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Abstract— In this paper, we develop an experimentally val-

idated MATLAB software toolbox as an accompaniment to

an in vitro cell-free biomolecular “breadboard” system. The

toolbox gives insight into the dynamics of unmeasured states

in the cell-free system, accounting especially for the resource

usage. Parameter lumping and the reduced order modeling are

used to maintain computational tractability and to avoid ill-

conditioning. The toolbox allows for most applications to be

implemented with standard set of commands for ease of use.

Due to the breadboarding nature of the underlying cell-free sys-

tem, the toolbox provides a general framework for experiment

planning and predictive modeling for synthetic biomolecular

circuits cell-free systems, accelerating our capacity to rationally

design circuits from well characterized parts.

I. INTRODUCTION

One of the major goals of synthetic biology is to apply a
rational engineering design process to achieve the function-
ing of novel circuits in vitro and in vivo [15]. This bottom-up
approach represents a shift towards design in a systematic
and hierarchical way using well characterized and reusable
biomolecular parts (DNA/plasmids, RNAs, enzymes, pro-
teins, membranes) [5].

Even though many engineering methodologies and
philosophies are being adopted by synthetic biologists, mod-
eling remains challenging due to a variety of reasons, such
as the existence of a large number of coupled (both known
and unknown) mechanisms [3]. Furthermore, the boundaries
of an artificial circuit introduced into an organism may
be amorphous due to the interaction of the circuit with
existing reactions in emergent ways. This, along with existing
feedback regulation in organisms, leads to difficulties in
troubleshooting synthetic circuits in an engineering sense.

These challenges are starting to be addressed by the
paradigm of in vitro synthetic biology [6], especially through
cell-free expression systems as a medium to build in vitro cir-
cuits. The cell-free expression system consists of crude cell
extracts supplemented with buffer and resources [11], [22].
The crude cell extract contains functional protein machinery
including transcription-translation machinery; however, all
of the genetic material from host were carefully removed.
Therefore, cell-free extracts provide a platform for the char-
acterization of biomolecular parts and circuits in isolation,
free from the natural regulation and the above mentioned
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“cross-talk” present in living cells [9]. A further advantage
of cell-free in-vitro extracts is the significantly shorter char-
acterization and design time cycles as compared to in vivo

approaches. Despite recent progresses in streamlining the
assembly and optimization process for synthetic circuits [16],
achieving functional assembly for in vivo circuitry through
conventional cloning poses significant challenges [14].

Here we present a software toolbox for MATLAB to
accompany the TX-TL biomolecular breadboarding in vitro

system developed by Shin and Noireaux [23]. This versa-
tile in vitro system supports multiple stage cascades and
bistable circuits as well as the expression of complete phage
genome [21]. While elementary transcription and translation
steps as well as degradation steps have been successfully
modelled [12], the previous work focused on the linear
regime and the initial stage of protein expression where
the finite resources within the system are not limiting fac-
tors. In this work, by explicitly considering transcription,
translation, and degradation machinery with energy sources,
it is possible to capture experimental observations more
quantitatively beyond the initial stage of experiment. This
also provides insight into possible underlying reasons, such
as resource limitations and enzyme loading [20], [19], [28],
for previously unexplained behavior of the synthetic circuits
being tested. With accurate modeling, the design cycle for
prototyping may be shortened by eliminating circuit topolo-
gies or experimental conditions unlikely to meet design
specifications. Moreover, predictive modeling is also possible
with calibrated models, which may take the design process
beyond the traditional trial-and-error approach. For these
reasons, model-based circuit design and testing may be a
valuable asset to synthetic biology.

This paper is organized as follows: In Section II we
briefly outline the biomolecular breadboarding system and
highlight its advantages and disadvantages over in vivo

characterization and prototyping. In Section III we discuss
the proposed mathematical model that captures the dynamics
of the cell-free system, elaborating on the applied model
reductions and parameter lumping. Section IV-A explains
the applied system identification methodology. The exper-
imentally validated examples are discussed in Section IV,
where two simple circuits have been tested in the cell-free
system and a set of parameters were estimated based on
the experimental data. Finally, we state our conclusions and
highlight future directions.
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II. CELL-FREE SYSTEM

The cell-free biomolecular “breadboard” system is a
collection of in vitro protocols that can be used to test
transcription and translation (TX-TL) circuits in a set of
systematically-constructed environments that explore differ-
ent elements of the external conditions in which the circuits
must operate. This system is based on the work of Shin and
Noireaux [23]. The transcription and translation machineries
are extracted from E. coli cells. The endogenous DNA and
mRNA from the cells are eliminated during the preparation.
The resulting protein synthesis machinery is used to pro-
gram cell-free TX-TL gene circuits in reactions. These gene
circuits can be engineered in the laboratory using standard
molecular cloning techniques, but it is also possible to use
PCR products (linear DNA), which substantially decrease the
design cycle time.

The cell-free in vitro system used here has certain advan-
tages that make it desirable as a tool for simplifying the
study of biological circuit function. Due to the lack of back
regulation of most molecular species, it is possible to design
and operate a synthetic circuit in different concentration
regimes that may not be achievable in a living cell, for
instance, due to copy number variability and incompatibility
of plasmids. This in turn may allow us to explore a much
larger parameter space to characterize the range of dynamical
behaviors that a circuit topology may be capable of produc-
ing. Furthermore, the lack of back regulation and reaction
for the cell usually translates to the same protocol being able
to produce the circuit for different operating concentrations.
Well characterized extracts and buffers, as in the case of
the TX-TL system [23] also lead to a relatively accurate
knowledge of the concentrations of the major components
(nucleotides (NTPs), ribosomes, amino acids (AAs), RNA
polymerases, among other things) of the system. It is also
possible to characterize elementary dynamical processes like
NTP consumption and the degradation of DNA and mRNA,
leading to greater predictive capability of our computational
model. Furthermore, in the cell-free system, there is negligi-
ble protein degradation [12], leading to longer lived reaction
intermediates and products (such as fluorescent proteins).
These proteins may, at the circuit designer’s discretion, be
tagged with ‘degradation tags’ at the time of gene design,
allowing for degradation if desired.

On the other hand, the in vitro cell-free system also
has some potential disadvantages over living cells, such
as lack of growth, lack of sophisticated organization, and
limited resources; though these do not necessarily pose a
significant impediment to the prototyping function of the
this breadboard system as shown by recent work [4]. The
biggest caveat is that the in vitro cell-free system has finite
resources (e.g., RNA polymerases, Ribosomes, NTPs, AAs),
especially the loss of ATP has a strong impact on the sys-
tem performance [13]. The second disadvantage of cell-free
system is that there is no active growth nor waste removal
process in the system, leading to the build up to reaction
by-products such as non-functioning mRNA fragments and

Adenosine diphosphate (ADP), which slow down reactions
and eventually cause them to stop. The third difficulty is
lack of compartmentalization and sophisticated organization
on the surface. The finite resource and waste management
problem can be partially addressed by an exchange dial-
ysis system using membranes that allow exchange of fuel
molecules and small wastes [23]. Furthermore, it is possible
to implement compartmentalization and membranes in the
form of tiny lipid vesicles in TX-TL [23]; however, the
control of localization within the vesicle surface remains
primitive. Highly controlled localization of molecular species
to specific volumes is possible in cells, and may be desirable
for certain circuit properties like ultrasensitivity [27].

III. MODELING APPROACH

We have discussed the underlying in vitro biomolecular
system in Section II, where we noted that a useful framework
to study these systems is via the chemical reaction equations.
The assumption of mass action kinetics (well-stirred and con-
stant temperature mixture) allows these chemical equations
to be written as a set of coupled ordinary differential equa-
tions. At the most general level, we can use the following
deterministic system of ODEs to describe our model:

ẋ = f(x, ✓) (1)
y = h(x, ✓)

where x 2 R

n

+ is the vector of modeled chemical species,
h : R

n ! R or R

2 is the output function, which is linear
between the detection limits of instruments. The dynamics
can be further described with the following factorization of
the f vector field

f(x, ✓) = Nv(x, ✓) (2)

where each row of the flux vector v(x, ✓) corresponds to the
rate at which a given reaction occurs and the corresponding
column of the stoichiometric matrix N corresponds to the
relative changes in concentration of the relevant species.

Before discussing how we modeled transcription and
translation reactions, we briefly review the Michaelis-Menten
kinetics used to model enzyme-mediated reactions: E +

S

kf ,kr↵ E : S

kcat��! E + P , where the enzyme E and
the substrate S bind to form an enzyme-substrate complex
E:S, which in turn is converted into a product P and the
enzyme E. We can find analytical expressions for the rate
of production of P by making some simplifying assump-
tions: the E : S complex is in a ‘quasi–steady-state’, with

˙

(E : S) = 0 (Michaelis-Menten kinetics). This quasi–steady-
state approximation is valid if E

tot ⌧ S

tot

+ K

M

, where
the total amount of E is constant E

tot

= E + E : S,
S

tot

= S + E : S, and K

M

= (k

r

+ k

cat

)/k

f

. This leads
to two regimes for the dependence of ˙

P on S

tot

: when the
amount of substrate is large, with S

tot

� K

M

, all of the
enzyme is occupied by substrate and the rate of reaction
does not depend on S

tot

: ˙

P = k

cat

E

tot

(the zeroth order
regime). When S

tot

⌧ K

M

, it can be shown that the reaction
rate is in the first order regime with respect to the amount



of substrate: ˙

P = (k

cat

/K

M

)E

tot

S

tot

. These expressions
give qualitatively accurate picture for the enzyme kinetics
calculated by the more general mass-action kinetics in the
modeling toolbox.

A. Transcription

Transcription, the process by which enzymes use nu-
cleotide bases to create an RNA transcript from DNA, is
modeled using the following chemical equations:

RNAP+ �  �! RNAP : � (3)

DNA+RNAP : �  �! DNA : RNAP : �

NTP+DNA : RNAP : �  �! NTP : DNA : RNAP : �

NTP : DNA : RNAP : � ��! DNA+RNAP : � +mRNA

The above equations describe transcription as a three
step process: the activation of the core RNA polymerase
(RNAP) by a sigma factor protein (�) to form the holoen-
zyme (RNAP:�); the binding of this activated RNAP to
DNA to rapidly form a larger ‘enzyme-template’ complex
DNA:RNAP:�, which in turn uses NTP as a raw mate-
rial to produce mRNA. For a typical transcription reaction
utilizing the housekeeping sigma factor �

70, the RNAP:�
will effectively be at an equilibrium after an initial tran-
sient, simplifying analysis as mentioned above. Furthermore,
when other � factors are utilized for transcriptional control
(e.g., [23]), our approach can effectively capture the com-
petition for core RNA polymerase (e.g., [24]). To further
ensure computational tractability, we made a number of
simplifying assumptions in the above transcriptional model:
The four nucleotides (ATP, GTP, CTP and UTP) are lumped
into one species called NTP, whose concentration is the
sum of concentrations of the individual triphosphates. We
obtain the estimates for RNAP and �

70 concentrations from
a previous study [12] (these parameters can vary slightly
depending on the batch); the NTP concentrations are de-
termined from buffer preparation ([ATP]=[GFP]=1.5 mM,
[CTP]=[UTP]=0.9 mM) [26]. We do not model initiation and
elongation separately, instead simply model the production
of the whole mRNA transcript in a single enzymatic step (A
more detailed model of mRNA production including com-
petitive inhibition can be found in [1]). To avoid numerical
issues and keep track of material balance (stoichiometry),
we also implemented a ‘NTP consumption’ reaction, whose
rates are pegged with the transcription rate and the length of
transcript.

There are two important determinants of the speed of
transcription: the concentration of DNA templates and the
concentration of NTPs. At low DNA template concentrations,
transcription rate is approximately linear with respect to
the template concentration (first-order reaction), while at
high DNA template concentrations, the transcription rate is
almost independent of DNA concentration. As previously
mentioned, this regime is called the zeroth-order regime, and
is believed to be due to the saturation of the transcriptional

machinery. The existence of a saturation regime in the cell-
free expression system has been previously demonstrated
in the context of protein outputs [23]. During the initial
phase of transcriptional reactions, NTPs are in excess of their
Michaelis constants, approximating zeroth-order Michaelis-
Menten kinetics with respect to the NTP concentration;
however, after a significant portion of the NTP pool has been
consumed, the binding of the NTPs to the enzyme-template
becomes one of the rate-limiting factors, approximating
first-order Michaelis-Menten kinetics with respect to NTP
concentration: ( ˙

[mRNA] / [NTP ]).
The cell extract also contains the machinery for mRNA

degradation (presumably several endonucleases and exonu-
cleases remain active in cell-free extract), which has been
studied in a previous work [12]. Phenomenologically, the
mRNA degradation followed a first-order kinetics with a half
life of 12 minutes. Thus, we modeled mRNA degradation
to be a first order process as follows (the enzyme-substrate
complex is not modeled):

mRNA+RNase ��! RNase (4)

Finally, the transcription reaction slows down and even-
tually stops because the NTP levels became too low or
the build up of adenosine diphosphate (ADP) relative to
ATP makes enzyme reactions energetically unfavorable [13].
Instead of modeling ATPs versus other nucleotides or their
phosphorylation states separately, we model the decrease in
ATP usability in a lumped manner through the first order
degradation of NTP. This decrease in NTP concentration
leads to a fall in the rate of mRNA production to below that
of mRNA degradation, causing the mRNA concentration to
slowly drop to zero.

B. Translation

The transcribed messenger RNA is then used as a template
to create a nascent protein via translation. In detailed models,
a ribosome (Ribo) sits on the mRNA transcript and the
charged transfer RNA (tRNA) molecules are used to trans-
port specific amino acids to the ribosome:mRNA complex to
elongate the growing polypeptide chain. The specific tRNA
that binds to the elongation site, and hence the amino acid
incorporated, depends on the nucleotide triplet (codon) on
the mRNA being read. The endogenous enzyme, aminoacyl-
tRNA-synthetase, charges the tRNA molecules with amino
acids; however, the concentration of endogenous aminoacyl-
tRNA-synthetase is uncertain. The endogenous tRNA con-
centration in the cell-free expression is also uncertain; we
add 8 µM of additional tRNA in the buffer to ensure that
there is sufficient concentrations of all tRNAs in the mixture.
Furthermore, we ensure that there is an excess of AA in the
mixture, so that tRNAs can be assumed to be constantly
charged by AAs until the concentration of AAs falls close
to those of tRNAs (on the order of 10 µM). Thus, we
approximate the saturation regime of tRNA-AA through a
reaction where a single species AA binds to the ribosome-
mRNA complex with the binding constant set close to total
tRNA levels (on the order of 10 µM). The rate of this reaction



lumps the time required for tRNA charging and the transport
of tRNA to the ribosome by diffusion. In all, we model
translation as follows:

mRNA+Ribo �! mRNA : Ribo (5)

AA+mRNA : Ribo �! AA : mRNA : Ribo

AA : mRNA : Ribo ��! mRNA+Ribo + Protein

Here, we have lumped initiation, elongation, and termination
into a single reaction of AA binding to the ribosome-mRNA
complex leading to protein production and the dissociation
of the complex. To avoid numerical issues and to keep track
of material balance (stoichiometry), we also implemented
an ‘AA consumption’ reaction, whose rate depends on the
translation rate and the length of protein. The energy re-
quirement of translation is not modelled, and this is partially
justified because ATP and GTP are provided in excess of
CTP and UTP in anticipation of the additional usage for
translation (about one ATP and one GTP are used for each
amino acid incorporated). An explicit resource usage model
for keeping track of each NTP separately will be explored in
future work. Because the degradation of protein is negligible
without degradation tag, the protein concentration reaches a
constant level only when the mRNA runs out.

C. Enzyme loading

One set of hidden dynamics that the modeling toolbox
provides insight into is enzyme loading effects. In most re-
actions, RNAP saturates at low nM range of DNA templates
with strong promoters. As the initial gene concentrations
are varied, or multiple genes are expressed in the modeling
toolbox, the ribosomes can be either in an approximately
linear regime or in saturation, and this leads to different
dynamics. We are in the process of characterizing these
effects.

D. Protein degradation

As it was mentioned in section III-B, no significant
protein degradation has been observed in the TX-TL system.
Protein degradation requires a degradation tag on the target
protein which is recognized by a specific ClpX:ClpP protease
complex. ClpX unfolds tagged protein using ATP, followed
by ClpP degrading this unfolded protein into nonfunctional
constituents. Endogenous ClpX:ClpP complex in the TX-
TL extract is capable of degrading 0.5µM tagged protein.
For this reason, extensive protein degradation requires the
expression of ClpX and ClpP proteins within the system.
From the modeling point of view, the mehanism of the
action of the proteases is very complex. The energy usage
of ClpX cannot be neglected because the degradation stops
when energy source (NTP) levels drop in the solution [2].
Moreover, a recent study suggested that ClpP enhances the
success rate of ClpX, while ClpX becomes non-functional
after a certain number of unfolding attempts. Thus, our
preliminary model is:

PSSRA +ClpX �! PSSRA : ClpX (6)

NTP+ PSSRA : ClpX �! NTP : PSSRA : ClpX

NTP : PSSRA : ClpX ��! P

�
SSRA

P

�
SSRA +ClpP �! P

�
SSRA : ClpP

P

�
SSRA : ClpP ��! ClpP

ClpX ��! 0

We assume that concentration ClpP is already enhancing the
ClpX activity since we have added the same amount of ClpX
and ClpP plasmids. We are planning to give experimental
results and system ID results on these in the future work.

E. Linear DNA protection

Protein production from a linear DNA is also possible
in the in-vivo system, reducing the design cycle time sig-
nificantly. Linear DNA, unlike plasmids, is degraded by
endogenous RecBCD. The degradation can be attenuated
significantly with the addition of purified gamS protein. This
protein binds to RecBCD with a high affinity and sequesters
it away form the DNA. In our toolbox this process is modeled
as follows:

RecBCD+ gamS �! RecBCD : gamS (7)

DNA+RecBCD �! DNA : RecBCD

DNA+RecBCD ��! RecBCD

The DNA:RecBCD complex has a larger dissociation con-
stant than the RecBCD:gamS complex [18]. Thus when
gamS is present in excess, the DNA degradation almost stops.

F. Implementation considerations

Both transcription and translation are implemented as one
step reactions, which, under a naive implementation scheme:

n·NTP+DNA : RNAP : �  �! n·NTP : DNA : RNAP : �

(8)
n·NTP : DNA : RNAP : � ��! DNA+RNAP : � +mRNA

with a large stoichiometric coefficient n in front of the NTP
(AA) term in the chemical equation. This leads to numerical
difficulties: 1) the ODEs describing these reactions become
very stiff due to an extremely high reaction order and 2) the
reaction order and hence rate depends on the length of the
mRNA, because n is simply this length in nucleotide bases
(this is not an accurate model, since the whole mRNA is not
assembled instantaneously, like it suggests).

We first alleviated these problems by clumping the NTP
(AA) to be consumed in units of 100, bringing the nominal
reaction order down to 6-12 (the genes are typically 600-
1200 bases long). In the modeling toolbox, we used a
heuristic approach whereby we used only one unit of NTP
(AA) for each transcription (translation) reaction and coupled
this to the implementation of a “dummy” reaction to consume
the rest.



IV. EXPERIMENTAL VALIDATION

In the remainder of the paper we will characterize the
unknown reaction rates and demonstrate the capabilities of
the modeling toolbox. To this end, we attempted to identify
transcription and translation rates individually. mRNA dy-
namics were measured with a spectrofluorometer and protein
concentrations were measured with a plate reader. Finally,
we will illustrate the regulatory capabilities of the in vitro

cell-free system and compare it with the results from the
computational model.

A. System identification

The core TX-TL model contains 11 reactions and 11
parameters in total, along with 7 species with non-zero
the initial concentration (e.g. enzymes, amino acids, and
nucleotides). Some of the parameters are known: either
they are part of the assembly protocol [26] (e.g. NTP,
DNA concentration) or they were studied previously (e.g.
concentration of RNA polymerase and ribosome, mRNA
degradation rate, etc) [23]. The rest of the parameters were
subject to parameter estimation (two for transcription and
two for translation).

From (1) we can see that the model is nonlinear, thus it
is difficult to find an analytical expression for parameter val-
ues. Traditional random search methods provide only point
estimates [10], whereas other methods, one of which is used
below, can sample the distribution of unknown parameters.
The result is that we obtain not only point estimates, but
also statistics about individual parameters and correlations
between them as well [8].

Using the simplex search algorithm with quadratic cost
function, we found a suitable start point for the Markov
Chain Monte Carlo (MCMC) algorithm to sample the joint
distribution. In each case the cost function is given by:

J(✓) = e(✓)

T

Qe(✓) (9)

where ✓ is the parameter vector, e(✓) is the difference
between the measured output trajectory y and the model
output y(✓) for a given ✓. In our case, the weighting matrix
Q was the identity.

In our reduced order model, the whole gene expression
process can be viewed as two enzymatic conversions: first
NTP is converted to mRNA, then AA converted to unfolded
protein. In translation, mRNA is part of the enzyme complex,
and therefore its concentration changing over time. In the
first step, we assume that RNAP and the sigma factor forms a
complex quickly with very high disassociation constant (K

d

10 µM). Then the RNAP� : DNA complex is formed with
much lower disassociation constant (K

d

5 nM).
For transcription, we have determined two parameters: the

degradation rate of NTP (all nucleotides are lumped into
a specie named NTP) and the Michaelis Menten constant
(K

m

= (k

r

+ k

cat

)/k

f

) for the RNAP : �:DNA enzyme-
template. Since the rate of transcription (k

cat

) is known [12],
we can fix the forward rate k

f

to find the reverse rate k

r

).
Using the two step estimation process, we determined the
ATP degradation rate to be 9.32 ⇥ 10e

�4
s

�1. (confidence

interval [8.2e � 04 10e � 4]) and the K

m

to be 6.92µM

(confidence interval [5.6744 8.1656])
For translation, the dissociation constant k

d

= k

r

/k

f

for
the mRNA:Ribo complex and the K

m

for the mRNA:Ribo
”enzyme-template have been determined. Again, the k

cat

rate
is known from a previous study [12], we are only searching
for the reverse rate. After running the two step algorithm,
we found the k

d

= 0.0500 ([0.0445 0.0555]) and the K

m

=

168µM ([132.72 203.28]).
In the rest of the paper, these parameters are used for

simulations and also as a starting point for biomolecular
circuits (e.g. the negative autoregulation example in Section
IV-E).

B. Experimental procedure

The cell extract is a crude cytoplasmic extract from E. coli
which contains soluble proteins, including the entire endoge-
nous TX-TL machinery, as well as mRNA and protein degra-
dation enzymes [22], [23]. (Detailed instructions on the cell
extract preparation can be found in [26]). Reactions typically
take place in volumes of 10 µl (with a plate reader) to 60 µl
(with a spectrofluorometer) at 29�C. mRNA dynamics can
be followed using an RNA aptamer for the fluorescent dye
malachite green recorded in spectrofluorometer (FluoroLog-
3, Horiba Jobin Yvon); protein dynamics were followed by
fluorescence of GFP recorded in the plate reader (Victor X3,
PerkinElmer). Two variants of GFP were used: deGFP, eGFP
variants optimized for in vitro experiments [22], and deGFP
fused to repressor tetR. To avoid variation between extract
batches we used the same extract for all experiments.

C. mRNA dynamics

Radiolabeling of mRNA and subsequent gel analysis
can provide limited temporal resolution for mRNA dynam-
ics [12]. Therefore, we performed real-time fluorescence
monitoring of mRNA dynamics by utilizing an RNA aptamer
with the fluorescent dye malachite green [7]. The aptamer
contains a binding pocket for the malachite green dye but is
very short (35 bases), and thus, the aptamer sequence was
incorporated at the 50 UTR of the plasmid encoding deGFP

gene. The fluorescence signal from this transcript is com-
parable to the short malachite green aptamer itself, but the
half-life in cell-free extract is much longer for the plasmid-
aptamer-malachite green complex. To determine mRNA dy-
namics at high sensitivity with high temporal resolution, we
used a spectrofluorometer with the following setting: the
excitation and emission maxima were set at 630 nm and
655 nm with 5 nm slit width using monochromater with
fluorescence measured every minute. Upon the initiation of
reactions by moving the sample to 29�C chamber, the RNA
level quickly increased to its peak level at approximately
60 minutes after the start of the experiment, and slowly
decayed over time. Note that the RNA level varied linearly
with respect to DNA template concentrations (up to 3 nM
that we tested). (In principle, other promoters with weaker
promoter strengths can be used for probing mRNA dynamics
in a similar manner. However, the signal-to-noise ratio for



the measurements when the Pr1 and Pr2 promoters were
used (see below), was low even with the spectrofluorometer.)
Compared to a previous modeling study [12], we observed
that the initial delay in the accumulation of mRNA was
smaller and the apparent peak for mRNA level was higher.
These differences may be explained by the fact that the
malachite green aptamer is located at the 50 UTR of mRNA
for deGFP: the beginning of transcription would lead to
immediate increase in fluorescence signal while the decay
of transcript could be reported at a later time than the initial
degradation by endonuclease.
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Fig. 1. mRNA dynamics were measured for 10 hours via fluorescent RNA
aptamer monitoring with 3 different plasmid concentrations containing the
same circuit. Then we used that data for parameter estimation, the result of
that is shown in green, where we simulated the mRNA production with 4
different concentration.

D. protein production with constitutive promoter

One of the simplest reactions to be modeled is the consti-
tutive production of a reporter protein. The general structure
of the DNA looks like promoter-UTR-gene. With proper
optimization of reaction conditions, the TX-TL in vitro

system (relying exclusively upon endogenous E. coli RNAP)
is shown to accumulate 0.5 to 1 mg/mL of reporter protein
(plate reader fluorosence measurement. Excitation: 485nm,
Emission: 525nm, Bandwidth 30nm, Measurements every
3 minutes), comparable to other in vitro cell-free expres-
sion systems that use bacteriophage RNA polymerase [11].
Because endogenous proteases in the TX-TL system are in
a small quantity and typically require degradation tags for
their action [12], degradation on untagged reporter proteins
is negligible. We used three constitutive promoters with
different promoter strengths: Pr, Pr1, and Pr2. Pr, the lambda
repressor Cro promoter, is the strongest of these, while
mutants Pr1 and Pr2 have activities of 20% and 2% of
the activity of Pr. As expected, the reporter deGFP protein
accumulates fastest under the Pr promoter and slowest under
the Pr2 promoter. Figure 2 and 3 show the activity of the
two promoters. The protein concentration scales linearly with
initial plasmid concentration up to 3 nM for the strongest
promoter, beyond which the scaling is nonlinear. It remains

to be verified that the transcription machinery (RNAP:�
complex is not saturated by DNA at the 1 nM to 3 nM
plasmid concentration and thus operates in the first order
regime. Beyond 3nM of plasmid DNA concentration, the
machinery may start to get saturated, leading to nonlinear
scaling.
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Fig. 2. Figure shows the constitutive production of reporter protein under
the strongest promoter. The initial plasmid concentration was varied between
1nM and 4nM ± 5%, using estimated parameters from IV-A. Simulations
with varying plasmid concentration were run, and the results are shown in
green for each case. Beyond the 3 nM case, the steady-state value of the
reporter protein does not scale linearly with the initial plasmid concentration
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Fig. 3. The constitutive production of reporter protein under the second
strongest promoter (Pr1) was also tested. We varied the initial plasmid
concentration between 1nM and 4nM ± 5%. The steady-state value of the
reporter protein scales linearly throughout the measured region. The reader
should note that the activity of 4nM± 5% of this the plasmid is comparable
to the activity of the strongest promoter.

E. Negative Autoregulation

An approach to testing the regulatory potential of the
TX-TL system, is to use repressors not present in the E.

coli extract. To this end, we utilized the tetracycline system,
constructed as a negative feedback loop, with the synthetic
regulatory element PLtetO1, composed of a strong promoter
specific to �

70 bound RNAP and two tet operators [17].



The tetracycline repressor gene tetR and the deGFP gene
were fused and cloned under PLtetO1 into one plasmid. To
determine reporter deGFP protein dynamics, we used plate
reader with the same setting in the previous section. Repres-
sion of deGFP expression is observed after 30 minutes of
incubation in the absence of the inducer anhydrotetracycline
(aTc) (Figure 4 shown in red) (measurement as in section IV-
D). On the other hand, the reporter deGFP is fully expressed
when a concentration of 10 µM (5 µg/mL) of aTc is included
in the reaction. The high concentration range of aTc required
for full expression, about 50 fold higher than the amount used
for in vivo induction [17], is in agreement with the previous
analysis of an analogous tetracycline circuit without deGFP
fusion protein [23].

We modeled the promoter activity of PLtetO1 as follows
(see also [25]):

• tetR repressor protein, produced as a monomer, binds
to another monomer to form a tetR dimer (K

d

= 10

�7

to 10

�8 M);
• tetR dimer binds to the promoter PLtetO1 and blocks

RNAP binding (K
d

= 10

�12 to 10

�13 M); the two op-
erator regions within the promoter were not separately
modeled;

• aTc binds to tetR monomer and tetR dimer (irrespective
of its binding state to promoter); tetR bound to aTc
binds to the promoter weakly (K

d

= 10

�5 to K

d

=

10

�6 M).
Following the previous notation, the above processes can

be modeled with these additional reactions:

tetR + tetR �! tetRdimer (10)

DNA+ tetRdimer �! DNA : tetRdimer

2 aTc + tetRdimer �! 2 aTc : tetRdimer

Using the parameter estimation technique introduced above,
we estimated the K

m

for the promoter using the previously
identified values.
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Fig. 4. In this experiment using fixed concentration of 2nM PLtetO-
UTR-deGFP/tetR plasmid and varying amount of anhydrotetracycline, we
measured the reporter protein concentration with three different levels of
aTc. With green, we show the corresponding simulation results.

V. CONCLUSIONS

We have demonstrated a reduced order model for our
cell-free system, where the modeled states captures the ob-
servable dynamics with minimal model complexity. Because
of this rapid prototyping is possible, where multiple circuit
topologies and corresponding parametrizations can be tested
at once. The developed model also has predictive capability
because the parameters have been validated experimentally.
Furthermore, the model provides insight into unmeasured
states, which enables the user to keep track of resource
consumption and enzyme loading.
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