caltech’s failure in the 2005 DARPA Grand Chal-
lenge was mainly due to an inability of the Super-
Con module to reason and respond properly to certain
combination of faults in the system (Cremean et al.,
2006). This resulted from the difficulty in verifying
this module due to its complexity.
The complexity and dynamic nature of the urban

driving problem make centralized mission and con-
tingency management impractical. A mission man-
agement subsystem comprising the mission planner,
the health monitor and the process control modules

Sensing and
Mapping

Subsystem
Health
Monitor

Applanix
(GPS and

IMU)
Astate

Follower

Segment-level goal

Trajectory

Actuator command

Actuator command
(including reset
command)

Connect/
disconnect
command

Vehicle capability

Actuator health

Vehicle state
estimation

health

Connect/
disconnect
command

Sensing health

World map

Local map

Mission Data File
Route Network Definition File

Vehicle
state

Vehicle state

Directive/response

State knowledge

Sensors

Response

Response

Planner

Response

Response

Gcdrive

Response

Response

Actuators

Mission Planner

Process
Control

Process health

Figure 1: Alice’s mission management and planning sub-
systems in the Canonical Software Architecture. Boxes
with double lined borders are subsystems that will be bro-
ken up into multiple CSA modules.

and the Canonical Software Architecture (CSA) (Ras-
mussen and Ingham,) have therefore been developed
to allow mission and contingency management to be
achieved in a distributed manner. The mission man-
agement subsystem works in conjunction with the
planning subsystem to dynamically replan in reaction
to contingencies. As shown in Figure 1, the health
monitor module actively monitors the health of the
hardware and software components to dynamically
assess the vehicle’s operational capabilities through-
out the course of mission. It communicates directly
with the mission planner module which replans the
mission goals based on the current vehicle’s capa-
bilities. The process control module ensures that all
the software modules run properly by monitoring the
health of individual software modules and automat-
ically restarting a software module that quits unex-
pectedly and a software module that identifies itself
as unhealthy. An unhealthy hardware component is
power-cycled by the software that communicates with
it. The CSA ensures the consistency of the states of
all the software modules in the planning subsystem.
System faults are identified and replanning strategies
are performed distributedly in the planning and the
mission management subsystems through the CSA.
Together these mechanisms make the system capa-
ble of exhibiting a fail-ops/fail-safe and intelligent re-
sponses to a number different types of failures in the
system.
Related work includes a holistic contingencyman-

agement technology (Franke et al., 2006), a Mission
Effectiveness and Safety Assessment (MENSA) tech-
nology (Franke et al., 2002), real-time fault detection
and situational awareness (Dearden et al., 2004), the
high level controller of the Intelligent Off-Road Navi-
gator (Chen and Ümit Özgüner, 2006) and a model-

based approach (Williams et al., 2003). These ap-
proaches rely on having a subsystem, similar to our
mission management subsystem, capable of monitor-
ing and assessing unexpected, mission-related events
that affect the overall system operation and mission
success. This subsystem may also be capable of
suggesting a new strategy or operation mode for the
planning subsystem or reconfiguring the system in
response to these events. The CSA, however, at-
tempts to facilitate these responsibilities of the mis-
sion management subsystem. By integrating the di-
rective/response mechanism into the planning and the
mission management subsystems, the mission man-
agement subsystem can assess most of the mission-
related events by only reasoning at the level of fail-
ure or completion of its directives, thus eliminating
the need to monitor or reason about the execution of
the rest of the system and its behavior and interac-
tion with the environment other than the health of the
hardware and software components.
The contributions of this paper are: (1) a frame-

work for integrating mission and contingency man-
agement into a planning system so that it can be
achieved distributedly and dynamically; (2) a com-
plete implementation on an autonomous vehicle sys-
tem capable of operating in a complex and dynamic
environment; and (3) an evaluation of the approach
from extensive testing and some insight into future
research directions. The remainder of this paper is or-
ganized as follows. Section 2 introduces the concept
of the Canonical Software Architecture. Section 3 de-
scribes the mission management subsystem in more
detail. Section 4 explains how system faults can be
identified and handled distributedly through the CSA.
Section 5 presents the results from the 2007 DARPA
Urban Challenge’s National Qualifying Event. Sec-
tion 6 concludes the paper and discusses some future
work.

2 CANONICAL SOFTWARE
ARCHITECTURE

In many complex systems, the modules that make up
the planning system are responsible for reasoning at
different levels of abstraction. Hence, the planning
system can be decomposed into a hierarchical frame-
work. A Canonical Software Architecture has been
developed to support this decomposition and separa-
tion of functionality, while maintaining communica-
tion and contingency management. This architecture
builds on the state analysis framework developed at
JPL and takes the approach of clearly delineating state
estimation and control determination as described in

(Dvorak et al., 2000), (Rasmussen, 2001), (Barrett
et al., 2004) and (Ingham et al., 2005). To prevent the
inconsistency in the states of different modules due to
the inconsistency in the state knowledge, we require
that there is only one source of state knowledge al-
though it may be captured in different abstractions for
different modules.
In CSA, a control module receives a state and per-

forms actions based on that state. The state contains
estimates of the system status, the status of other mod-
ules relevant to this module, and the status of this
module. Based on this state, an action computation
is always made. Based on the actions taken, the state
is updated.
A control module gets inputs and delivers out-

puts. The inputs consist of sensory reports (about
the system state), status reports (about the status of
other modules), directions/instructions (from other
modules wishing to control this module), sensory re-
quests (from other modules wishing to know about
this modules estimate of the system state), status re-
quests (from other modules wishing to know about
this module status) and direction requests (from other
modules seeking direction from this module). The
outputs are the same type as the inputs, but in the
reverse direction (reports of the system state from
this module, status reports from this module, direc-
tions/instructions for other modules, etc).
For modularity, each software module in the plan-

ning subsystem may be broken down into multiple
CSA modules. An example of the planning sub-
system in CSA we have implemented on Alice is
shown in Figure 1. A CSA module consists of three
components—Arbitration, Control and Tactics—and
communicates with its neighbors through directive
and response messages, as shown in Figure 2. Ar-
bitration is responsible for (1) managing the overall
behavior of the module by issuing a merged direc-
tive, computed from all the received directives, to the
Control; and (2) reporting failure, rejection, accep-
tance and completion of a received directive to the
Control of the issuing module. Similar to the arbi-
tration scheme of the subsumption architecture (Jones
and Roth, 2004), the merged directive may simply be
the received directive with the highest priority. Cer-
tainly, one can implement a more complicated arbi-
tration scheme that involves dealing with multiple re-
ceived directives simulaneously. Control is respon-
sible for (1) computing the output directives to the
controlled module(s) based on the merged directive,
received responses and state information; and (2) re-
porting failure and completion of a merged directive
to the Arbitration. Tactics provides the core function-
ality of the module and is responsible for generating a

Arbitration

Control Tactics

Merged directive: start/end conditions,
parameterized constraints,
performance criteria

Response:
completed/

failed

Initialize

A generic
control module

Directive: start/end conditions,
parameterized constraints,
performance criteria, priority

Response:
accepted/rejected,

completed/failed

State information
Directive, state

Tactic

Controlling module
Same interface with
other controlling modules

Controlled module and/or Estimator or Hardware

DirectivesResponse

Figure 2: A generic control module in the Canonical Soft-
ware Architecture.

control tactic or a contiguous series of control tactics,
as requested by the Control.

3 MISSION MANAGEMENT
SUBSYSTEM

The mission management subsystem is responsible
for detecting changes in system health, assessing the
impact of the changes on the vehicle’s operational ca-
pabilities and adapt the mission plan accordingly in
order to keep the vehicle operating safely and effi-
ciently. This subsystem comprises the health monitor,
the mission planner and the process control modules.

3.1 Health Monitor and Vehicle
Capabilities

The health monitor module is an estimation module
that continuously gathers the health of the software
and hardware (GPS, sensors and actuators) compo-
nents of the vehicle and abstracts the multitudes of
information about these devices into a form usable
for the mission planner. This form can most easily
be thought of as vehicle capability. For example, we
may start the mission with perfect functionality, but
somewhere along the line lose a right front LIDAR.
The intelligent choice in this situation would be to try
to limit the number of left and straight turns we do
at intersections and slow down the vehicle. Another
example arises if the vehicle becomes unable to shift
into reverse. In this case we would not like to pur-
posely plan paths that require a U-turn.
From the health of the sensors and sensing mod-

ules, the health monitor estimates the sensing cover-
age. The information about sensing coverage and the
health of the GPS unit and actuators allow the health

monitor to determine the following vehicle capabili-
ties: (1) turning right at intersection; (2) turning left
at intersection; (3) going straight at intersection; (4)
nominal driving forward; (5) stopping the vehicle; (6)
making a U-turn that involves driving in reverse; (7)
zone region operation; and (8) navigation in new ar-
eas.

3.2 Mission Planner

The mission planner module receives the Mission
Data File (MDF) that is loaded before each mission,
the vehicle capabilities from the health monitor mod-
ule, the position of obstacles from the mapper mod-
ule and the status report from the planner module and
sends the segment-level goals to the planner module.
It has three main responsibilities and is broken up into
one estimation and two CSA control modules.

Traversibility Graph Estimator The traversibility
graph estimator module estimates the traversibility
graph which represents the connectivity of the route
network. The traversibility graph is determined based
on the vehicle capabilities and the position of the ob-
stacles. For example, if the capability for making a
left or straight turn decreases due to the failure of the
right front LIDAR, the cost of the edges in the graph
corresponding to making a left or straight turn will
increase, and the route involving the less number of
these manuevers will be preferred. If the vehicle is
not able to shift into reverse, the edges in the graph
corrensponding to making a U-turn will be removed.

Mission Control The mission control module com-
putes mission goals which specify how Alice will
satisfy the mission specified in the MDF and condi-
tions under which we can safely continue the mission.
It also detects the lack of forward progress and re-
plans the mission goals accordingly. Mission goals
are computed based on the vehicle capabilities, the
MDF, and the response from the route planner mod-
ule. For example, if the nominal driving forward ca-
pability decreases, the mission control will decrease
the allowable maximum speed which is specified in
the mission goals, and if this capability falls below
certain value due to a failure of any critical component
such as the GPS unit, the brake actuator or the steering
actuator, the mission control will send a pause direc-
tive down the planning stack, causing the vehicle to
stop.

Route Planner The route planner module receives
the mission goals from the mission control module
and the traversibility graph from the traversibility
graph estimator module. It determinates a sequence
of segment-level goals to satisfy the mission goals. A

segment-level goal includes the initial and final con-
ditions which specify the RNDF segment/zone Alice
has to navigate and the constraints, represented by the
type of segment (road, zone, off-road, intersection, U-
turn, pause, backup, end of mission) which basically
defines a set of traffic rules to be imposed during the
execution of this goal. Segment-level goals are trans-
mitted to the planner module using the common CSA
interface protocols. Thus, the route planner will be
notified by the planner when a segment-level goal di-
rective is rejected, accepted, completed or failed. For
example, since one of the rules specified in a segment-
level goal directive is to avoid obstacles, when a road
is blocked, the directive will fail. Since the default be-
havior of the planner is to keep the vehicle in pause,
the vehicle will stay in pause while the route plan-
ner replans the route. When the failure of a segment-
level goal directive is received, the route planner will
request an updated traversibility graph from the tra-
versibility graph estimator module. Since this graph
is built from the same map used by the planner, the
obstacle that blocks the road will also show up in
the traversibility graph, resulting in the removal of
all the edges corresponding to going forward, leaving
only the U-turn edges from the current position node.
Thus, the new segment-level goal directive computed
by the Control of the route planner will be making a
U-turn and following all the U-turn rules. This direc-
tive will go down the planning hierarchy and get re-
fined to the point where the corresponding actuators
are commanded to make a legal U-turn.

4 FAULT HANDLING IN THE
PLANNING SUBSYSTEM

In our distributed mission and contingency manage-
ment framework, fault handling is embedded into all
the modules and their communication interfaces in the
planning subsystem hierarchy through the CSA. Each
module has a set of different control strategies which
allow it to identify and resolve faults in its domain
and certain types of failures propagated from below.
If all the possible strategies fail, the failure will be
propagated up the hierarchy along with the associated
reason. The next module in the hierarchy will then
attempt to resolve the failure. This approach allows
each module to be isolated so it can be tested and ver-
ified much more fully for robustness.

Planner The planner is the main execution module
for the planning subsystem. It accepts directives from
the route planner component of the mission planner
module and generates trajectories for Alice to follow.

The planner comprises four components—the logic
planner, the path planner, the velocity planner and the
prediction. The logic planner guides the vehicle at
a high level by determining the current situation and
coming up with an appropriate planning problem (or
strategy) to solve. The path planner is responsible for
finding a feasible path, subject to the constraints im-
posed by the planning problem. If such a path can-
not be found, an error will be generated. Since Alice
needs to operate in both structured and unstructured
regions, we have developed three types of path plan-
ner to exploit the structure of the environment—the
rail planner (for structured regions such as roads, in-
tersections, etc), the off-road rail planner (for obstacle
fields and sparse waypoint regions) and the clothoid
planner (for parking lots and obstacle fields). All the
maneuvers available to the rail planner are precom-
puted; thus, the rail planner may be too constraining.
To avoid a situation where Alice gets stuck in a struc-
tured region (e.g. when there is an obstacle between
the predefined maneuvers), the off-road rail planner
or the clothoid planner may also be used in a struc-
tured region. This decision is made by the logic plan-
ner. The velocity planner takes the path from the path
planner and planning problem from the logic planner
and generates a time parameterized path, or trajectory.
The prediction is responsible for predicting the future
location and behavior of other vehicles.
The logic planner is the component that is respon-

sible for fault handling inside the planner. Based on
the error from the path planner and the follower, the
logic planner either tells the path planner to replan or
reset, or specifies a different planning problem such
as allowing passing or reversing, using the off-road
path planner, or reducing the allowable minimum dis-
tance from obstacles. The logic for dealing with
these failures can be described by a two-level finite
state machine. First, the high-level state (road region,
zone region, off-road, intersection, U-turn, failed and
paused) is determined based on the directive from the
mission planner and the current position with respect
to the RNDF. The high-level state indicates the path
planner (rail planner, clothoid planner, or off-road rail
planner) to be used. Each of the high-level states can
be further extended to the second-level state which
completely specifies the planning problem described
by the drive state, the allowable maneuvers, and the
allowable distance from obstacles.

• Road region The logic planner transitions to the
road region state when the type of segment spec-
ified by the mission planner is road. In this state,
the rail planner is is the default path planner al-
though the clothoid planner may be used if all
the strategies involving using the rail planner fail.

There are thirteen states and twenty seven tran-
sitions within the road region state as shown in
Figure 3. The DR,NP state is considered to be the
nominal state. The logic planner only transitions
to other states due to obstacles blocking the de-
sired lane or errors from the other planners.

• Zone region The logic planner transitions to the
zone region state when the type of segment spec-
ified by the mission planner is zone. Reversing is
allowed and since the clothoid planner is the de-
fault path planner for this state, the trajectory is
planned such that Alice will stop at the right dis-
tance from the obstacle by default, so only three
states and four transitions are necessary within the
zone region state as shown in Figure 4(a).

• Off-road The logic planner transitions to the off-
road state when the type of segment specified by
the mission planner is off-road. Since passing and
reversing are allowed by default, six states and ten
transitions are necessary within the off-road state
as shown in Figure 4(b).

• Intersection The logic planner transitions to the
intersection state when Alice approaches an in-
tersection. In this state, passing and reversing
maneuvers are not allowed and the trajectory is
planned such that Alice stops at the stop line. The
rail planner is the default path planner. Once Al-
ice is within a certain distance from the stop line
and is stopped, the intersection handler, a finite
state machine comprising five states (reset, wait-
ing for precedence, waiting for merging, waiting
for the intersection to clear, jammed intersection,
and go), will be reset and start checking for prece-
dence (Looman, 2007). The logic planner will
transition out of the intersection state if Alice is
too far from the stop line, when Alice has been
stopped in this state for too long, or when the in-
tersection handler transitions to the go or jammed
intersection state. If the intersection is jammed,
the logic planner will transition to the state where
passing is allowed.

• U-turn The logic planner transitions to the U-turn
state when the type of segment specified by the
mission planner is U-turn. In this state, the default
path planner is the clothoid planner. Once the U-
turn is completed, the logic planner will transition
to the paused state and wait for the next command
from the mission planner. If Alice fails to execute
the U-turn due to an obstacle or a hardware fail-
ure, the logic planner will transition to the failed
state and wait for the mission planner to replan.

• Failed The logic planner transitions to the failed
state when all the strategies in the current high-

OFF-ROAD
mode

DR,NP,S STO,NP,S

no collision-free path exists Alice has been stopped for long
enough and there is an obstacle
in the vicinity of Alice

passing finished or obstacle disappeared

DR,P,S STO,P,S

no collision-free path exists

collision-free path is found
no collision-free path exists
and the number of times Alice
has switched to the DR,P,R
state near the current position
is less than some threshold

DR,PR,S

no collision-free path exists and the
number of times Alice has switched
to the DR,P,R state near the current
position is less than some threshold

collision-free path is found
STO,PR,S

BACKUP

no collision-free
path exists and
there is more
than one lane

no collision-free
path exists and
there is only
one lane

backup finished
or failed and the
number of times Alice
has switched to BACKUP
is less than some threshold

DR,P,SSTO,P,S
no collision-free path exists

collision-free path is found
collision-free path is found

no collision-free
path exists

no collision-free path exists and the number
of times Alice has switched to the DR,P,R
state near the current position exceeds some
threshold and there is more than one lane

no collision-free path exists and the number of times Alice has switched to the DR,P,R
state near the current position exceeds some threshold and there is only one lane

STO,A

backup finished or failed and the
number of times Alice has switched
to BACKUP exceeds some threshold

DR,A

no collision-free path exists

no collision-free path exists

collision-free path is found

collision-free path is found

collision-free path
with DR,A is found

DR,B STO,B

no collision-free path exists

collision-free path is found

no collision-free path exists
and there is more than one lane

collision-free path with DR,P,R is found

no collision-free path exists
and there is only one lane

passing finished or obstacle disappeared

FAILED PAUSED

ROAD REGION

Figure 3: The logic planner finite state machine for the road region. Each state defines the drive state (DR ≡ drive, BACKUP,
and STO≡ stop when Alice is at the right distance from the closest obstacle as specified by the associated minimum allowable
distance from obstacles), the allowable maneuvers (NP≡ no passing or reversing allowed, P ≡ passing allowed but reversing
not allowed, PR ≡ both passing and reversing allowed), and the minimum allowable distance from obstacles (S ≡ safety, A
≡ aggressive, and B ≡ bare).

level state have been tried. In this state, failure
is reported to the mission planner along with the
associated reason. The logic planner then resets
itself and transitions to the paused state. The mis-
sion planner will then replan and send a new di-
rective such as making a U-turn, switching to the
off-roadmode, or backing up in order to allow the
route planner to change the route. As a result, the
logic planner will transition to a different high-
level state. These mechanisms ensure that Alice
will keep moving as long as it is safe to do so.

• Paused The logic planner transitions to the
paused state when it does not have any segment-
level goals from the mission planner or when the
type of segment specified by the mission planner
is pause or end of mission. In this state, the logic
planner is reset and the trajectory is planned such
that Alice comes to a complete stop as soon as
possible.

Follower The follower module receives a reference
trajectory from the planner and vehicle state from
the state estimator module and sends actuation com-
mands to gcdrive. It uses decoupled longitudinal and
lateral controllers to keep Alice on the trajectory (Lin-

deroth et al., 2008). Although a reference trajectory
computed by the planner is guaranteed to be collision-
free, since Alice cannot track the trajectory perfectly,
she may get too close or even collide with an obsta-
cle if the tracking error is too large. To address this
issue, we allow follower to request a replan from the
planner through the CSA directive/response mecha-
nism when the deviation from the reference trajectory
is too large. In addition, we have implemented the re-
active obstacle avoidance (ROA) component to deal
with unexpected or pop-up obstacles. The ROA com-
ponent takes the information directly from the percep-
tors (which can be noisy but faster) and can override
the acceleration command if the projected position of
Alice collides with an obstacle. The projection dis-
tance depends on the velocity of Alice. The follower
will report failure to the planner if the ROA is trig-
gered, in which case the logic planner can replan the
trajectory or temporarily disable the ROA. We have
also formally verified that through the use of the CSA,
even though the follower does not talk to the actuator
directly and the sensor may fail, it always either has
the right knowledge about the gear Alice is currently
in, or sends a full brake command to the gcdrive in

SAFETY AGGRESSIVE

BARE

no collision-free path exists

timeout

no collision-free
path exists

FAILED

timeout

no collision-free
path exists

PAUSED

ZONE REGION

DR,S STO,S

no collision-free path exists

collision-free path
with DR,S is found

DR,A STO,A

no collision-free
path exists

no collision-free path exists

collision-free path is found

collision-free path is found
no collision-free
path exists

STO,BDR,B

no collision-free path exists

collision-free path is found

collision-free path
with DR,A is found

FAILED

no collision-free
path exists

PAUSED

OFF-ROAD

(a) (b)

Figure 4: The logic planner finite state machine for the zone region (a) and off-road (b). Each state defines the drive state (DR
≡ drive, and STO≡ stop when Alice is at the right distance from the closest obstacle as specified by the associated minimum
allowable distace from obstacles) and the minimum allowable distance from obstacles (S ≡ safety, A ≡ aggressive, and B ≡
bare).

case the actuator or sensor fails.

Gcdrive The gcdrive module is the overall driving
software for Alice. It works by receiving directives
from follower over the network, checking the direc-
tives to determine if they can be exeucted and, if so,
sending the appropriate commands to the actuators.
Gcdrive also performs checking on the state of the ac-
tuators, resets the actuators that fail, implements the
estop functionality for Alice and broadcasts the ac-
tuator state. Also included into the role of gcdrive
was to implement physical protections for the hard-
ware to prevent the vehicle from hurting itself. This
includes three functions: limiting the steering rate at
low speeds, preventing shifting from occuring while
the vehicle is moving, transitioning to the paused state
in which the brakes are depressed and commands to
any actuator except steering are rejected (Steering
commands are still accepted so that obstacle avoid-
ance is still possible while being paused) when any of
the critical actuators such as steering and brake fail.

5 RESULTS

The 2007 DARPA Urban Challenge’s National Qual-
ifying Event was split into three test areas, featuring
different challenges. In this section, we present the
results from Test Area B which was the most chal-
lenging test area from the mission and contingency
management standpoint. As shown in Figure 5, Test
Area B consisted of approximately 2 miles of driving,
including a narrow start chute, a traffic circle, nar-
row, winding roads, a road with cars on each side that
have to be avoided and an unstructured region with
an opening in a fence, and navigating and parking at
a designated spot in an almost fully occupied parking

lot.

5.1 Attempt 1

We started the NQE with a reasonably conservative
vehicle separation distance as specified by DARPA.
As a result, the logic planner spent a considerable
amount of time in the aggressive and bare states as
shown in Figure 6. Alice had difficulties finishing
this course mainly due to the vehicle separation dis-
tance problemwhich caused Alice to spend about five
minutes trying to get out of the start chute area and
more than ten minutes trying to park correctly accord-
ing to the DARPA’s specification while keeping the
required minimum distance from obstacles. Specif-
ically, the problem was that in the start chute area,
there were K-rails less than one meter away from
each side of Alice, which was illegal according to the
DARPA rules. Alice had to progress through a se-

Figure 5: Test Area B

0 200 400 600 800 1000 1200 1400 1600 1800 2000

No passing, no reversing

 Passing, no reversing

 Passing and reversing

 Backup

 Aggressive

 Bare

 Zone safety

 Zone aggressive

 Zone bare

 Off!road safety

 Off!road aggressive

 Off!road bare

 Intersection

 U!turn

 Paused

Time Elapsed (seconds)

36.9%

10.0%

5.6%

0.0%

2.0%

3.4%

9.1%

0.3%

26.4%

0.3%

0.0%

0.0%

5.8%

0.0%

0.2%

Road region

Zone region

Off−road

Figure 6: The logic planner state during NQE Test Area B
run #1.

ries of internal planning failures before finally driving
with reduced buffers on each side of the vehicle. In
the parking lot, there was a car parking right in front
of our parking spot and if Alice was to park correctly,
she would have to be within two meters of that car;
thus, violating the required minimum distance from
obstacles as specified by DARPA. Alice ran out of
the thirty minute time limit shortly after we manually
moved her out of the parking lot.

Despite the failure in completing this run within
the time limit, Alice demonstrated the desired behav-
ior, consistent with what we have seen in over two
hundred miles of extensive testing, that she would
keep trying different strategies in order to get closer
to completing the mission and she would never stop
as long as the system is capable of operating safely.
Had she been given enough time, the mission control
would have detected the lack of forward progress and
decided to skip the parking and continue to complete
the rest of the mission.

5.2 Attempt 2

After the first run, we decided to decrease the re-
quired vehicle separation distance and relax the toler-
ance of reaching waypoints so Alice could complete
the course faster. Alice was then able to successfully
complete the course within twenty three minutes with
only minor errors. The logic planner state during the
second attempt is shown in Figure 7. As expected, in
the second run, the logic planner never transitioned to
the aggressive or bare state.

0 200 400 600 800 1000 1200 1400

No passing, no reversing

 Passing, no reversing

 Passing and reversing

 Backup

 Aggressive

 Bare

 Zone safety

 Zone aggressive

 Zone bare

 Off!road safety

 Off!road aggressive

 Off!road bare

 Intersection

 U!turn

 Paused

Time Elapsed (seconds)

61.6%

10.9%

0.5%

0.0%

0.0%

0.0%

8.5%

0.0%

0.0%

1.4%

0.0%

0.0%

16.7%

0.0%

0.4%

Road region

Zone region

Off−road

Figure 7: The logic planner state during NQE Test Area B
run #2.

6 CONCLUSIONS AND FUTURE
WORK

6.1 Conclusions

We describe Team Caltech’s approach to mission and
contingencymanagement for the 2007DARPAUrban
Challenge. This approach allows mission and con-
tingency management to be accomplished in a dis-
tributed and dynamic manner. It comprises two key
elements—a mission management subsystem and a
Canonical Software Architecture for a planning sub-
system. The mission management subsystem works
in conjunction with the planning subsystem to dy-
namically replan in reaction to contingencies. The
CSA ensures the consistency of the states of all the
software modules in the planning subsystem. Sys-
tem faults are identified and replanning strategies are
performed distributedly in the planning subsystem
through the CSA. These mechanisms make the sys-
tem capable of exhibiting a fail-ops/fail-safe and in-
telligent responses to a number different types of fail-
ures in the system. Extensive testing has demon-
strated the desired behavior of the system which is
that it will keep trying different strategies in order to
get closer to completing the mission and never stop as
long as the it is capable of operating safely.

6.2 Future Work

As described in Section 2, a controlled module can
only report failure, rejection, acceptance and comple-
tion of a received directive. The CSA does not in-
corporate the notion of uncertainty in the response.
In other words, a response can only be “I can do
it” or “I can’t do it” but not “With a probability of
0.5, some constraints may be violated if I execute
the directive.” This notion of uncertainty is impor-

tant especially when sensing data is noisy. Consider a
scenario where spurious obstacles are seen such that
they completely block the road. Although the map
may correctly have high uncertainty, the logic plan-
ner will still progress through all its states before fi-
nally concluding that it cannot complete the segment-
level goal. Failure will then be reported to the mission
planner which will incorrectly evaluate the current sit-
uation as the road is completely blocked and subse-
quently plan a U-turn. If the response also incorpo-
rates a notion of uncertainty, the mission planner can
use this information together with the system health
and issue a pause directive instead so Alice will stop
and wait for better accuracy of the map.
Another direction of research is to formally verify

that if implemented correctly, the directive/response
mechanism will guarantee that the states of different
software modules will be consistent throughout the
system and that the CSA and the mission manage-
ment subsystem guarantee that Alice will keep going
as long as it is safe to do so. Using temporal logic, we
were able to formally verified the state consistency
for the follower and gcdrive modules as previously
described in Section 4. For the rest of the system, we
have only verified the state consistency and the fail-
ops/fail-safe capability through extensive testing.
Lastly, it is also of interest to verify that this dis-

tributed mission and contingency management ap-
proach actually captures all the functionality of a cen-
tralized approach such as SuperCon and that it actu-
ally facilitates formal verification of the system. We
believe that this is the case for many systems in which
the central module does not take into account the un-
certainties in the system and the environment.

ACKNOWLEDGEMENTS

The idea of the CSA came from discussions with
Robert Rasmussen and Michel Ingham and was im-
plemented by Josh Doubleday from the Jet Propul-
sion Laboratory. The health monitor module was de-
veloped by Chris Schantz. The following individu-
als have contributed to the development of the plan-
ning subsystem: Vanessa Carson, Noel duToit, Sven
Gowal, Andrew Howard, Magnus Linderoth, Chris-
tian Looman, Kenny Oslund, Kristian Soltesz. Spe-
cial thanks go to the members of Team Caltech with-
out whose contributions this work would not have
been possible.
This work was supported in part by the Defense

Advanced Research Projects Agency (DARPA) under
contract HR0011-06-C-0146, the California Institute
of Technology, Big Dog Ventures, Northrop Grum-

man Corporation, Mohr Davidow Ventures and Ap-
planix Inc.

REFERENCES

Antonelli, G. (2003). A survey of fault detection/tolerance
strategies for auvs and rovs. In Caccavale, F. and Vil-
lani, L., editors, Fault Diagnosis and Fault Tolerance
for Mechatronic Systems: Recent Advances, volume 1
of Springer Tracts in Advanced Robotics, pages 109–
127. Springer Berlin / Heidelberg.

Barrett, A., Knight, R., Morris, R., and Rasmussen, R.
(2004). Mission planning and execution within the
mission data system. In Proceedings of the Inter-
national Workshop on Planning and Scheduling for
Space.

Braid, D., Broggi, A., and Schmiedel, G. (2006). The Terra-
max autonomous vehicle. Journal of Field Robotics,
23(9):693–708.

Chen, Q. and Ümit Özgüner (2006). Intelligent off-road
navigation algorithms and strategies of team desert
buckeyes in the darpa grand challenge 2005. Journal
of Field Robotics, 23(9):729–743.

Cremean, L. B., Foote, T. B., Gillula, J. H., Hines, G. H.,
Kogan, D., Kriechbaum, K. L., Lamb, J. C., Leibs,
J., Lindzey, L., Rasmussen, C. E., Stewart, A. D.,
Burdick, J. W., and Murray, R. M. (2006). Alice:
An information-rich autonomous vehicle for high-
speed desert navigation. Journal of Field Robotics,
23(9):777–810.

Dearden, R., Hutter, F., Simmons, R., Thrun, S., Verma, V.,
and Willeke, T. (2004). Real-time fault detection and
situational awareness for rovers: Report on the mars
technology program task. In Proceedings of the IEEE
Aerospace Conference, Big Sky, MT.

Dvorak, D., Rasmussen, R. D., Reeves, G., and Sacks, A.
(2000). Software architecture themes in jpl’s mission
data system. In Proceedings of 2000 IEEE Aerospace
Conference.

Franke, J., Hughes, A., and Jameson, S. (2006). Holistic
contingency management for autonomous unmanned
systems. In Proceedings of the AUVSI’s Unmanned
Systems North America, Orlando, FL.

Franke, J., Satterfield, B., Czajkowski, M., and Jameson,
S. (2002). Self-awareness for vehicle safety and mis-
sion success. In Unmanned Vehicle System Technol-
ogy, Brussels, Belgium.

Ingham, M., Rasmussen, R., Bennett, M., and Moncada,
A. (2005). Engineering complex embedded systems
with state analysis and the mission data system. J.
Aerospace Computing, Information and Communica-
tion, 2.

Jones, J. L. and Roth, D. (2004). Robot Programming:
A Practical Guide to Behavior-Based Robotics, chap-
ter 4. McGraw-Hill.

Linderoth, M., Soltesz, K., and Murray, R. M. (2008). Non-
linear lateral control strategy for nonholonomic vehi-
cles. In Proceedings of the American Control Confer-
ence. Submitted.

Looman, C. (2007). Handling of dynamic obstacles in
autonomous vehicles. Master’s thesis, Universität
Stuttgart.

Rasmussen, R. D. (2001). Goal based fault tolerance for
space systems using the mission data system. In Pro-
ceedings of the 2001 IEEE Aerospace Conference.

Rasmussen, R. D. and Ingham, M. D. personal communi-
cation.

Williams, B. C., Ingham, M. D., Chung, S. H., and Elliott,
P. H. (2003). Model-based programming of intelli-
gent embedded systems and robotic space explorers.
In Proceedings of the IEEE: Special Issue on Mod-
eling and Design of Embedded Software, volume 9,
pages 212–237.

