
On Synthesizing Robust Discrete Controllers

under Modeling Uncertainty∗

Ufuk Topcu, Necmiye Ozay, Jun Liu, and Richard M. Murray

California Institute of Technology, Pasadena, CA

{utopcu, necmiye, liu, murray}@cds.caltech.edu

ABSTRACT
We investigate the robustness of reactive control protocols
synthesized to guarantee system’s correctness with respect
to given temporal logic specifications. We consider uncer-
tainties in open finite transition systems due to unmodeled
transitions. The resulting robust synthesis problem is for-
mulated as a temporal logic game. In particular, if the speci-
fication is in the so-called generalized reactivity [1] fragment
of linear temporal logic, so is the augmented specification in
the resulting robust synthesis problem. Hence, the robust
synthesis problem belongs to the same complexity class with
the nominal synthesis problem, and is amenable to polyno-
mial time solvers. Additionally, we discuss reasoning about
the effects of different levels of uncertainties on robust syn-
thesizability and demonstrate the results on a simple robot
motion planning scenario.

1. INTRODUCTION
Robustness—a system’s ability to function correctly under

uncertainties, for example, due to imperfections in the way
the evolution of the system and its interactions with its envi-
ronment are modeled—is a key attribute to predictable op-
eration (and graceful failure). Though well-studied for phys-
ical engineering artifacts, it has been hardly explored for dis-
tributed embedded systems. Approaching this from a com-
puter science perspective, a reason for the lack of suitable ro-
bustness notions is that computing systems are conveniently
modeled as discrete mathematical objects with no underly-
ing (non-trivial) topology where uncertainties and their im-
pact can be quantified [9]. Furthermore, even though con-
trols have explicitly modeled such uncertainties and devel-
oped dedicated methods and tools, they have been limited
to rather restrictive representations and cannot directly ad-
dress the critical interplay between physical components and
computing/communication. Consequently, there is a need

∗This work is supported by the Boeing Corporation, NSF
grants CNS 0911041, the NSERC of Canada, the FCRP con-
sortium through the Multiscale Systems Center (MuSyC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC ’12 Beijing, China
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

for characterizations and computable metrics to support the
analysis, design, and construction of robust embedded con-
trol systems.

As a step toward addressing this need, we consider ro-
bustness of discrete, reactive control protocols synthesized to
guarantee system’s correctness with respect to given tempo-
ral logic specifications. Such control protocols—in the con-
text of embedded control systems, robot motion planning,
and hybrid systems—have attracted considerable attention
recently. The special case, where there is no uncontrolled,
environment, has been studied, for example, in [2, 11]. These
methods generally formulate a problem that is amenable to
model checking [5]. More recently, the case with a priori
unknown, dynamic environment has been investigated, for
example, in [12, 22]. In this case, the problem is generally
formulated as a temporal logic game [1].

We consider uncertainties in open finite transition sys-
tems, i.e., transition systems with uncontrolled inputs, due
to unmodeled transitions. We reformulate the resulting ro-
bust synthesis problem as a temporal logic game. In par-
ticular, we utilize specifications that belong to the so-called
generalized reactivity [1] (GR[1]) fragment of linear tempo-
ral logic for which there exist polynomial complexity solvers
[19]. We show that if the specification is a GR[1] formula, so
is the augmented specification in the resulting robust syn-
thesis problem. Hence, robustification of protocol synthesis
with the specific uncertainty model consider in this paper
does not change its complexity class. Finally, we discuss rea-
soning about the effects of different levels of uncertainties on
robust synthesizability. Specifically, we embed partial orders
on the family of sets of unmodeled transitions, which reflect
on designer’s intent or prior knowledge, as a means to com-
pare different uncertainty sets. For a class of partial orders
that satisfy certain monotonicity conditions, we propose a
bisection-type search to compute maximum level robustness
a system possesses with respect to given specifications and
a partially ordered family of uncertainty sets.

The work in [20] extends notions, such as input-output
gains and small-gain theorems, well-known in controls to
systems over finite alphabets. This study is limited to the
verification of stability and amplification of a measure of
energy from the input channels to the output channels. A
recent collection of papers including [3, 13] consider the sen-
sitivity of the outputs of discrete systems to the variations in
the inputs. For example, [3] focuses on safety properties and
uses the ratio of the“distance”between allowed and observed
system behavior to that of the environment behavior as a
measure for sensitivity. We emphasize, though, that what

Submitted, 2012 Int'l Conf on Hybrid Systems: Computation and Control (HSCC)
http://www.cds.caltech.edu/~murray/papers

matters for satisfactory operation of engineering systems is
robustness (i.e., how much the input specifications can be vi-
olated and still the output specifications hold), beyond mere
sensitivity (i.e., how much the output specifications are vio-
lated due to the violations in the input specifications).

The organization of the paper is straightforward. We con-
tinue with some background material used in the rest of the
paper. The problem formulation in section 4 is followed by
the main results of the paper and a demonstration of these
results on a simple robot motion planning problem. We con-
clude with a critique of the problems and progress reported
in the paper focusing on the limitations and potential ex-
tensions.

2. BACKGROUND
We now present some of the definitions and background

material used throughout the paper.

2.1 Finite transition system
We consider two types of finite transition system models.

Roughly speaking, the first one does not interact with its
external environment (after possibly being started by the
environment). The other one explicitly accounts for the in-
teractions with possibly adversarial environments and reacts
to the changes in the environment.

Definition 1. A finite transition system is a tuple TS =
(Q, I,A, R) where Q is the finite set of states, I ⊆ Q is the
set of initial states, A is the finite set of actions (i.e. con-
trollable input variables) and R ⊆ Q×A×Q is a transition
relation.

TS is called action deterministic if I is a singleton and for
all q ∈ Q, for all u ∈ A, there is at most one q

� ∈ Q such
that (q, u, q�) ∈ R. TS is called non-blocking if for all q ∈ Q,
there exists a pair (u, q�) ∈ A×Q such that (q, u, q�) ∈ R.

An execution of the transition system TS is a sequence
(q0, u0), (q1, u1), (q2, u2), . . . such that q0 ∈ I and (qi, ui, qi+1) ∈
R for all i ≥ 0. For simplicity, we assume TS is non-blocking
and consider only infinite executions. This assumption in-
troduces no loss of generality since one can add an auxiliary
sink state with a self-transition and complete the finite exe-
cutions to infinite ones.

We also consider a more general class of transition sys-
tems, so-called open systems, where part of the actions are
uncontrollable (e.g., controlled by the environment).

Definition 2. An open finite transition system is defined
as a tuple TS = (Q, I,Auc,Ac, R) where Q is the finite set of
states, I ⊆ Q is the set of initial states, Auc is the finite set
of uncontrollable actions (i.e. environment decisions), Ac is
the finite set of controllable actions (i.e. control inputs) and
R ⊆ Q×Auc ×Ac ×Q is a transition relation.

An open finite transition system TS is called action de-

terministic if I is a singleton and for any pair of transitions
(q1, e1, u1, q

�
1) ∈ R and (q2, e2, u2, q

�
2) ∈ R, if q1 = q2, e1 = e2

and u1 = u2, then q
�
1 = q

�
2. TS is called non-blocking if for

all q ∈ Q, there exists a triple (e, u, q�) ∈ Auc ×Ac ×Q such
that (q, e, u, q�) ∈ R. An execution for an open transition
system is defined similarly.

2.2 Linear temporal logic
We use linear temporal logic (LTL) [17, 14] as a formal

language to specify correct behaviors of systems and admis-
sible behaviors of their environments. LTL is a rich speci-
fication language that can express properties often used in
control, robot motion planning, and embedded systems, in-
cluding safety, reachability, invariance, response, and/or a
combination of these [14] (see [21] for examples). Roughly
speaking, LTL specifications impose constraints on the in-
finite sequences of the values a certain set of variables can
take (e.g., the executions in finite transition systems).

LTL is an extension of propositional logic by including
temporal operators. Apart from the logical connectives nega-
tion (¬), disjunction (∨), conjunction (∧) and implication
(→), it includes temporal operators next (�), always (�),
eventually (�) and until (U). By combining these opera-
tors, it is possible to specify a wide range of requirements
on the desired behavior of a system.

An atomic proposition is a statement that has a unique
truth value (True or False) at a given state1. Given a set
Π of atomic propositions, an LTL formula is defined induc-
tively as follows: (i) any atomic proposition p ∈ Π is an LTL
formula; and (ii) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ,
�ϕ and ϕ U ψ are also LTL formulas. Formulas involving
other operators can be derived from these basic ones.

Semantics of LTL: An LTL formula is interpreted over
an infinite sequence of states. Given a sequence of states
σ = q0q1q2 . . . and an LTL formula ϕ, we say that ϕ holds at

position i ≥ 0 of σ, written qi |= ϕ, if and only if (iff) ϕ holds
for the remainder of the sequence σ starting at position i.
The semantics of LTL is defined inductively as follows:

• For an atomic proposition p, qi |= p iff qi � p;

• qi |= ¬ϕ iff qi �|= ϕ;

• qi |= ϕ ∨ ψ iff qi |= ϕ or qi |= ψ;

• qi |= �ϕ iff qi+1 |= ϕ; and

• qi |= ϕ U ψ iff there exists j ≥ i such that qj |= ψ and
∀k ∈ [i, j), qk |= ϕ.

Based on this definition, �ϕ holds at position i of σ iff ϕ

holds at the next state qi+1, �ϕ holds at position i iff ϕ

holds at every position in σ starting at position i, and �ϕ

holds at position i iff ϕ holds at some position j ≥ i in σ.

2.3 Control strategy
Given a transition system TS and an LTL specification of

the admissible environment behaviors and requirements on
the system behavior, we aim to synthesize control protocols
that, when implemented on the system, guarantee that the
executions of the system satisfy the specification.

A control strategy for an open transition system TS is a
partial function

f : (q0, e0, u0, · · · , qi−1, ei−1, ui−1, qi, ei) �→ ui,

such that (qi, ei, ui, qi+1) ∈ R for all i ≥ 0. A control
strategy is said to be memoryless if f is a partial function
f : (qi, ei) �→ ui, for all i ≥ 0.

1Here, state refers to a valuation of the variables the
atomic proposition involves or is evaluated over; e.g., some
(q, e, u) ∈ Q × Auc × Ac if one wants to reason about an
element in an execution.

Similarly, if the transition system TS is closed in the sense
that all actions are controllable (i.e., Auc is empty), a control
strategy is given by

f : (q0, u0, · · · , qi−1, ui−1, qi) �→ ui,

such that (qi, ui, qi+1) ∈ R for all i ≥ 0. A memoryless
control strategy is given by f : qi �→ ui, for all i ≥ 0.

A controlled execution of a transition system TS is an ex-
ecution of TS, where for each i ≥ 0, ui is chosen according
to the control strategy f . Note that, in each step of a con-
trolled execution, an uncontrollable action is followed by a
controlled action, i.e., the control decision is made after the
uncontrolled action is observed.

Synthesis Problem: Given a transition system TS and a
temporal logic formula ϕ, compute a strategy f of the form
ui = f(e0, u0, · · · , ei−1, ui−1, qi, ei) such that any controlled
execution of TS satisfies ϕ. If such a strategy exists, we call
the tuple (TS,ϕ) to be synthesizable.

We use a simple example to illustrate the meaning of a
control strategy for transition systems.

Example 1. Consider a finite transition system TS with
I = {q0}, Q = {q0, q1, q2}, A = {a, b}. The transition rela-
tion R is shown in Figure 1. We consider two memoryless

q0 q1

q2

b

b
a

a

a,b

Figure 1: A finite transition system TS with three

states Q = {q0, q1, q2} and two controllable actions

A = {a, b}.

control strategies. Let fa be the memoryless control strategy
that chooses action a for each q ∈ Q, and fb be the memo-
ryless control strategy that chooses action b for each q ∈ Q.
We want the system state to always stay in {q0}∪ {q1}, i.e.,
satisfies the LTL specification ϕ = �(q0 ∨ q1). It is clear
that, with either of the two strategies fa or fb, the controlled
executions of TS satisfy ϕ.

More generally, if the transition system is an open sys-
tem that has environment inputs, the corresponding control
strategy provides a reactive control mechanism such that
the controlled executions of the overall system satisfy cer-
tain assumption-guarantee type specification ϕe → ϕs, as
shown schematically in Figure 2 where ϕe and ϕs are LTL
formulas. In other words, the control strategy should en-
sure correct behavior of the system (specified by ϕs) for all
allowable behavior of the environment (specified by ϕe).

Before formulating the robust synthesis problem, we present
a simple motivating example.

Example 2. With the transition system in Figure 1, we
consider the case where such a model may not be an exact
model of the plant to be controlled, e.g., there are possible
unmodeled transitions. Let δ1 = (q0, a, q1) be such an uncer-
tain transition. With this uncertainty, the control strategy
fa can lead to executions that no longer satisfy the same

TS

f ✛

✲
✲✲e |= ϕe s |= ϕs

s = (q, e, u)u

Figure 2: The interconnection of a finite transition

system model TS and a control strategy f .

specification ϕ = �(q0 ∨ q1), whereas the control strategy
fb still ensures the same specification is satisfied. As an-
other case, adding the uncertain transition δ2 = (q1, b, q2)
will make the strategy fb no longer ensure correct execu-
tions, whereas the strategy fa still does so.

Example 2 shows that, due to different modeling uncer-
tainties, we may prefer one control strategy over another.
The goal of this paper is to synthesize robust control strate-
gies that ensure correct behavior of the system under such
modeling uncertainties. The problem will be formally stated
in the next section.

3. PROBLEM FORMULATION
Most control design procedures are based on the use of

a design model of the plant under control. Since no single
fixed model can respond exactly like the true plant, one
needs to account for the mismatch between the model and
the plant in the design procedure. A common approach
is to design controllers that are guaranteed to be correct
when implemented not only on a design model but also on
a family of models that contain the design model as the
nominal representation of the plant behavior. We will call
such controllers to be robust to modeling uncertainties.

The effectiveness of the design of robust controllers heavily
relies on the extent as well as the representation of modeling
uncertainties due to a number of factors including: (a) As
the extent at which the modeling uncertainties are accounted
for in the design procedure increases, the likelihood that the
true plant behavior is covered increases. Hence, it is more
likely that the resulting control protocol works when imple-
mented on the true plant. On the other hand, increasing
modeling uncertainty may increase the conservatism of the
procedure. (b) The representation of uncertainties—coupled
with that of the plant itself—will determine the technique
which can be used for synthesis and its computational com-
plexity. In general, synthesis of robust control protocols re-
quires a computational cost higher than that for nominal
control protocols and may even become intractable.

3.1 Robust synthesis problem
With the issues discussed earlier in this section, we now

introduce the uncertainty model used in this paper. In the
following, unless noted otherwise, we consider open tran-
sition systems and drop the adjective “open” for brevity.
Consider an action-deterministic and non-blocking nominal
transition system TS = (Q, I,Auc,Ac, Rnom) and the set of
transitions

∆ := {(q, e, u, q�) ∈ (Q×Auc ×Ac ×Q)\Rnom :

∃q�� ∈ Q s.t. (q, e, u, q��) ∈ Rnom} .

The set ∆, for each nominal transition (q, e, u, q�) under the
uncontrolled action e and controlled action u, includes all
the possible transitions that can be taken from the state q

excluding those already in Rnom.

Definition 3. Let an action-deterministic and non-blocking
nominal transition system TS = (Q, I, Auc,Ac, Rnom) and
a subset ∆ of ∆, associated with TS as defined above, be
given. Then, an uncertain transition system (TS,∆) is de-
fined as

(TS,∆) := (Q, I,Auc,Ac, Rnom ∪∆).

An execution of (TS,∆) is a sequence

(q0, e0, u0), (q1, e1, u1), (q2, e2, u2), . . .

such that q0 ∈ I and (qi, ei, ui, qi+1) ∈ Rnom ∪ ∆ for all
i ≥ 0.

Then, the robust synthesis problem is as follows.

Robust Synthesis Problem: Given a nominal transition
system TS, a set ∆ ⊆ ∆ of possible unmodeled transitions,
and a temporal logic formula ϕ, compute a strategy f of the
form ui = f(q0, e0, u0, · · · , qi−1, ei−1, ui−1, qi, ei) such that
any controlled execution of the uncertain transition system
(TS,∆) satisfies ϕ. If such a strategy exists, we call the tuple
((TS,∆),ϕ) to be robustly synthesizable.

∆ ✛

TS
✲

f ✛

✲
✲✲e |= ϕe s |= ϕs

s = (q, e, u)u

(q, e, u, q�)q
��

Figure 3: The interconnection of nominal plant

model TS, the perturbations due to the unmodeled

transitions in ∆, and the strategy f .

The resulting system structure is shown in Figure 3. The
transition (q, e, u, q�) to be taken by the system under the
controlled action u and the uncontrolled, environment action
e may be perturbed to a transition (q, e, u, q��) ∈ ∆ (but not
in Rnom). The robust strategy f picks the control action u so
that the system interconnection between the nominal tran-
sition system TS perturbed by the possible unmodeled tran-
sitions, and the strategy satisfies an assumption-guarantee
type specification ϕe → ϕs. In each step of the controlled
execution of the uncertain transition system, an uncontrol-
lable action is followed by a controlled action which, in turn,
is followed by an “action” by ∆.

Remark 1. In this section and throughout the paper, the
“action”due to the unmodeled transitions in ∆ is not explic-
itly notated and it is implicitly accounted for as nondeter-
minism in the state space. On the other hand, if this action
is denoted by δ, then each transition (q, e, u, q�) ∈ Rnom ∪∆

can be considered as (e, q)
u−→ q

�� δ−→ q
� for some q

�� ∈ Q.

As such the system in Figure 3 can be considered as a combi-
nation of the so-called Mealy ((e, q)

u−→ q
�� part) and Moore

(q��
δ−→ q

� part) machines [6].

3.2 Assessing the level of robustness
In order to reason about the effects of different sets of un-

modeled transitions, we consider a finite family C of subsets
of ∆ and partial orders over C that formalize a notion for
comparing the sets in C.

Definition 4. Let P be a set. A partial order on P is a
binary relation≤ on P such that, for all x, y, z ∈ P, (i) x ≤ x,
(ii) x ≤ y and y ≤ x imply x = y, and (ii) x ≤ y and y ≤ z

imply x ≤ z. A set P equipped with a partial order relation
≤ is said to be a partially ordered set. We sometimes use
the shorthand notation (P,≤) to denote that the set P is
partially ordered with respect to the order relation ≤ .

Now, assume that the partially ordered set (C,≤) is equipped
with a rank function r : C → N such that (a) r(x) < r(y)
whenever x < y, and (b) r(y) = r(x) + 1 whenever y > x

is an immediate neighbor of x. For α ∈ N, let Cα := {∆ ∈
C : r(∆) = α}.

A partial order on C may represent a qualitative preference
over the sets of unmodeled transitions in C. For example, in
a robot motion planning problem, a designer may consider
uncertainties in translation to be more critical than those
in rotation and prefer those strategies that are robust to
uncertainties in translation. Another natural choice as a
partial order ≤ is defined through set inclusion ⊆, that is,
for ∆1,∆2 ∈ C, ∆1 ≤ ∆2 if and only if ∆1 ⊆ ∆2. Partial
orders induced by set inclusion will be of particular interest
in the subsequent sections.

The representation of ∆ is explicitly parametrized in the
state q and the actions e and u for simplicity. Under certain
conditions, more compact representations of uncertainty may
be available. Uncertain transitions may only depend on the
controlled actions. For example, in a robot motion planning
scenario, they may depend on which one of the translation
and rotation motion primitives are applied rather than at
what particular state they are applied. Furthermore, a par-
tial order may be induced by a metric on the state space Q

in cases where a notion of “closeness” in Q exists.

Example 3. Consider the example introduced in section 2
and the family C composed of the following sets of unmod-
eled transitions.

∆0 = {}, ∆1 = {(q1, a, q1)}, ∆2 = {(q1, b, q2)},
∆3 = {(q1, a, q1), (q1, b, q2)},
∆4 = {(q1, a, q1), (q2, a, q1)}, and
∆5 = {(q2, a, q1), (q1, a, q1), (q1, b, q2)}.

A partial order ≤ on C = {∆0,∆1, . . . ,∆5} induced by set
inclusion is depicted in Figure 4. For example, ∆3 ≥ ∆2

because ∆2 ⊆ ∆3. On the other hand, ∆3 and ∆4 cannot
be distinguished by ≤ .

Given a nominal plant model TS, a temporal logic specifi-
cation ϕ, and a partially ordered set (C,≤), define the maps
h : C → {0, 1} and h∀ : N → {0, 1} as

h(∆) :=

�
1, if ((TS,∆),ϕ) is robustly synthesizable,
0, otherwise;

∆1

∆0

∆2

∆3 ∆4

∆5

Figure 4: Graphical representation of (C,≤) in Ex-

ample 3.

h∀(α) :=

�
1, if h(∆) = 1 for all ∆ ∈ Cα,

0, otherwise

and consider the following optimization, which aims to assess
the level (induced by the partial order (C,≤)) of robustness.

maximize α subject to h∀(α) = 1 (1)

over α ∈ N. The problem in (1) computes the maximum
α
∗ such that ((TS,∆),ϕ) is robustly synthesizable for all

∆ with r(∆) = α
∗. This problem is relevant when the sys-

tem operates under different modes associated with different
types of uncertainties of varying levels and correct opera-
tion is desired in all these modes. Consider now a different
scenario where the sets in C correspond to the unmodeled
transitions in different modes of the system among which a
selection is possible. For example, such modes may be due
to the availability of a collection of different sensing or ac-
tuation equipment. In this case, the following optimization
searches for a maximal uncertainty set ∆—and its rank in
the partial order—for which (TS,∆),ϕ) is robustly synthe-
sizable.

maximize α subject to h∃(α) = 1 (2)

over α ∈ N. The problem in (2) computes the maximum rank
α
∗ in the partial order such that ((TS,∆),ϕ) is robustly

synthesizable for at least one ∆ with r(∆) = α
∗.

Both problems (1) and (2) are optimizations over discrete
sets and, as such, may require to check the robust synthe-
sizability of ((TS,∆),ϕ) for all ∆ ∈ C. Under certain condi-
tions on the partial order, systematic search (which is faster
than exhaustive search over C) may be possible. We discuss
one such case, where the partial order is induced from set
inclusion, in section 4.3.

4. ROBUST DISCRETE SYNTHESIS
We now present the main results of the paper: reformu-

lation of the robust synthesis problem as a temporal logic
game, a polynomial complexity solution procedure for a frag-
ment of LTL specifications, and methods for assessing the
level of robustness as characterized by the optimizations in
(1) and (2).

4.1 Game reformulation
One approach to the problem of synthesizing a control

strategy for an open system is recasting the problem as an
infinite horizon game (also known as infinite games [8, 15]).
We first introduce the elements of such games and then apply
to the robust synthesis problem.

In particular, we consider two-player turn-based games
where, at each turn, a move by player 1 is followed by a
move by player 2. Roughly speaking, we treat player 1 as an

adversarial environment that tries to falsify the specification
and player 2 as the system that tries to satisfy it. Formally,
a game is defined as follows.

Definition 5. [4] A game structure is a tuple

G = �V,X ,Y, θe, θs, ρe, ρs,φ�,

where

• V is a finite set of state variables,

• X ⊆ V is a set of input variables, i.e., variables con-
trolled by player 1,

• Y = V \ X is the set of output variables, i.e., variables
controlled by player 2,

• θe is an atomic proposition over X characterizing ini-
tial states of the input variables,

• θs is an atomic proposition over Y characterizing initial
states of the output variables,

• ρe(V,X �) is the transition relation for player 1, which is
an atomic proposition that relates a state and possible
next input values (primed variables represent the value
of a variable in the next step),

• ρs(V,X �
,Y �) is the transition relation for player 2,

which is an atomic proposition that relates a state and
an input value to possible output values,

• φ is the winning condition given by an LTL formula
over V.

Valuations of the variables are denoted by lower case let-
ters (e.g., v ∈ dom(V) for V ∈ V); and the valuations of
the state variables V are called states. A play (i.e., a se-
quence of states) is said to be winning for player 2 if (i)
either at a given state v in the sequence there is no x

� ∈ X
such that (v, x�) satisfies ρe or (ii) the sequence is infinite
and it satisfies φ. A strategy for player 2 is a partial func-
tion f : (v0, v1, . . . , vk−1, xk) �→ yk which chooses a move
of player 2 among its allowable moves based on the state
sequence so far and the last move of player 1. Strategy f

is said to be winning for player 2, if all plays starting from
the initial states characterized by θe and θs, and compliant
with f are winning. For LTL specifications, if there exists a
winning strategy for player 2, it is known that there always
exists a finite memory winning strategy [8].

Next, we discuss how synthesis problems and finding a
winning strategy in a game are related. Consider an open
nominal transition system TS = (Q, I,Auc,Ac, Rnom) and
an LTL specification ϕ. Define the game structure Go(TS)
with the following elements:

X = Q×Auc,

Y = Ac,

θe = {(q, e) : q ∈ I and ∃u, q� s.t. (q, e, u, q�) ∈ Rnom},
θs = {(q, e, u) : q ∈ I and ∃q� s.t. (q, e, u, q�) ∈ Rnom},
ρe = {(q, e, u, q�, e�) : (q, e, u, q�) ∈ Rnom and

∃u�
, q

�� s.t. (q�, e�, u�
, q

��) ∈ Rnom},
ρs = {(q, e, u, q�, e�, u�) : (q, e, u, q�) ∈ Rnom and

∃q�� s.t. (q�, e�, u�
, q

��) ∈ Rnom},
φ = ϕ,

where, by slight abuse of notation, θα, ρα for α = {e, s} are
given as sets but they should be understood as the indicator
functions of the corresponding sets. Given an uncertainty

set ∆, the game structure Go((TS,∆)) is defined similarly
by replacing Rnom with Rnom ∪∆ in the above formulation
associating the elements of the game structure with those of
the transition system.

Proposition 1. ((TS,∆),ϕ) is robustly synthesizable if and
only if there exists a winning strategy for player 2 in game
Go((TS,∆)).

Note that, by construction, there is a one-to-one corre-
spondence between the plays of the game Go((TS,∆)) and
the executions of the transition system (TS,∆). Since we
assume that TS is non-blocking, so is (TS,∆). Hence all ex-
ecutions of (TS,∆) and all plays of the game will be infinite
sequences which implies a play winning for player 2 should
satisfy φ (equivalently, ϕ). Therefore, Proposition 1 follows
from the definitions of winning strategies for the games and
synthesizability of control strategies for transition systems.

The relation between the game structures and synthe-
sis problems is quite generally applicable (see [4] for more
details). For example, the nominal synthesis problem for
an open transition system can be solved through Go(TS).
Furthermore, for a nominal closed transition system TS =
(Q, I,A, Rnom), a robust control strategy can be computed
through a slight modification, namely by redefining

X = Q, Y = Ac, φ = ϕ, θe = I,

θs = {(q, u) : q ∈ I and ∃q� s.t. (q, u, q�) ∈ Rnom ∪∆},
ρe = {(q, u, q�) : (q, u, q�) ∈ Rnom ∪∆ and

∃u�
, q

�� s.t. (q�, u�
, q

��) ∈ Rnom ∪∆},
ρs = {(q, u, q�, u�) : (q, u, q�) ∈ Rnom ∪∆ and

∃q�� s.t. (q�, u�
, q

��) ∈ Rnom ∪∆}.

In summary, the two-player temporal logic game formula-
tion provides a flexible framework to solve the (robust and
nominal) synthesis questions discussed in this paper.

Remark 2. The nominal synthesis problem for a closed
transition system fits the temporal logic game framework.
On the other hand, this problem can also be recast (and can
be more efficiently solved) as a model checking question.

4.2 Polynomial-complexity solutions
Solving the two-player game discussed in section 4.1, i.e.,

checking which one of the system and environment wins and,
if the system can win, extracting a control strategy, is known
to have 2EXPTIME complexity for general LTL specifica-
tions ϕ [18]. On the other hand, recent advances mostly
exploiting the observation, that “typical” specifications in
practice have a structure that can be algorithmically ex-
ploited [7], have focused on relatively expressive fragments
of LTL. For example, if the winning condition is one of the
LTL formulas �p, �q, ��p, or ��q, where p and q are
atomic propositions, then the computational cost of solving
the corresponding game is quadratic in the number possible
valuations of the pairs (x, y) ∈ X × Y.

A quite more expressive winning condition for which there
are polynomial complexity algorithms is the so-called gener-
alized reactivity [1] (GR[1]) specifications, i.e., formulas of
the form [4]

ϕe → ϕs,

where for β ∈ {e, s},

ϕβ =
�

i∈Iβ

�σ
β
i ∧

�

j∈Jβ

��π
β
j

with the finite set of indices Ie, Je, Is, and Js and propo-
sitional logic formulas σ

e
i , π

e
j , σ

s
i , and σ

s
j . Here, σe

i and π
e
j

describe the safety and liveness assumptions on the envi-
ronment. Similarly,σs

i and σ
s
j describe the safety and live-

ness guarantees on the system behavior, respectively. The
computational cost of solving GR[1] games is O(N3|Je||Js|)
where | · | indicates the cardinality of the respective sets and
N is the number of possible valuations of the pair (x, y) ∈
X×Y.Moreover, there exists computational tools that lever-
age this polynomial complexity bound, e.g., the digital de-
sign synthesis tool in the JTLV framework [19]. This tool has
been used for applications including correct-by-construction
synthesis of control protocols for autonomous navigation [21]
and design of bus arbiter [10].

We now establish that robustification of the synthesis prob-
lem as discussed in the previous sections preserves the GR[1]
property, i.e., if the nominal problem can be solved as a
GR[1] game, then the robust synthesis problem can be solved
as a GR[1] game as well. To this end, for a nominal transi-
tion system TS = (Q, I,Auc,Ac, Rnom) and an uncertainty
set ∆, define

B
∆
(q,e,u) := {q� ∈ Q : (q, e, u, q�) ∈ Rnom ∪∆}.

Proposition 2. Let ϕ be a GR[1] specification. Then, the
robust synthesizability of ((TS,∆),ϕ) can be solved as a
GR[1] game.

Proof: Observe that the winning condition for the robust
synthesis problem can be written as

�

(q̃,ẽ,ũ)

�
�
(q = q̃ ∧ e = ẽ ∧ u = ũ) → (q� ∈ B

∆
(q̃,ẽ,ũ))

�

 → ϕ.

(3)
If ϕ is a GR[1] formula, then that in (3) is also a GR[1]
formula and the result follows. �

By Proposition 2 and the definition of the two-player game
in section 4.1, the worst-case computational complexity of
the robustified GR[1] synthesis problem is cubic in the num-
ber of possible valuations of (x, y) ∈ X × Y; hence, its com-
plexity class is the same as the nominal synthesis problem.
Note that the numbers |Je| and |Js| are not affected by ro-
bustification.

4.3 Algorithms for assessing the level of ro-
bustness

We now revisit the optimization problems formulated in
section 3.2. We discuss procedures for computing upper and
lower bound on their optimal values and for systematic re-
duction of the gap between these bounds.

Note that both problems, in general, involve search over a
finite, discrete C. As such they can be solved with a worst-
case computational cost that is linear in the cardinality of
C, i.e., evaluate h(∆) for each ∆ ∈ C. Yet, each evaluation
of h requires solving a robust synthesis problem and is com-
putational demanding. Hence, it is desirable to limit the
number of evaluations of h. To this end, we now discuss
a bisection-type procedure for partially ordered sets (C,≤)
which satisfies the following monotonicity condition.

Monotonicity condition: For each ∆1,∆2 ∈ C such that
∆1 ≥ ∆2, it holds that h(∆1) ≤ h(∆2).

That is, for given nominal transition system TS and specifi-
cation ϕ, if ((TS,∆1),ϕ) is robustly synthesizable for some

∆1 ∈ C (i.e., h(∆1) = 1), the ((TS,∆2),ϕ) is robustly syn-
thesizable for every ∆2 ∈ C such that ∆2 ≤ ∆1.

Proposition 3. Let C be a finite family of subsets of ∆ and
let ≤ be a partial order induced from set inclusion. Then,
(C,≤) satisfies the monotonicity condition.

Proof: Let ∆1,∆2 ∈ C be such that ∆1 ≥ ∆2. If h(∆1) =
0, the result follow trivially. Consider that h(∆) = 1, i.e.,
((TS,∆1),ϕ) is robustly synthesizable, and f be a control
strategy for ((TS,∆1),ϕ). Let (q0, e0) be the initial values
of (q, e) in an execution of (TS,∆2). Pick u0 = f(q0, e0)
and observe q1 ∈ Q. It is guaranteed that (q0, e0, u0, q1) ∈
Rnom ∪ ∆2 ⊆ Rnom ∪ ∆1. Recursively applying the same
reasoning we can show that (qk, ek, uk, qk+1) ∈ Rnom∪∆2 ⊆
Rnom ∪∆1 . Hence, every controlled execution of (TS,∆2)
is also a controlled execution of (TS,∆1). Consequently,
((TS,∆2),ϕ) is robustly synthesizable and h(∆2) = 1. �
Note that, in the proof of Proposition 3 robust synthe-

sizability of ((TS,∆1),ϕ) does not only imply robust syn-
thesizability of ((TS,∆2),ϕ) but also the control strategy of
the former is a control strategy for the other.
For partially ordered set (C,≤) that satisfies the mono-

tonicity condition, the bisection-type algorithm in Figure
5 can be used to compute upper and lower bounds on the
optimal value of the optimization in (1). In Figure 5 and
hereafter, for a real number a, �a� denotes the largest inte-
ger smaller than or equal to a. A number of remarks about
this algorithm is in order. First, it exploits the monotonicity
condition: If h∀(α̃) is evaluated to be 1 for some α̃, then it
must be equal to 1 for all α ≤ α̃ and, therefore, the sets
in C with r(∆) < α̃ can be disregarded in the search for a
solution for the optimization in (1) and α̃ is a lower bound.
Similarly, if h∀(α̃) = 0 for some α̃, then h∀(∆) = 0 for all
α ≤ α̃ and, therefore, the sets in C with r(∆) > α̃ can be
disregarded and α̃ is an upper bound on the optimal value.
Second, assuming that the empty set is in C and (TS,ϕ)
is nominally synthesizable, the algorithm maintains a lower
bound bl and an upper bound bu at each iteration. Hence, at
any iteration the algorithm is terminated, it returns a value
of α = bl such that ((TS,∆),ϕ) is robustly synthesizable
for all ∆ ∈ Cα and a measure of suboptimality, i.e., bu − bl.

This measure of suboptimality is reduced, roughly, by half,
in each iteration.

Given: nominal transition system TS, partially ordered set
(C,≤), upper and lower bounds bl and bu with bl < bu, tol-
erance TOL, and maximum number Nmax ≥ 1 of iterations.
Output: Upper and lower bounds bl and bu such that bu −
bl < TOL or their values at iteration Nmax.

1. N ← 1
2. while N ≤ Nmax

3. while bu − bl ≥ TOL

4. α ← �(bl + bu)/2�
5. if h∀(α) = 1 then bl ← α

6. else bu ← α

7. N ← N + 1

Figure 5: Bisection-type algorithm for the optimiza-

tion in (1).

The algorithm in Figure 5 can be adapted for the opti-
mization in (2) by replacing h∀ in line 5 to h∃. The main

difference between the two algorithms is the potential num-
ber of evaluations of h in line 5. Each evaluation of h∀(α)
to 1 requires solving as many robust synthesis problems as
the cardinality of Cα whereas it is enough to find a single
∆ ∈ Cα to conclude that h∀(α) = 0. On the other hand,
finding a single ∆ ∈ Cα to conclude that h∃(α) = 0.

Remark 3. Note that while running the algorithm in Fig-
ure 5, the monotonicity condition provides a means to prune
the search space which, in turn, potentially reduces the num-
ber of synthesizability checks required during the search.
However, the worst-case complexity in general remains the
same.

The problems in (1) and (2) provide means for quantifying
the level of robust synthesizability of (TS,ϕ) with respect
to the unmodeled transitions captured by (C,≤). Another
way of such quantification would be determining a“maximal
uncertainty set” ∆ ∈ C such that ((TS,∆),ϕ) is robustly
synthesizable. We now formalize this notion and discuss,
through an example, why it may not be a suitable way of
quantification in general.

Definition 6. Given a nominal transition system TS, an
LTL specification ϕ, and a partially ordered set (C,≤) of un-
modeled transitions where ≤ is induced from set inclusion, a
maximal uncertainty set∆max is one such that ((TS,∆max),ϕ)
is robustly synthesizable and (TS,∆),ϕ) is not robustly syn-
thesizable for any ∆ ≥ ∆max.

Fact: Maximal uncertainty set ∆max (as defined in Defi-
nition 6) may not be unique in general.

Indeed, consider the setup in Example 2. Note that both
((TS, {δ1}),ϕ) and ((TS, {δ2}),ϕ) robustly synthesizable.
On the other hand, it can be shown that ((TS, {δ1, δ2}),ϕ)
is not robustly synthesizable. Let now ∆̃ ∈ C be such that
∆̃ ≥ {δ1}, ∆̃ ≥ {δ2}, and ((TS, ∆̃,ϕ) is robustly synthe-
sizable. Then, the fact that ∆̃ ≥ {δ1, δ2} leads to a con-
tradiction by Proposition 3. Therefore, such a set ∆̃ can-
not exist and {δ1} and {δ2} are either maximal uncertainty
sets or contained in two different maximal uncertainty sets.
Note that the counterexample, which demonstrated the non-
uniqueness of maximal uncertainty sets, discussed here is a
safety formula and that it is possible to construct counterex-
amples that include liveness formulas.

Finally, note that the maximal uncertainty set ∆—among
all the maximal uncertainty sets—with the highest rank
solves the optimization in (2).

5. EXAMPLE
We demonstrate the robust discrete synthesis framework

presented in the previous sections on a simple robot motion
planning scenario. Consider a mobile robot in a 2D plane.

Nominal transition system: We start with a nominal tran-
sition system TS with three different controlled actions,
Ac = {L,R, S}, which correspond to turn_left, turn_right,
and go_straight, respectively. Let q = (x, y, θ) be a tuple,
where x, y are the coordinates of the robot in an N×N grid
of cells and θ is the heading angle. The nominal transitions
of TS are given by the following equations.

• Action = L: x� = x, y� = y, θ� = θ + π
2 ,

• Action = R: x� = x, y� = y, θ� = θ − π
2 ,

• Action = S: x� = x+ cos(θ), y� = y + sin(θ), θ� = θ,

where q
� = (x�

, y
�
, θ

�) is the valuation of (x, y, θ) at the next
time step under a given transition. The transition system
TS can be obtained by an abstraction of the underlying dy-
namics of the mobile robot. In the nominal case, we require
that, following a turning action L or R, the robot completes
a corresponding 90-degree turn and remains in the same
cell, whereas the robot moves forward by 1 cell following an
S action. Note that θ only takes value in integer multiples
of π/2 modulo 2π, and (x, y) only nonnegative integers in
[0, N − 1]. We introduce an additional boolean state Out to
indicate when the location of the robot (x, y) goes out the
N ×N grid.

Specifications: Depicted in Figure 6, the desired properties
for the robot to satisfy are specified as follows:

(S1) Always remain inside of the N ×N region.

(S2) Visit each of the blue cells, labeled as P1, P2, and P3,
infinitely often.

(S3) Eventually go to the green cell P0 after a PARK signal
is received.

Here, the PARK signal is an environment variable that con-
strains the behavior of the robot. The following assumption
is made on the PARK signal.

(A1) Infinitely often, a PARK signal is not received.

We use the positive integer n to indicate the size of the target
sets Pi, i = 1, 2, 3, 4.

(n, n)

(N-n, N-n)

P0

P1

N0

(n, N-n)

P2

(N-n, n)

P3

N

Figure 6: The robot should visit P1, P2, and P3 in-

finitely often, and eventually go to P0 after receiving

a PARK signal.

Uncertain transition system: Furthermore, to demonstrate
our robust discrete synthesis framework, we introduce un-
modeled transitions following both the turning actions {L,R}
and the action {S}. These transitions are given by the fol-
lowing equations.

• Action = L:

x
�

y
�

θ
�

 =

x+ δx

√
2 cos(θ + π/4)

y + δy

√
2 sin(θ + π/4)
θ + π

2

 , δx, δy ∈ [0, δ1].

• Action = R:

x
�

y
�

θ
�

 =

x+ δx

√
2 cos(θ − π/4)

y + δy

√
2 sin(θ − π/4)
θ − π

2

 , δx, δy ∈ [0, δ1].

• Action = S:

x
�

y
�

θ
�

 =

x+ (δx + 1) cos(θ)
y + (δy + 1) sin(θ)

θ

 , δx, δy ∈ [0, δ2].

Here, δ1 and δ2 are nonnegative integers used to indicate
different levels of uncertainties, and hence demonstrate dif-
ferent levels of robustness of a control strategy. The nomi-
nal transitions are given by letting δ1 = δ2 = 0. Note that,
again, θ only takes value in integer multiples of π/2, and
(x, y) only nonnegative integers. We keep the same addi-
tional state Out to indicate when the location of the robot
(x, y) goes out the N ×N grid.

Assessing the level of robustness: Different values of δ1

and δ2 introduce different number of uncertain transitions,
which can be used to demonstrate different levels of robust-
ness of a control strategy. Let Rnom denote the set of nom-
inal transitions. Define ∆i,j to be the set of uncertain tran-
sitions introduced by choosing δ1 = i and δ2 = j, where
0 ≤ i, j ≤ 10, excluding the nominal transitions Rnom. Let
C = {∆i,j : 0 ≤ i, j ≤ 10} ⊂ ∆. We choose the partial order
to be the one induced by set inclusion and define a natural
rank function r : C → N to be r(∆i,j) = i+ j. Figure 7 gives
a graphical representation of (C,≤) and the rank function r,
which shows a few sets of uncertainties at different levels.

δ1δ2

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

�10,10

�0,0

r=5�5,0

�2,0 r=2
r=1�0,1 �1,0

bu=10

bl=0

Figure 7: Graphical representation of (C,≤). The

∆ij’s show the the uncertainty sets checked in a

bisection-type algorithm to solve the optimization

problem (1) with n = 5. The dashed lines show rel-

evant levels of robustness assessed. The maximal

uncertainty sets are connected by thick blue lines,

which bound the region of robust synthesizability

for n = 5.

Results: Following the results in Section 4, the robust
synthesis problem can be reformulated as a temporal logic
game with GR[1] specifications. We then apply the Tempo-
ral Logic Planning (TuLiP) Toolbox, a Python-based code

suite for automatic synthesis of correct-by-construction em-
bedded control software [23] to solve such games. TuLiP
provides an interface to the JTLV framework.

For illustration, we choose n = 5 and consider the op-
timization problem given by (1). We use a bisection-type
algorithm as introduced in Section 4.3 to solve the prob-
lem. Starting with bl = 0 and bu = 10, we check whether
h∀(α) = 1 for α = �(bl + bu)/2� = 5. It is found that
(TS,∆5,0) is not synthesizable. Therefore, h∀(5) = 0. We
update bu = 5. Next, we check if h∀(α) = 1 holds for α = 2.
It is found that (TS,∆2,0) is not synthesizable. We update
bu = 2. We then check if h∀(1) = 1 holds for α = 1. It is
found that both (TS,∆1,0) and (TS,∆0,1) are synthesizable.
Therefore, h∀(1) = 1. The optimal solution for (1) is α∗ = 1.
A similar bisection-type algorithm can be applied to solve
the problem (2). In this case, α∗ = 4, with both (TS,∆1,3)
both (TS,∆0,4) synthesizable. The procedure is illustrated
in Figure 7. Moreover, by using a depth-first search on the
graph representing the partial order on C, we can plot all the
maximal uncertainty sets for n = 5 (not unique as discussed
earlier in Section 4.3) as shown in Figure 7.

Note that the solution for the optimization problem (1)
is given by the maximum level α such that the level set Cα

is totally contained in the region of robust synthesizabil-
ity, whereas the solution for the optimization problem (2) is
given by the maximum level α such that the level set Cα has
nonempty intersection with this region.

δ1

δ2

1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

n=1

n=3
n=2

n=5
n=10

n=4

Figure 8: Robustness-performance tradeoff: the col-

ored thick lines mark the exact regions of robust

synthesizability for different n. As n increases (i.e.,

performance degrades), the region of robust synthe-

sizability grows.

Robustness-performance tradeoff: By plotting the maxi-
mal uncertainty sets for different n, we can show certain
tradeoffs between robustness and performance. As men-
tioned earlier, the size of the target sets can be seen as a
performance indicator of the control strategy. With n = 1,
only the nominal system is synthesizable. For r changing
from 2 to 5, control strategies with increasing levels of ro-

bustness with respect to uncertainties can be synthesized.
When n = 10, the specification reduces to a pure safety
constraint (S1). It is shown that for δ1 ≤ 2, there exists
a control strategy which only uses the turning actions to
achieve safety. For δ1 = 3, such strategies no longer exist.
A control strategy relying the action S can be found if the
action S is deterministic. The results are depicted in Fig-
ure 8. As n increases (i.e., performance degrades), the exact
region of robust synthesizability as bounded by the maxi-
mal uncertainty sets grows, which clearly shows a tradeoff
between robustness and performance.

6. CRITIQUE
We now discuss some of the limitations and potential ex-

tensions of the preliminary results on robustness of discrete
control protocols presented in this paper.

Uncertainty representation: The uncertainty representa-
tion as captured by the set ∆ explicitly enumerates unmod-
eled transitions from each state for every controlled and un-
controlled action possible at that state. As mentioned before
and used in the presentation of the example in section 5, un-
modeled transitions can be represented more compactly. For
example, they may only depend on the controlled actions in
the case where the controlled actions are chosen from a fi-
nite family control/motion primitives. Moreover, if there
exists a metric-type function defined over the state space
Q, it may be possible to compactly characterize uncertainty
sets as sublevel sets of these functions. More specifically,
consider the set B(q,e,u) defined in the proof of Proposition
2 and let d : Q×Q → R be a metric. Then, a compact rep-
resentation of B∆

(q,e,u) as defined in section 4.2 may be of the
form {q� : d(d, q�) ≤ γ} for some γ ≥ 0. Reference [13] uses
a metric-based representation of uncertainty. However, the
question in [13] is one of sensitivity rather than robustness
and no constructive procedure for the synthesis of reactive
control protocols was presented.

We emphasize that it is not straightforward to exploit this
compactness in representation toward computational com-
plexity reduction in synthesis. For example, the augmented
GR[1] specification in (3) is based on explicit listing of all un-
modeled transitions. Therefore, uncertainty models that can
be exploited in the symbolic manipulations and fixed point
iterations [16] of the underlying game solver are needed.

Other uncertainty models: The uncertainty model used
here captures the transitions not modeled in the nominal
system. These uncertainties, for example, may be due to in-
accuracies in actuation. An enabling factor that has been ex-
ploited in the paper is that even though these uncertainties
introduce uncontrolled actions, the impact of these actions
can be sensed after the action is taken and before the next
environment observation is made. Further work is needed in
order to relax this assumption and also to account for the
effects of sensing inaccuracies on the synthesis of discrete
control protocols.

Game formulation of robust synthesis: We modeled ef-
fects of unmodeled transitions as a new uncontrolled input
(in addition to environment in the case of open transition
systems) that acts after the environment is observed and
controlled action is taken. This modeling choice enabled us
to straightforwardly extend the two-player game approach
in a way that the two types of uncontrolled actions, the en-
vironment and the unmodeled transitions, are treated iden-

tically. A deeper understanding of the differences between
the two types of uncontrolled actions and exploitation to-
ward reductions in computation complexity are needed.

Other robustness questions: We investigated the robust-
ness of the reactive control protocols to the uncertainties
to unmodeled transitions. Investigation of the robustness
properties to other types of inaccuracies is subject to cur-
rent research. For example, the resulting control protocol
is guaranteed to be correct with respect to the specifica-
tion ϕe → ϕs as long as the environment does not violate
ϕe. Otherwise, no guarantees can be established (because
ϕe → ϕs holds trivially). Design of controllers that not
only react to the modeled behaviors of the environment but
also tolerate those that violate the assumptions is desirable.
More specifically, If ϕe → ϕs is realizable, what is the“least-
restrictive” assumption ϕ

�
e such that ϕ

�
e → ϕs is realizable

and ϕe → ϕ
�
e holds?

Assessing the level of robustness: We introduced graded
partial orders over the family of uncertainty sets as a means
to capture the level of robustness a system possesses and
also to encode the preference/intent of the designer. In par-
ticular, partial orders for which a monotonicity condition
holds, we proposed a systematic search for the solutions of
the problems in (1) and (2). Effects of different choices of
partial orders on the search process and optimal solutions
of (1) and (2) are of particular interest. Moreover, often the
discrete control protocols are utilized in higher level of hier-
archical control structures where the lower levels correspond
to continuous evolution controlled by continuous controllers.
Therefore, it may be possible to induce metrics from the un-
derlying continuous state space.

In robust control theory, there are quantifiable notions to
establish robustness and performance tradeoffs. The exam-
ple in section 5 demonstrates a similar tradeoff in the con-
text of discrete control protocols where the performance is
interpreted as the level of “relaxation” in the liveness part of
the specification (until practically reducing to a safety prop-
erty). Further work is needed for systematically establishing
robustness and performance tradeoff in this context.

7. CONCLUSIONS
We studied the robustness of reactive control protocols

synthesized to guarantee system’s correctness with respect
to given temporal logic specifications. Specifically, we in-
vestigated the effects of unmodeled transitions on (open)
finite transition systems.We formulated the robust synthe-
sis problem as a temporal logic game and showed that ro-
bustification preserves attracting worst-case computational
complexity bounds for a fragment of linear temporal logic
specifications. Finally, we discussed preliminary results on
the assessment of the effects of different levels of uncertain-
ties on robust synthesizability.

8. REFERENCES
[1] R. Alur and S. La Torre. Deterministic generators and

games for LTL fragments. ACM Trans. Comput. Logic,
5(1):1–25, 2004.

[2] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins,
and G. J. Pappas. Symbolic planning and control of robot
motion: State of the art and grand challenges. Robotics and

Automation Magazine, 14(1):61–70, 2007.
[3] R. Bloem, K. Greimel, T. A. Henzinger, and B. Jobstmann.

Synthesizing robust systems. In Formal Methods in

Computer Aided Design, 2009.
[4] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and

Y. Saar. Synthesis of reactive (1) designs. Journal of
Computer and System Sciences, to appear, 2011.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Checking. The MIT Press, 1999.
[6] D. I. A. Cohen. Introduction to Computer Theory. Wiley,

1997.
[7] R. Ehlers. Experimental aspects of synthesis. In Proc. of

Workshop on Interactions, Games and Protocols, 2011.
Available at http://arxiv.org/pdf/1102.4117.

[8] E. Grädel, W. Thomas, and T. Wilke, editors. Automata,

Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

[9] T. A. Henzinger. Two challenges in embedded systems
design: predictability and robustness. Philosophical
Transactions of the Royal Society - Series A:

Mathematical, Physical and Engineering Sciences,
366(1881):3727–3736, 2008.

[10] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem.
Anzu: A Tool for Property Synthesis. In Computer Aided

Verification, pages 258–262, 2007.
[11] M. Kloetzer and C. Belta. A fully automated framework for

control of linear systems from temporal logic specifications.
IEEE Transaction on Automatic Control, 53(1):287–297,
2008.

[12] H. Kress-Gazit, T. Wongpironsarn, and U. Topcu. Correct,
reactive robot control from abstraction and temporal logic
specifications. Robotics and Automation Magazine,
18(3):65–74, 2011.

[13] R. Majumdar, E. Render, and P. Tabuada. Robust discrete
synthesis against unspecified disturbances. In Proc. Hybrid

Systems: Computation and Control, pages 211–220, 2011.
[14] Z. Manna and A. Pnueli. The temporal logic of reactive and

concurrent systems. Springer-Verlag, 1992.
[15] D. Perrin and J.-E. Pin. Infinite Words: Automata,

Semigroups, Logic and Games, volume 141 of Pure and

Applied Mathematics. Elsevier, 2004.
[16] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of

reactive(1) designs. In Verification, Model Checking and

Abstract Interpretation, volume 3855 of Lecture Notes in

Computer Science, pages 364 – 380. Springer-Verlag, 2006.
[17] A. Pnueli. The temporal logic of programs. In Proc. of the

18th Annual Symposium on the Foundations of Computer

Science, pages 46–57. IEEE, 1977.
[18] A. Pnueli and R. Rosner. On the Synthesis of an

Asynchronous Reactive Module. In Proc. of Colloquium on

Automata, Languages and Programming, pages 652–671.
Springer-Verlag, 1989.

[19] A. Pnueli, Y. Sa’ar, and L. Zuck. JTLV: A framework for
developing verification algorithms. In Proc. of Conference

on Computer Aided Verification, volume 6174, pages
171–174, 2010.

[20] D. C. Tarraf, A. Megretski, and M. A. Dahleh. A framework
for robust stability of systems over finite alphabets. IEEE
Transactions on Automatic Control, 53:1133–1146, 2008.

[21] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding
horizon control for temporal logic specifications. In Proc. of

Conference on Hybrid Systems: Computation and Control,
2010.

[22] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Formal
synthesis of embedded control software for vehicle
management systems. In Proc. AIAA Infotech@Aerospace,
2011.

[23] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and
R. Murray. TuLiP: a software toolbox for receding horizon
temporal logic planning. In Proc. of Conference on Hybrid

Systems: Computation and Control, pages 313–314, 2011.

