
Formal Verification of an Autonomous Vehicle System

Tichakorn Wongpiromsarn and Richard M. Murray

Abstract—Model checking is a widely used technique for
formal verification of distributed systems. It works by effectively
examining the complete reachable state space of a model in
order to determine whether the system satisfies its requirements
or desired properties. The complexity of an autonomous vehicle
system, however, renders model checking of the entire system
infeasible due to the state explosion problem. In this paper, we
illustrate how to exploit the structure of the system to system-
atically decompose the overall system-level requirements into a
set of component-level requirements. Each of the components
can then be model checked separately. A case study is presented
where we formally verify the state consistency between different
software modules of Alice, an autonomous vehicle developed
by the California Institute of Technology for the 2007 DARPA
Urban Challenge.

I. INTRODUCTION
Due to the increase in complexity of hardware and soft-

ware, traditional testing-based verification techniques are not
adequate to ensure the reliability of the system. In addition,
since many systems are designed to operate in a wide range
of environments and evolve over time, the range of possible
test scenarios becomes extremely large and unmanageable.
Formal specification and verification, an alternative approach
which guarantees that the requirements or the desired prop-
erties are satisfied for any possible execution of the system,
have therefore been active areas of research in the distributed
system community for more than thirty years. The approach
consists of two key elements: a specification language for
describing the system and its requirements and an analysis
to verify the correctness of the system specification, relative
to the requirements.
Control systems are generally described by a set of differ-

ential equations. Theories of differential equations and tools
such as the Lyapunov function approach and the sum of
squares technique have been developed to verify stability and
safety properties of the system [1], [2]. This framework, how-
ever, is not suitable for describing certain classes of systems
and other logical properties such as liveness. In addition,
it does not address the concurrency issues of distributed
systems. Formal specification and verification techniques and
tools from the distributed system community need to be
employed in order to ensure the reliability of these systems.
Formal specification and verification of robotic systems

has been a topic of growing interest since 1990 [3]. Since
these systems are never purely continuous or discrete, the
main challenge is to intimately combine the two components

This work was supported by AFOSR.
T. Wongpiromsarn and R.M. Murray are with the Division

of Engineering and Applied Science, California Institute of
Technology, Pasadena, CA 91125, USA nok@caltech.edu,
murray@cds.caltech.edu

of the systems. In 1995, Nancy Lynch introduced the hybrid
I/O automaton (HIOA) model which is capable of describing
both continuous and discrete behavior [4]. Although this
model is expressive, it requires a lot of calculations that need
to be done manually. HIOA has been applied, for example,
to prove the correctness of a vehicle deceleration maneuver
part of an automated transportation system [5] and to verify
the safety of the automated highway system of the California
PATH project and the Traffic Alert and Collision Avoidance
System (TCAS) that is used by aircraft to avoid midair
collisions [6], [7].
The contribution of this paper is twofold. First, this paper

illustrates how to exploit the structure of the system, imposed
by the Canonical Software Architecture (CSA) [8], to address
the state explosion issues in model checking and make formal
verification of complex systems possible. Second, we apply
formal specification and verification, the technique mainly
used in the distributed system community, to prove certain
properties of Alice, an autonomous vehicle developed by
the California Institute of Technology for the 2007 DARPA
Urban Challenge. Alice is a distributed system consisting of
more than 100 threads whose interactions render the safety
verification techniques based on control theory inapplicable.
In addition, liveness properties also need to be verified in
order to prove the correctness of the system. As opposed
to safety properties which indicate that something bad will
never happen, liveness properties indicate that eventually
something good will happen. The remainder of this paper
is organized as follows. Section II provides the background,
including a brief description of the CSA, some existing
specification languages and model checkers and approaches
to composing specifications. Section III describes how to
use CSA to systematically decompose system-level require-
ments into a set of component-level requirements. Section
IV presents a case study where the overall system-level
requirements are decomposed into a set of component-level
requirements whose verification is computationally simple.
Section V concludes the paper and discusses some future
work.

II. BACKGROUND
A. Canonical Software Architecture
A Canonical Software Architecture has been developed

to support a hierarchical decomposition and separation of
functionality in the planning subsystem, while maintaining
communication and contingency management. In CSA, we
can think of the entire system as being broken up into “mod-
ules,” each of which has a separate, dedicated function. There
are two types of modules in CSA: estimation modules and

Submitted, 2008 Conference on Decision and Control
http://www.cds.caltech.edu/~murray/papers/wm08-cdc.html

control modules. This section only discusses CSA control
modules, which are the focus of this paper.
The CSA imposes a structure on both the interface be-

tween control modules and the major operations that happen
within a control module. As shown in Fig. 1, inputs to a
CSA control module are restricted to be one of the following:
state information, directives/instructions (from other modules
wishing to control this module), and responses/status reports
(from other modules receiving instructions from this mod-
ule). The outputs can only be either status reports from this
module or directives/instructions for other control modules.
For each directive that a control module is designed to

accept, the following must be specified: (1) entry condition;
(2) exit condition; (3) constraints that must be satisfied during
the execution of the directive; and (4) performance criteria
(performance or other items to be optimized). The entry and
exit conditions define, respectively, what must be true before
starting to execute this directive and what must be true to
complete the execution of this directive. For each directive
received, a response which indicates rejection, acceptance,
failure or completion of the directive and the reason for
rejection or failure must be reported to the source of the
directive. Rejection or failure of a directive occurs when the
entry or exit condition is not readily achievable, the deadlines
aren’t met, or one of the constraints cannot be satisfied.
To separate communiation requirements from the given

module’s core function requirements, the CSA decomposes a
module into three components: Arbitration, Control and Tac-
tics. Arbitration is responsible for (1) managing the overall
behavior of the control module by issuing a merged directive,
computed from all the received directives, to the Control; and
(2) reporting rejection, acceptance, failure and completion
of a received directive to the Control of the issuing control
module. Control is responsible for (1) computing the output
directives to the controlled module(s) or the commands
to the hardware based on the merged directive, received
responses and state information; and (2) reporting failure and
completion of a merged directive to the Arbitration. Tactics
provides the core functionality of the control module and is
responsible for providing the logic used by the Control for
computing output directives.

B. Specification Languages and Model Checkers
A variety of specification languages have been developed

starting in the 1970’s. In 1977, Amir Pnueli introduced the
use linear temporal logic (LTL) as a specification language
[9]. Examples of frequently used formulae are

• always p (invariance): !p
• eventually p (guarantee): !p
• p implies eventually q (response): p =⇒ !q
• p implies q until r (precedence): p =⇒ q U r
• always eventually p (progress): ! ! p
• eventually always p (stability): !!p
• eventually p implies eventually q (correlation): !p =⇒

!q
In practice, however, most systems cannot be described by

a single LTL formula, so in the 1980’s, Lamport introduced

Arbitration

Control Tactics

Merged directive: start/end conditions,
parameterized constraints,
performance criteria

Response:
completed/

failed

Initialize
A generic

control module

Directive: start/end conditions,
parameterized constraints,
performance criteria, priority

Response:
accepted/rejected,

completed/failed

State information
Directive, state

Tactic

Controlling module
Same interface with
other controlling modules

Controlled module and/or Estimator or Hardware
DirectivesResponse

Fig. 1. A generic control module in the Canonical Software Architecture.

Temporal Logic of Actions (TLA) which makes it practical
to describe a system by a single formula [10], [11], [12].
In TLA, a module is specified in terms of its behavior
(a sequence of states). Behavior is described by an initial
predicate and an action. TLA uses LTL to reason about
behavior of systems but Lamport also introduced new kinds
of temporal assertions to make the specifications simpler and
easier to understand. A system is specified by specifying a
set of possible behavior, for example, a specification can be
written as

Spec " Init ∧ !Action.

From system’s specifications, one can derive a theorem
which is a temporal formula satisfied by every behavior.
Generally, we have

Theorem " Spec =⇒ !Properties.

In 1999, Yu et al. developed TLC, a model checker for
specifications written in TLA+ which is a specification lan-
guage based on TLA [13]. Similar to other model checkers,
TLC relies on a finite-state model of the system and performs
an exhaustive state space search to check that the system
requirements are satisfied. TLC may never terminate if the
set of reachable states is not finite.
Parallel to the development of TLA, Bell Labs invented

Process Meta-Language (PROMELA) in 1979 [14]. This
language was influenced by Dijkstra (1975), Hoare’s CSP
language and C. It emphasizes the modeling of process
synchronization and coordination, not computation and is not
meant to be analyzed manually. SPIN is a model checker
for specifications written in PROMELA [14]. It has two
modes: simulation and verification. The simulation mode
performs random or iterative simulations of the modeled
system’s execution while the verification mode generates a
C program that performs a fast exhaustive verification of
the system state space. SPIN is mainly used for checking
for deadlocks, livelocks, unspecified receptions, and unexe-
cutable code, correctness of system invariants, non-progress
execution cycles. It also supports the verification of linear
time temporal constraints.

HyTech, a model checking tool for automatic verification
of hybrid systems, was introduced in 1995 [15], [16]. Its
successor, PHAVer, was designed to address many limitations
of HyTech such as the overflow problem which prohibits the
use of HyTech with complex systems [17]. Both HyTech
and PHAVer are symbolic model checkers for linear hybrid
automata, a subclass of hybrid automata which are defined
by linear predicates and piecewise constant bounds on the
derivatives (i.e. a system whose the dynamics of the contin-
uous variables are defined by linear differential inequalities
of the form Aẋ ∼ b where ∼ ∈ {≤,≥}, A is a constant
matrix and c is a constant vector).

C. Composing Specifications and Properties
As systems become more complex, writing specifications

for the entire systems becomes more difficult and may lead to
errors if not done carefully. Researchers have been studying
approaches to composing specifications and properties (or
requirements), two of which are discussed in this paper:
1) Composing components’ specifications [18]: This ap-
proach uses shared state. First, components’ specifica-
tions are described. The specification of the system is
basically the conjunction of its components’ specifica-
tions. System’s properties can then be verified using a
model checker such as TLC.

2) Composing components’ properties [19], [20], [21]:
An alternative to composing components’ specification
is to first verify components’ properties from their
specifications. System’s properties are then derived
from the components’ properties. This approach hides
substantial parts of correctness proofs in components
verifications. It requires putting a substantial amount
of effort into proving that a component has properties
that are useful in composition. Proofs are achieved at
the component level and can be reused each time the
component is part of the new system. This approach
is useful when the effort required to find and compose
components is less than the effort required to design
an entire system from scratch.

III. DECOMPOSITION OF SYSTEM
REQUIREMENTS

As described in Section II-A, the inputs, outputs and major
operations within a CSA control module have a well-defined
structure. A natural way to decompose system requirements
is therefore to break them down into the requirements for
the Arbitration component and the requirements for the
Control and Tactics components for each of the modules.
The requirements for the Arbitration component specify
the relationship between the received directives and the
merged directives while the requirements for the Control
and Tactics components specify the relationship between the
merged directives, responses, state knowledge and the output
directives as shown in the next section.
Besides module requirements, communication require-

ments such as bandwidth, packet drop, delay, etc also need
to be specified. Modules’ requirements and communiation

requirements can then be composed either manually or by
using tools such as theorem provers [22], [23] to verify that
they are sufficient to ensure that the system requirements are
satisfied.

IV. APPLICATIONS TO AN AUTONOMOUS
VEHICLE SYSTEM

Alice is a modified Ford E350 van (see Fig. 2), equipped
with mechanical actuators (brake, throttle, steering and trans-
mission), sensors (LADARs, RADARs and cameras) and
an Applanix INS (for state estimation). The sensing and
planning subsystems have been developed so that Alice could
navigate in a fully autonomous manner through a partially
known environment populated with static and dynamic ob-
stacles. The sensing subsystem provides a representation of
the environment around the vehicle. The planning subsys-
tem determines and executes desired motion of the vehicle
to satisfy the mission goals, which include crossing GPS
waypoints, avoiding obstacles, following traffic rules, etc.

Fig. 2. Alice, Team Caltechs entry in the 2007 Urban Challenge.

The planning subsystem in Alice consists of four software
modules: the mission planner, the trajectory planner, the
trajectory follower and the drive control, as shown in Fig.
3 [8]. The example considered in this section focuses on
the two lower-level modules: the trajectory follower and the
drive control. The trajectory follower receives a reference tra-
jectory and computes commands to throttle, brake, steering
and transmission that enable Alice to track the trajectory. The
drive control module consists of 4 CSA control modules: the
actuation interface, the acceleration module, the transmission
module and the steering module. It receives actuator com-
mands from the trajectory follower and an emergency stop
(estop) command from DARPA, and performs checking to
make sure that the commands are reasonable. For example,
the gear can be changed only when Alice is stopped. Based
on the received commands and actuators’ states, the drive
control computes commands to all the actuators.
In this section, we show that CSA can ensure the state

consistency between different software modules. Specifically,
we want to prove that the trajectory follower, the module that
commands a gear change, has the right knowledge about the

Trajectory Follower

Segment-level goal

Reference trajectory

Actuator command

Actuator command
(including reset
command)

Vehicle state

Trajectory Planner

Response

Response

Actuators

Local map

Response

Response

Actuator state

Estop command

System health

Vehicle state Mission Planner

Drive Control

Fig. 3. The planning subsystem in Alice. Boxes with double lined borders
are software modules that will be broken up into multiple CSA modules.
Green arrows represent state knowledge while black arrows represent
directives/responses.

gear Alice is currently in even though it does not talk to the
actuator directly and sensors may fail. Otherwise, it will com-
mand full brake. This example involves six components—the
Control of the trajectory follower, the actuation interface, the
transmission module, the acceleration module, the actuators
and the network—as shown in Fig. 4.

Actuation Interface

Arbitration

Control Tactics

Trajectory
Follower

Tactics

Arbitration

Control

Acceleration
Module

Arbitration

Control Tactics

Transmission
Module

Acceleration
command

Gear
command

Response

Actuator
command

Response

DARPA
Drive

Control
Estop command

Throttle Brake Transmission

Throttle
command

Brake
command

Transmission
command

Fig. 4. The components involved in the CSA example.

In this example, we are only interested in acceleration
and transmission commands. The following variables are
involved in this example as shown in Fig. 5:

• Transf,s: transmission directive sent from the follower;
• Transf,r: transmission directive received by the actu-
ation interface;

• Transa,s: transmission directive sent from the actuation
interface;

• Transa,r: transmission directive received by the trans-
mission module;

• Accf,s: acceleration directive sent from the follower;
• Accf,r: acceleration directive received by the actuation
interface;

• Acca,s: acceleration directive sent from the actuation
interface;

• Acca,r: acceleration directive received by the accelera-
tion module;

• TransRespf,s: response sent from the actuation inter-
face;

• TransRespf,r: response received by the follower;
• TransRespa,s: response sent from the transmission
module;

• TransRespa,r: response received by the actuation in-
terface.

Each of these variables is represented by a finite sequence,
whose nth element represents its value in the nth cycle, with
the following operators:

• Last(s): The last element of sequence s;
• Len(s): The length of sequence s;
• s[n]: The nth element of sequence s.

Actuation
Interface

TransResp
a,r

Acc
a,s

Trans
a,s

Acc
f,r

Trans
f,r

TransResp
f,s

Transmission
Module &

Transmission

Trans
a,r

TransResp
a,s

Acceleration
Module &

Brake & Throttle

Acc
a,r

Follower
Control

TransResp
f,r

Acc
f,s

Trans
f,s

Fig. 5. The variables involved in the CSA example. TransRespa,s,
TransRespa,r, TransRespf,s, TransRespf,r ∈ {C, F}, where C ≡
COMPLETED and F ≡ FAILED.

Let Trans be the actual gear and Transf be the gear that
the trajectory follower thinks Alice is in. Assume that when
Len(Transf,s) = 0 (i.e. before any command is sent from
the trajectory follower), Transf = Trans, we can prove
the following desired system-level properties:
1) The trajectory follower has the right knowledge about
the gear that Alice is currently in, or it commands full
brake. Mathematically, this can be written as:

!((Len(TransRespf,r) = Len(Transf,s) ∧
Last(TransRespf,r) = C)

=⇒ Transf = Trans),
(1)

!(Transf = Trans ∨ Accf,s = −1). (2)

2) At infinitely many instants, the trajectory follower
has the right knowledge about the gear that Alice is
currently in, or a hardware failure (HWF) occurs:

! ! (Transf = Trans ∨ HWF). (3)

We assume the following component-level properties:
1) Transmission module and transmission actuator:

• The number of responses cannot be greater than
the number of directives. This can be formalized
by the following LTL formula:

!(Len(TransRespa,s) ≤ Len(Transa,r)). (4)

• For each of the directives the transmission module
receives, a response will eventually be sent. If the
gear is successfully changed, the completion of the
directive will be reported. Otherwise, a hardware
failure occurs and the failure will be reported. This
assumption can be mathematically represented by
the following three LTL formulae:

!(n = Len(Transa,r) =⇒
!((Trans = Transa,r[n] ∧
TransRespa,s[n] = C) ∨

(HWF ∧ TransRespa,s[n] = F)));

(5)

!(Last(TransRespa,s) = C =⇒
Trans = Transa,r[Len(TransRespa,s)]);

(6)

!(Last(TransRespa,s) = F =⇒ HWF). (7)

2) Actuation interface: All the transmission directives and
responses received are always sent (to the transmis-
sion module and to the follower, respectively). This
assumption can be described by the following two LTL
formulae:

!(Len(Transa,s) = Len(Transf,r) ∧
∀i ∈ {1, . . . , Len(Transf,r)} :
Transa,s[i] = Transf,r[i]);

(8)

!(Len(TransRespf,s) = Len(TransRespa,r)
∧ ∀i ∈ {1, . . . , Len(TransRespa,r)} :
TransRespf,s[i] = TransRespa,r[i]).

(9)

3) Network: All messages are eventually delivered. An
example of this assumption for the transmission direc-
tive sent from the actuation interface and received by
the transmission module, formalized in LTL, is given
by

!(Len(Transa,r) ≤ Len(Transa,s)) ∧
∀i ∈ {1, . . . , Len(Transa,r)} :
Transa,r[i] = Transa,s[i]).

(10)

4) The Control of the Trajectory Follower:
• If the response is not yet received, send a brake
command:

!(Len(TransRespf,r) += Len(Transf,s)
=⇒ Accf,s = −1). (11)

• If the last response indicates failure, send a brake
command:

!(Last(TransRespf,r) = F
=⇒ Accf,s = −1). (12)

• Do not send a new directive until a response for
the last directive is received:

!(Len(Transf,s) ≤
Len(TransRespf,r) + 1). (13)

• Infinitely often, the number of the transmission
directives is not greater than the number of the re-
sponses (i.e. once a response is received, follower
processes it before sending out another directive):

! ! (Len(Transf,s) ≤
Len(TransRespf,r)).

(14)

• If the last response indicates completion of the
directive, follower updates Transf to the corre-
sponding directive:

!(Last(TransRespf,r) = C =⇒
Transf = Transf,s[Len(TransRespf,r)]).

(15)

To prove the system-level properties, we use the following
lemmas and proposition:
Lemma 4.1: Any execution of the program satisfies the

following properties:
1) !(Len(TransRespa,r) ≤ Len(Transa,s);
2) !(Len(TransRespf,r) ≤ Len(Transf,s);
3) !(Len(Transa,s) ≤ Len(TransRespa,r) + 1).
Proof: These properties can be easily derived from the

assumptions about the network, (4), (8), (9) and (13).
Lemma 4.2: Any execution of the program satisfies the

following properties:
1) !((Len(TransRespa,r) = Len(Transa,s)) ∨

(Len(Transa,s) = Len(TransRespa,r) + 1);
2) !((Len(TransRespf,r) = Len(Transf,s)) ∨

(Len(Transf,s) = Len(TransRespf,r) + 1).
Proof:

1) Let

A ≡ Len(Transa,s) ≥ Len(TransRespa,r)
B ≡ Len(Transa,s) ≤ Len(TransRespa,r)
C ≡ Len(Transa,s) = Len(TransRespa,r) + 1

From Lemma 4.1, we get that any execution satisfies

!((A ∧ B) ∨ (A ∧ C)).

Since

A ∧ B ≡ Len(TransRespa,r) = Len(Transa,s)

and

A ∧ C ≡ Len(Transa,s) = Len(TransRespa,r) + 1,

this completes the proof.
2) This can be proved using Lemma 4.1(2) and property
(13) and following the same steps as in the previous
proof.

Lemma 4.3: Any execution of the program satisfies

!(Len(TransRespf,r) = Len(Transf,s)
=⇒ Len(TransRespf,r) = Len(TransRespf,s) =

Len(TransRespa,r) = Len(TransRespa,s) =
Len(Transa,r) = Len(Transa,s) =
Len(Transf,r) = Len(Transf,s)).

Proof: This can be easily derived from the assumptions
about the network, (4), (8) and (9).
Lemma 4.4: Any execution of the program satisfies

!((Len(TransRespf,r) ≤ Len(TransRespf,s) ≤
Len(TransRespa,r) ≤ Len(TransRespa,s)) ∧

(∀i ∈ {1, . . . , Len(TransRespf,r)} :
TransRespf,r[i] = TransRespf,s[i] =
TransRespa,r[i]) = TransRespa,s[i])).

Proof: This is clear from (9) and the assumptions about
the network.
Proposition 4.1: The following propositional formula is a

tautology:

((¬A ∨ B) ∧ (A ∨ C)) =⇒ B ∨ C.
Proof: This can be easily proved using the truth table.

The system-level properties can then be proved as follows:
Theorem 4.1: Any execution of the program satisfies

!((Len(TransRespf,r) = Len(Transf,s) ∧
Last(TransRespf,r) = COMPLETED)

=⇒ Transf = Trans).
Proof: The case where Len(Transf,s) = 0 is trivial

so we only consider the case where Len(Transf,s) >
0. Suppose Len(TransRespf,r) = Len(Transf,s) and
Last(TransRespf,r) = COMPLETED). Then, we get

Transf
(15)
= Transf,s[Len(TransRespf,r)]

Lemma4.3= Transf,s[Len(Transa,s)]
(8),network

= Transa,s[Len(Transa,s)].

Also, from Lemma 4.3 and Lemma 4.4, we get

Last(TransRespa,s) = COMPLETED.

Using (6), we can then conclude that

Trans = Transa,s[Len(TransRespa,s)]
Lemma4.3= Transa,s[Len(Transa,s)]

= Transf .

Theorem 4.2: Any execution of the program satisfies

!(Transf = Trans ∨ Accf,s = −1).
Proof: From (11),

!(Len(TransRespf,r) += Len(Transf,s) =⇒
Accf,s = −1).

Or equivalently,

!(Len(TransRespf,r) = Len(Transf,s) ∨
Accf,s = −1).

Similarly, from (12), we get

!(Last(TransRespf,r) = C) ∨ Accf,s = −1).

Let

A ≡ Len(TransRespf,r) = Len(Transf,s)
B ≡ Last(TransRespf,r) = COMPLETED
C ≡ Transf = Trans

D ≡ Accf,s = −1

The system has the following property

!(((A ∧ B) =⇒ C) ∧ (A ∨ D) ∧ (B ∨ D)) ≡
!((¬A ∨ ¬B ∨ C)) ∧ (A ∨ D) ∧ (B ∨ D)).

Applying Proposition 4.1 twice, we can complete the proof.

Theorem 4.3: Any execution of the program satisfies

! ! (Transf = Trans ∨ HWF).
Proof: From Lemma 4.2(2),

!((Len(TransRespf,r) = Len(Transf,s)) ∨
(Len(Transf,s) = Len(TransRespf,r) + 1)).

Consider an arbitrary kth
1 cycle. From (14) and Lemma 4.2,

∃k > k1 such that in the kth cycle, Len(TransRespf,r) =
Len(Transf,s).
Consider this kth cycle. The case where

Len(Transf,s) = 0 is trivial. (By assumption,
Transf = Trans.) So we only consider the case
where Len(Transf,s) > 0. If Last(TransRespf,r) =
COMPLETED, then from Theorem 4.1, (15) and Lemma
4.3,

Transf = Trans = Last(Transf,s).

Otherwise, Last(TransRespf,r) = Last(TransRespa,s)
= FAILED, so from (7), HWF .

V. CONCLUSION AND FUTURE WORK
Although model checking can provide useful information

about a system’s correctness and reveal subtle errors in
design, its main disadvantage is the state explosion problem.
A promising approach to address this problem is to reason
about the system from its components. By exploiting the
structure of the system imposed by the CSA, this paper
illustrates how to decompose computationally demanding
system-level requirements into a set of component-level
requirements whose verification is computationally simple.
The technique is applied to verify the state consistency
between two software modules of Alice, an autonomous
vehicle developed by the California Institute of Technology
for the 2007 DARPA Urban Challenge.
Tools such as theorem provers [22], [23] may need to

be explored to extend the technique presented in this paper

to a more complex system. In contrast to model checking,
theorem proving can deal directly with infinite state spaces.
The drawback, however, is that it requires interaction with
a human, so the theorem proving process is slow and often
error prone. Combining model checking and theorem proving
such that we benefit from the advantages of both approaches
is therefore an obvious extension of this work.
Another direction of research is to extend this technique

to a more general class of systems governed by a finite
state machine. The CSA basically breaks up the system-level
finite state machine into a set of component-level finite state
machines such that the transitions between different finite
state machines are simple and have a well-defined structure.
We can potentially apply the idea to a more general class of
systems whose finite state machine can be broken up such
that the transitions between different component-level finite
state machines are simple but not necessarily have the same
structure as the CSA.

VI. ACKNOWLEDGMENTS
The authors gratefully acknowledge Michel Charpentier

for his help, suggestions and ideas regarding the use of TLA
and its tools. This work was supported by AFOSR.

REFERENCES
[1] S. Prajna, A. Papachristodoulou, and P. Parrilo, “Introducing SOS-

TOOLS: A general purpose sum of squares programming solver,” in
Proceedings of the IEEE Conference on Decision and Control (CDC),
pp. 741–746, 2002.

[2] H. Yazarel, S. Prajna, and G. J. Pappas, “S.O.S. for safety.,” in
Proceedings of the IEEE Conference on Decision and Control (CDC),
pp. 461–466, 2004.

[3] B. Espiau, K. Kapellos, M. Jourdan, and D. Simon, “On the validation
of robotics control systems part I: High level specification and formal
verification,” Tech. Rep. RR-2719, INRIA, November 1995.

[4] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg, “Hybrid I/O
automata,” in DIMACS Workshop on Verification and Control of
Hybrid Systems, October 1995.

[5] N. Lynch and H. Weinberg, “Proving correctness of a vehicle maneu-
ver: Deceleration,” in the Second European Workshop on Real-Time
and Hybrid Systems, June 1995.

[6] E. Dolginova and N. A. Lynch, “Safety verification for automated
platoon maneuvers: A case study,” in International Workshop on
Hybrid and Real-Time Systems, pp. 154–170, 1997.

[7] C. Livadas, J. Lygeros, and N. Lynch, “High-level modeling and analy-
sis of TCAS,” in Proceedings of the 20th IEEE Real-Time Systems
Symposium, (Phoenix, Arizona), pp. 115–125, December 1999.

[8] T. Wongpiromsarn and R. M. Murray, “Distributed mission and
contingency management for the DARPA Urban Challenge,” in In-
ternational Workshop on Intelligent Vehicle Control Systems (IVCS
2008), (Madeira, Portugal), May 2008. submitted.

[9] A. Pnueli, “The temporal logic of programs,” in Proceedings of the
18th Annual Symposium on the Foundations of Computer Science,
pp. 46–57, IEEE, 1977.

[10] M. Abadi and L. Lamport, “An old-fashioned recipe for real time,”
ACM Transactions on Programming Languages and Systems, vol. 16,
pp. 1543–1571, September 1994.

[11] L. Lamport, “Specifying concurrent program modules,” ACM Trans-
actions on Programming Languages and Systems, vol. 5, pp. 190–222,
April 1983.

[12] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, pp. 872–923, May
1994.

[13] Y. Yu, P. Manolios, and L. Lamport, “Model checking TLA+ specifi-
cations,” in Conference on Correct Hardware Design and Verification
Methods, pp. 54–66, 1999.

[14] G. J. Holzmann, The Spin Model Checker. Boston: Addison-Wesley,
2004.

[15] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic ver-
ification of embedded systems,” in IEEE Transactions on Software
Engineering, pp. 181–201, 1996.

[16] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model
checker for hybrid systems,” International Journal on Software Tools
for Technology Transfer, vol. 1, no. 1–2, pp. 110–122, 1997.

[17] G. Frehse, “Phaver: Algorithmic verification of hybrid systems past
hytech,” in HSCC, pp. 258–273, 2005.

[18] M. Abadi and L. Lamport, “Conjoining specifications,” ACM Transac-
tions on Programming Languages and Systems, vol. 17, pp. 507–535,
May 1995.

[19] M. Charpentier and K. M. Chandy, “Examples of program composition
illustrating the use of universal properties,” in IPPS/SPDP Workshops,
pp. 1215–1227, 1999.

[20] M. Charpentier and K. M. Chandy, “Towards a compositional approach
to the design and verification of distributed systems,” in World
Congress on Formal Methods (1), pp. 570–589, 1999.

[21] M. Charpentier and K. M. Chandy, “Theorems about composition,” in
Mathematics of Program Construction, pp. 167–186, 2000.

[22] J. H. Gallier, Logic for Computer Science: Foundations of Automatic
Theorem Proving. No. 5 in Harper & Row Computer Science and
Technology Series, New York: Harper & Row, 1986.

[23] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in 11th International Conference on Automated Deduction
(CADE) (D. Kapur, ed.), vol. 607 of Lecture Notes in Artificial
Intelligence, (Saratoga, NY), pp. 748–752, Springer-Verlag, jun 1992.

