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Abstract— The rules that govern decision making in systems
controlled by humans are often simple to describe. However,
deriving these rules from the actions of a group can be very
difficult, making human behavior hard to predict. We develop
an algorithm to determine the rules implemented by drivers
at a traffic intersection by observing the trajectories of their
cars. We apply such algorithm to a traffic intersection scenario
reproduced in the Caltech multi-vehicle lab, with human subjects
remotely driving kinematic robots. The results obtained on these
data suggest that this kind of human behavior is to some extent
predictable on our data set, and different subjects implement
similar rules.

I. INTRODUCTION

In the course of a day, humans are faced with many choices:
Do | step on the brakes? Do | invest in this stock? Do
| throw the basketball to Barry or Steve? Some of these
choices are very complex, making claims of predicting their
outcomes sound far-fetched. Others appear, at least on an
intuitive level, to be based on little input or to be easily
foreseen and classified that prediction algorithms should be
simple. There are many potentially beneficial applications of
such prediction algorithms. Security systems could be trained
to detect abnormal behavior and report it accordingly. The
occurrence of traffic accidents and traffic violations could
be detected, aiding emergency medical technicians and law
enforcement. It would also be advantageous in some strategic
games. For example consider Roboflag, a version of capture
the flag game being developed at Caltech. Each team has 2
humans and 6 to 10 semi-autonomous robotic vehicles. The
humans on the team can choose to be the overall strategists,
or to control specific vehicles. The robots have a limited field
of vision, so the opposing team must try to find a strategy
and guess the opponents’ plan by observing the actions of the
robots that enter their field. If the rules governing offensive
robots and defensive robots could be ascertained, these robots
could be more easily identified and the opposition’s strategy
could be better understood. Ideally, this could also be extended
to human sports like soccer.

In this paper we propose a preliminary study and focus our
attention on one particular human controlled system: a traffic
intersection. There are many rules followed at an intersection.
Some are clear-cut, like the laws of traffic and the color of
the traffic lights. Others, like when to turn or stop, or when to
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Fig. 1. Example of eight vehicles at s traffic intersection

decelerate or accelerate, are less obvious. A traffic intersection
is therefore a good place to test learning algorithms, providing
both trivial and nontrivial rules to test an algorithm on.

The problem of learning the decision rules that drive a
set of robots has been addressed in [3] for example, where
inductive logic programming techniques [5], were used to
solve the learning problem. When humans are involved in the
decision making process many factors, such as the variability
among subjects, give a statistical flavor to the decision rule
estimation problem. In this paper we then consider standard
statistical pattern recognition methods ([1], [4]) to deal with
the problem. We propose an algorithm that takes as input a set
of physical quantities, such as the positions of the vehicles at
the intersection, and returns the probability of having a certain

decision, such as “stop”, ™ turn right”, etc.

turn left”,

We tested our algorithm on a human-controlled experiment.
Using the Multi-Vehicle Lab at Caltech, we ran experiments
where human subjects were remotely driving kinematic robots
through a three-way traffic intersection. The results obtained
on our data set are promising. We obtained 15.81% training
error and 16.13% test error when training and testing were
performed on different subjects.
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Il. PROBLEM STATEMENT

We model the dynamics of a group of cars at a traffic
intersection as a set of clauses. Each clause is of the form
g :r, where g is the guard, and r is the rule. When a guard is
true the corresponding rule is executed (for more details see
[2]). In particular let (z;,y;) € R? denote the position in the
xy plane of vehicle v;, i € {1,...,n}, let x = (x4, ...,x,) and
y = (y1,...,yn). We model the behavior of each vehicle ¢ as

Gij(x,y, 1) « (xg,y;) = rij(xi,yi, 0i), 1)

where 5 € {0, ..., m} with m the number of possible rules that
the vehicle can use to update its position. For example, a car
in the neighborhood of the intersection will decide its update
rule among a set of possibilities such as stop, go straight, turn
left, turn right, slow down, etc., on the basis of the guard’s
value. I = (Iy,...,I,,) is the intention vector of the drivers.
Each I; is a logic variable with I; € {1,2,3}, where I, = 1
indicates the intention to go straight, I; = 2 the one of turning
right, and I; = 3 the one of turning left. Typically this variable
is known to all of the other vehicles through the signal lights.
The guard G ; takes the right of way, the presence of traffic
lights, the configuration of the cars at the intersection as seen
by the driver ((x,y)), personal evaluation of the situation, and
intention of the drivers (I) into account. We assume that there
are four rules that each vehicle can use to update its position
, hamely we have j = 0 & stop, j = 1 & go straight,
j=2<% turnright, j =3 < turn left. It is obvious that
if the intention of a driver at the intersection is I; = 1, this
will not necessarily cause the car to follow the update rule
4 = 1 since this may cause a conflict with incoming vehicles
as taken into account by the G, ;.

We address the problem of determining an estimate of the
Gi,;s, by measuring the sequences {z;(k), y; (k) }r<x forall ¢,
and knowing the intention {I;(k)} ,<x of each vehicle through
the light signals. Number K is a finite natural number as
only a finite amount of data is available. This problem can
be addressed by finding an estimate of the sets of the («,y, I)
values for which a given G; ; is true or false. Depending on
the structure of the G; ; this task can be very difficult, and in
fact it can be nontrivial even for simple G ;’s structures as
the following example shows.

Example 2.1: Consider vehicle v; of Figure 1. We write a
possible set of pairs guard-rule to which it obeys.

(21,90 =7 ¢ (2], 91) = (1,91 +6), )

Clause (2) formalizes the fact that while the car is far
enough from the intersection (||(x1,%1)||*> > ~) the vehicle
goes straight. The second clause (3) establishes that if the
intention of vy is to turn left (I; = 3), if it is time to make a
decision (||(x1,1)||* < 7), and if the vehicles coming from
its right are both far enough (z7 > p;'3, @s > pg’y), or if they
have already crossed the intersection they are far enough (z7 <
pr@s < pg’}) . then it can cross the intersection meeting its
intention. As a matter of notation in p;'7, pgi, pr’i, Psis
the superscripts 1,3 indicate that these parameters refer to
v; = vy, I; = 3, while the subscripts 7,1 or 7,2 indicate a
condition on vehicle 7.

In the example we have

Gz =[(Ii =3) A [l(z1,y)* <7) Agrs

where
gr3= (w7 2 py3) V (27 <pr3))
A (zs = pgh) V (s < pgs))-

Given I; = 3 (measured) and assuming ||(z1,y1)]]*> < 7,
the set of =7, xzg values for which g; 3 is true is reported in
Figure 2. This set is the union of four disjoint convex sets,
while the set for which g; 3 is false is a non convex set. In
case we have more than two dimensions these sets become
even more complicated. As a result, learning methods based
on radial basis functions neural networks or support vector
machines did not produce fast learning suitable for direct on-
line implementation, and the amount of data needed to obtain a
good enough estimate became prohibitive as the dimension of
the variables space increased. This last phenomenon is usually
known as "the curse of dimensionality”.
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Fig. 2. Dashed regions are the ones where g1 3 is true.
We introduce in the following section some assumptions
that help to simplify the estimation task.

I1l. THE MODEL

Given a group of vehicles at an intersection we denote by
v; the vehicle that approached the intersection from lane i
(see Figure 1). We concentrate our attention on the guards
that regulate the behavior in the proximity of the intersection
since the others are trivial. To model such guards we assign



a variable d; ,, € R to each lane [ € {1,..., L} representing
the distance from the center of the intersection of the vehicle
in that lane closest to the center of the intersection. Subscript
m € {1,...,n} indicates what is this vehicle. If in a lane
there is no vehicle m, then d; ,, is set to co. Note that not
all the (I,m) combinations are possible. For example the
combination (9,2) is not possible since vehicle v2 cannot
leave the intersection from lane 3. Let I(v;) denote the lane of
vehicle v;, then we assume the following simplified structure
for j =1,2,3:

Gij(@,y, L) = [(Li = §) A (I(zi, 9) I < )] A gij(2,y.p)
(5)

with
9i,5(2,5,P) = Azi(s)m (dim > D7) (6)

and for j = 0 we have

Gio@y, 1) = (@5 <7) Ajzo <ﬂgz—,j<x,y,p>>(,7)
where pl are parameters that need to be estimated, p =
Ut m.ij {pw }, the variables d; ,,, and I; are measured for all
I, m, i, and the value of ~ is assumed to be known (as we
can imagine we have a good estimate of what the region of
the intersection is in which the vehicle takes its decision). We
denote by d € D ¢ RE*™ the vector obtained by ordering
the variables d; ,,, for all the existing (I, m) combinations. We
also denote by dim(D) the dimension of the space D.

According to this model, vehicle v; will cross the intersec-
tion if the vehicles in all other lanes are at a safe distance.
Notice also that depending on the lane [ the values of the
pl can be different. For example, an incoming vehicle and
a Ieavmg vehicle will be treated differently. In the model in
equations (5,6,7) we have not considered the velocity of the
cars in each lane, which may be an important variable to take
into account in the decision process. However for this work we
tried to keep the model as simple as possible to see to what
extent we can predict drivers decisions even with a simple-
minded model.

The values of the parameters p define regions in D in
which the corresponding g; ; is true. Then the estimation
problem reduces to learn such regions from data, and label
them according to the values (true or false) of the g; ;s. This
is a standard classification problem. We seek to find a simple
estimation method suitable for direct on-line implementation
and not affected by the curse of dimensionality. It turns out
that the particular structure for the G; ;s assumed in equations
(5,6,7) allows us to reduce the dim(D)-dimensional estimation
problem into dim(D) one dimensional estimation problems
that can be solved in ”one shot” using one Gaussian probability
distribution function per dimension. This is formally exposed
in the following section.

,m

IV. ESTIMATION METHOD

The model assumed in equations (5,6,7) is a simplified
model that does not take into account important factors like
the variability among drivers and among different trials for

the same driver. This variability gives a statistical flavor to the
estimation problem of the G, ;, and the parameters p can be
reviewed as average values of a probabilistic distribution. The
question we ask is if such an average model is an accurate
approximation of the true guards that humans use. In other
words, we are asking if it is possible to find a pattern in the
behavior of drivers at a traffic intersection, and therefore if
their decisions are to some extent predictable. On the basis of
these remarks we take a statistical approach to the estimation
problem of the G; ;. Given the structure of the G; ; reported
in equation (5), we concentrate our attention on the estimation
of g; ; assuming always that I; = j and ||(z;,v:)[|* < 7.

Since we are interested in estimating for each g; ; the values
of the variables d for which g; ; is true and the ones for
which it is false, it is enough to be able to have an estimate
of one of these sets, since the other will be obtained by taking
the complement with respect to D. Thus in the sequel we
concentrate our attention on the set of variables values in d €
D for which g; ; is true.

From the model in equations (5,6,7) we deduce that the
set of d values for which g; ; is true is a connected convex
region in D in particular it is the intersection of L semi-
spaces in D, which can be estimated from data independently
from each other by estimating the probability distribution of
the one dimensional variable d; ,,, for any [, m corresponding
to true values of the g; ;. We then concentrate on this one
dimensional estimation problem.

Letd; ., € R be one componentof d and let {d; ,, ..., d[ .}
be a set of d; ,,, values observed when the guard G; ij 1S tfue,
that is when we see vehicle v; crossing the intersection. In
such a data set we do not consider the values of the variables
greater than a given number, as only cars that are sufficiently
close to the intersection are taken into account in the decision
process. As a parametric model for the probability density
function we consider the Gaussian function:
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If we assume that the points {d} . ...,d¥X 1 are generated
independently from an unknown probability density function,
and that they are identically distributed, the maximization of
the likelihood of the data set

K(M’ ) 1p(d m|M102

with respect to (1, o%) gives the well known estimates for the
mean and the variance
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empirically chosen in this work, but in principle it could be
determined through an optimization process involving the data
set. Moreover, given the structure assumed in (6), we will
consider the values dy., > """ — 307" likely to belong to
the distribution of values for which g; ; is true.

Thus we finally obtain an estimate for g ; as

l,m

N I,
iy = Niti(or),mdim > 1175 — 3077 )

By means of equation (9) we can consider new data, corre-
sponding to a new configuration of vehicles at the intersection,
and predict the decision of each one of the vehicles v;.

A. Algorithm implementation

The algorithm that gives the estimates g, ; and takes as
input the data sequence {x(k),y(k),I(k))}ren,x) can be
summarized as follows.

- For each vehicle v;, if (W —A < ||(zi,v:)]|> < W+ A)
do:

- Get I;, set j = I;;
- For all existing (I, m) combinations do:

- Get dy, for i # 1(v;);

W =6 < ||(zi(k), yi(R)|? < W+ A for
k € [k1,ko] and ky — k1 < T (vehicle v; did
not stop

- then GoData; j 1,m = GoData; j1,m Udym for
all l e [1,L], m e {1,....,n};

- For each vehicle v; compute #iT
GoData; j 1m.

In the algorithm, W is the width of the intersection (see Figure
1), and A is defining a small region which we refer to as the
decision region, which is where we assume the driver makes its
decision. The intention I; of a driver can be obtained by the
signal lights of the car. In the experiments explained in the
following section signal lights were not available, therefore
the intention was reconstructed after having observed the
trajectory of the vehicle. To decide if a vehicle stopped or
not we considered an amount of time 7' corresponding to
the maximum time a vehicle was supposed to take to cross
the decision region if it was not stopping. Here we make
only distinctions between “stop” and ”go”; a more refined
algorithm could also appropriately take the acceleration and
deceleration modes into account. Note that this is an off-line
implementation of the algorithm, but given the small amount
of computation needed to obtain the Gaussian parameters, the
algorithm is suitable to be implemented on-line. We leave this
to future work.

and azl.’;” from

V. EXPERIMENTS

The algorithm described in the previous section was tested
on real data obtained from a set of experiments done in the
multi-vehicle lab at Caltech.

A. Experiment set up

We reproduced a traffic intersection scenario in the multi-
vehicle lab at Caltech involving a set of human subjects, each
remotely driving one kinematic robot, see Figure 3. Each
robot of about 30cm of diameter was equipped with a PC104
and a wireless card. It was driven remotely from another
computer by establishing an internet connection through the
local network of the laboratory. On each robot a C program
was locally executed that allowed the robot to be driven by
using the four arrow keys on the keyboard of the remotely
connected computer.

Fig. 3.

Robot used as a vehicle in the experiments.

We considered a "T” intersection (see Figure 4) with the
following rules:
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Fig. 4. Intersection simulated in the laboratory experiment.

1. Vehicle v; always has the right of way;

2. Vehicle vy yields only to vehicle vq;

3. Vehicle v3 yields to vehicles v; and vs.
These rules were chosen to have three types of vehicles: one
that yields to no other vehicle, one that yields to only one



other vehicle, and one that yields to all other vehicles. This
would produce predicates g;; that are true on increasingly
complicated sets going from vehicle v; to vehicle vs. These
were the same rules given to the subjects.

The subjects were allowed to practice for half an hour before
we started recording the data. The xy position of each robot
was recorded by means of an overhead vision system recording
data at 60Hz.

Data was recorded from two sets of two experiment sessions
lasting forty minutes each. We had a total of five different
subjects driving the vehicles. In each experiment session, once
a vehicle had exited the intersection it looped back following
a prescribed path outside the intersection and started as a new
vehicle in the same lane as before. After the first experiment
session some of the drivers were switched and a second session
was started. To have data as uniformly distributed as possible
and the variables as independent as possible, in the second set
of experiments we let all the vehicles loop back to the starting
position and we assigned each one of them a random time they
had to wait for before starting again.

B. Experimental results

We consider three vehicles. Each vehicle is numbered
according to the lane that it occupies when it approaches the
intersection (see Figure 4). For each vehicle i € {1,2,3} we
have two possible intentions j € [1,2]. For example for v
we have j =1 & turn left and j = 2 < turn right.
For each vehicle i the number of decision variables (dim(D))
for a given intention j is equal to six, as an example consider
vehicle vs and refer to Figure 4. Assume that v3 intends to
turn left, then it should pay attention to the following: vy in
lane 1 (dy 1) if vy is arriving, vy in lane 4 (dy,1) if vy is leaving
from lane 4, v; in lane 6 (dg 1) if vy is leaving from lane 6,
and in an analogous way v; in lane two (dz 2), v2 in lane five
(ds,2), v2 in lane four (da,2).

We applied the algorithm described in Section IV-A on
the data acquired as described in the previous section. We
first report some numerical results and show how to interpret
them. Consider vs and assume its intention is to turn left
(j = 2). The estimate that we obtain for g; o is given
by equation (9) where we have the six decision variables
di,1,d41,de1,d22,ds5,2,ds2 (the combinations of [ and m
like ds, are not included because they cannot occur.) In
particular for the mean and the variances relative to d; ; and
da,2 We obtain

o3y = 0.2420

pyy = 1.53
22 22 = 0.96.

p3p = 1.40
The resulting two-dimensional probability density function is
shown in Figure 5 (top). In Figure 5 (bottom) we see the
boundary of the region where g o is true, as computed from
(9). From these plots we notice that v3 pays a lot of attention to
vy since vz decides to cross the intersection only if vy is further
than about 0.8 meters from the center of the intersection. On
the other hand vs is statistically not that careful to v since
the value of ;i35 — 30775 is negative. In fact experimentally

2k 4

Fig. 5. Probability density for vehicle 3 with intention of turning left as a
function of the distances from the intersection of two incoming vehicles v
and vz (top). Resulting boundaries of the region of the dy 1, d2,2 values for
which g3 2 is true (bottom). The units on the coordinate axis are in meters.

we observed that even if the incoming v, is close to the center
of the intersection, vs slows down a little bit and crosses the
intersection slowly, so that in the time v3 moves from the
lower to the upper part of the intersection v; has already
gone far enough. This is probably due to the geometry of
the intersection. However using a more sophisticated model
that discerns between ”go” and "slow down” we may obtain
better results.

The overall prediction results are explained in Table 1,
Confusion matrix 1 and 2. In Table 1 we refer to as "train
error” the error obtained on the same data used for the
computation of the Gaussian parameters, while the ’test error’
is the error obtained on new data samples. We counted as
an error every time our algorithm predicted that vehicle v;
stopped at the intersection, but it did not, and every time the
algorithm predicted that vehicle v; did not stop but it did. The
algorithm was tested on data obtained from subjects different
from the ones used to train the algorithm.

Given the amount of the training error (15.81%) we can
infer that the algorithm found a pattern in the behavior of the



drivers in our experiments, and therefore, in our data set, the
behavior of drivers is predictable. Given also that the test error
is not much higher than the training error, and that testing and
training were performed on different subjects, there is also a
good generalization across subjects on our data set. However
to make a more general statement we need to acquire more
data and consider more subjects, since the data extracted from
the experiments for some of the variables is not enough, and
the test set (as it appears from Table 1) is small. Finally, as
expected, vehicle vs has the hardest guards to learn, since it
has to pay attention to all of the vehicles, while vehicle v; has
the easiest since it does not pay attention to any vehicle.

Another interesting aspect of the algorithm performance is
reported in the confusion matrices, where we see in detail the
errors on the ”go” and on the ”stop”, that is when the algorithm
predicts that the vehicle stops but it actually goes, and when
the algorithm predicts that the vehicle goes but it actually
stops. From the two confusion matrices we see that the biggest
amount of the error is due to the error on the "stop”, that is
the vehicle was predicted to go, but in fact it stopped. This
could be due to the fact that the algorithm does not compare
two likelihoods (”go” versus “stop™) but just establishes that
the prediction is ”go” based on the comparison of the "go-
likelihood” with a fixed threshold. A clear direction in which
to improve the algorithm is to also find an estimate for the
”stop” distribution of variables and then make a comparison.
However, this is not trivial since the set of variables for
which g; ; is false (see equation (6)) is not a convex set,
and therefore more sophisticated estimation methods need
to be used. Moreover, in this case the estimation problem
cannot be directly decomposed into few one dimensional
problems with the clear advantage of overcoming the “curse
of dimensionality”.

Table 1: Algorithm error

train train test test
error samples | error samples
v | 82% | 73 | 83% |24
v | 97% | 92 | 14% | 50
V3 21.5% | 107 | 22% | 50
Total | 15.81% | 272 | 16.13% | 124

Confusion matrix 1: training data

GO (pred) | STOP (pred)
GO | 161/164 | 5/164
STOP | 23/108 | 72/108

Confusion matrix 2: test data

GO (pred) | STOP (pred)
GO | 95/101 6/101
STOP | 14/23 | 9/23

Note that some of the algorithm’s errors are due to mistakes in
the training and test sets. In fact the data recorded contained
some cases in which vehicles were not respecting the rules
and ended up in crashing with each other. This was due to
the fact that subjects were not as comfortable driving these
vehicles as they usually are when driving real cars.

VI. CONCLUSION

We proposed an algorithm for estimating the decision rules
that govern the behavior of human drivers at a traffic inter-
section. We simplified the problem to be able to obtain an
algorithm easily capable of on-line implementation, and not
suffering from the "curse of dimensionality”. We tested our
algorithm on data recorded in the multi-vehicle laboratory at
Caltech, where subjects were remotely driving small kinematic
robots to a three-way intersection. The overall training error
was 15.8% and the test error was 16.13% when training and
testing were performed on different subjects. This result shows
that, at least on our data set, human behavior was to some
extent predictable.

We proposed a preliminary study, and in the future we
would like to explore how this approach may be generalized
to other possibly more complicated situations. This involves
performing more laboratory experiments and taking more data
to test our algorithm on, as well as trying the algorithm on
real traffic intersection data. There are several directions in
which the algorithm could be improved. One clear direction
is to find an estimate of the variables values for which the g ;
are false, and include in the model more details such as speed,
acceleration, deceleration.
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