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Abstract— We consider mobile robot navigation in dense
human crowds. In particular, we explore two questions. Can we
design a navigation algorithm that encourages humans to coop-
erate with a robot? Would such cooperation improve navigation
performance? We address the first question by developing a
probabilistic predictive model of cooperative collision avoidance
and goal-oriented behavior. Specifically, this model extends the
recently introduced interacting Gaussian processes approach to
the case of multiple goals and stochastic movement duration.
We answer the second question by empirically validating our
model in a natural environment (a university cafeteria), and
in the process, carry out the first extensive quantitative study
of robot navigation in dense human crowds (completing 488
runs). The “multiple goal” interacting Gaussian processes
algorithm performs comparably with human teleoperators in
crowd densities near 1 person/m2, while a state of the art
noncooperative planner exhibits unsafe behavior more than 3
times as often as our planner. Furthermore, a reactive planner
based on the “dynamic window” approach—widely used for
robotic tour guide experiments—fails for crowd densities above
0.55 people/m2. We conclude that a cooperation model is critical
for safe and efficient robot navigation in dense human crowds.

I. INTRODUCTION

One of the first major deployments of an autonomous robot
in an unscripted human environment occurred in the late
1990s at the Deutsches Museum in Bonn, Germany [1]. This
RHINO experiment was quickly followed by another robotic
tour guide experiment; the robot in the follow-on study,
named MINERVA [2], was exhibited at the Smithsonian and
at the National Museum of American History in Washington
D.C. These studies inspired a wide variety of research in the
broad area of robotic navigation in the presence of humans,
ranging from additional work with robotic tour guides ([3],
[4]), to field trials for interactive robots as social partners
([5], [6]).

Despite the many successes of the RHINO and MINERVA
work and the studies they inspired, fundamental questions
about navigation in dense crowds remain. In particular,
prevailing algorithms ([7], [8]) and opinion ([9]) on naviga-
tion in dynamic environments emphasize deterministic and
decoupled approaches. Critically, an experimental study of
robotic navigation in dense human crowds is unavailable.

In this paper, we focus on these two major deficiencies:
a dearth of human-robot cooperative navigation models and
the complete absence of a systematic study of robot nav-
igation in dense human crowds. We thus develop a novel
cooperative navigation methodology and conduct the first
extensive (nruns ⇡ 500) field trial of robot navigation in

1These authors are with the California Institute of Technology.
2This author is with NASA/JPL.
3This author is with ETH Zurich.

Fig. 1. Overhead still of the crowded university cafeteria testbed. The den-
sity of the crowd varies through the day, allowing for diverse experiments.

the natural human crowds1 of a university cafeteria (Figure
1). In these experiments, we quantify the degree to which
our cooperation model improves navigation performance. We
conclude that a cooperation model is required for safe and
efficient navigation in crowds.
A. Related Work

Naively modeling the uncertainty in dynamic environments
(e.g., with independent agent constant velocity Kalman fil-
ters) leads to an uncertainty explosion that makes safe and
efficient navigation impossible ([10]). Some research has
thus focused on controlling predictive uncertainty: in [11]
and [12], high fidelity independent human motion models
were developed, in the hope that reducing the uncertainty
would lead to improved navigation performance. Similarly,
[13] holds the individual agent predictive covariance constant
at a low value as a surrogate for near perfect prediction
(in the hope that as the robot gets close to the dynamic
agents, prediction and replanning will be good enough for
safe navigation to occur).

The work of [14] and [15] shares insight with the approach
of [13], although more sophisticated individual dynamic
models are developed: motion patterns are modeled as a
mixture of Gaussian processes with a Dirichlet process prior
over mixture weights. The Dirichlet process prior allows for
representation of an unknown number of motion patterns,
while the Gaussian process allows for variability within a
particular motion pattern. Rapidly exploring random trees
(RRTs) are used to find feasible paths. However, all the above

1We point out the critical importance of an experiment with unscripted
human subjects. Simulated humans do not capture the range of human
behavior and response. Scripting humans to follow a routine introduces
bias that is impossible to quantify.
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approaches ignore human-robot interaction. As was argued
in [10], unless the dependencies between agents is modeled,
navigation will fail in dense crowds.

Interaction between agents has also been addressed. In
[16] RRTs are combined with a potential field whose value
is based on theories of human proximity relationships (called
“proxemics”—see [17]). The authors of [18] take a similar
proxemic potential function based approach. In [19], the in-
teraction principles of [20] guide algorithm development. Al-
though these navigation algorithms model a type of human-
robot interaction—in particular, how robots should avoid
engaging humans—none model human-robot cooperation.
As we will validate in Section VI, models of cooperation
(a special type of human-robot interaction) are required for
safe and efficient navigation in dense crowds.

In [21], pedestrian decision making is first learned from
a large trajectory example database using inverse reinforce-
ment learning (IRL), and then the robot navigates such that
the human’s predicted path is minimally disrupted. In [22],
the authors extend IRL to work in dynamic environments,
and the planner is trained using simulated trajectories and
tested in simulation. The method successfully recovers the
behavior of the simulator.

In [23], a theory of learning interactions is developed
using game theory and the principle of maximum entropy;
only 2 agent simulations are tested. Similarly, the work of
[24] leverages IRL to learn an interaction model from human
trajectory data. This research pioneers IRL from human data
(and explicitly models cooperation), but the experiments are
limited in scale—one scripted human crosses paths with a
single robot in a laboratory environment.

II. BACKGROUND

We begin with a high level description of the interacting
Gaussian processes (IGP) approach to cooperative navigation
of [10] and provide details of the method in the subsections.
Sections III and IV explain how to extend IGP to include
multiple probabilistic goals with uncertain goal arrival times.

The IGP approach is motivated by the following: dy-
namic navigation algorithms typically assume agent mo-
tion to be independent of robot motion. As is shown in
[10], this independence assumption leads to highly sub-
optimal behavior in dense crowds; coupling agent action
and robot action via a joint trajectory probability density
p(f (R), f (1), f (2), . . . , f (nt) | z1:t) can dramatically improve
navigation performance. In this density, t is the present time,
f (i) is a random function representing agent i’s trajectory
in R2 from time 1 to T where T > t, i ranges over
(R, 1, . . . , n

t

), R is the robot superscript in f (R), n
t

is the
number of agents at time t, and z1:t are the measurements
of all the agents from time 1 to T . The coupling in IGP is
achieved with a multiplicative potential function that models
cooperative collision avoidance. On the one hand, IGP is a
forecast of the crowd’s evolution in time. On the other, the
density is interpretable as a navigation protocol: choose robot
actions according to the maximum a-posteriori (MAP) value.

This navigation interpretation is an instance of planning
reducing to inference, a concept formalized in [25].

However, for each agent, IGP assumes a single, deter-
ministic goal. Furthermore, the goal arrival time is assumed
known in advance. Although these assumptions are suitable
in simulation, real world agents (such as cafeteria patrons)
have multiple probabilistic goals as well as stochastic goal
arrival times. In Section III, we address the “single, determin-
istic goal with known arrival time” assumption with multiple
goal interacting Gaussian processes (mgIGP). Section IV
extends the planning and inference methods used for IGP in
[10] to the case of mgIGP.

A. Gaussian Processes for Single Goal Trajectory Modeling
IGP models each agent’s trajectory as a random function dis-
tributed as a Gaussian Process ([26]), f (i) ⇠ GP (f (i)

; 0, k).
New measurements z(i)

t

update the GP to p(f (i) | z(i)
1:t) =

GP (f (i)
;m(i)

t

, k(i)
t

), where

m(i)
t

(t0) = ⌃

T
1:t,t0(⌃1:t,1:t + �2I)�1z(i)

1:t,

k(i)
t

(t1, t2) = k(t1, t2) � ⌃

T
1:t,t1(⌃1:t,1:t + �2I)�1

⌃1:t,t2 .

Hereby, ⌃1:t,t0 = [k(1, t0), k(2, t0), . . . , k(t, t0)], and ⌃1:t,1:t

is the matrix such that the (i, j) entry is ⌃

i,j

= k(i, j) and
the indices (i, j) take values from 1 to t. Lastly, �2 is the
measurement noise (which is assumed to be Gaussian). Since
GPs model entire trajectories, goal data is incorporated as a
measurement on the final step of the trajectory.

B. Gaussian Process Kernels as Kinematic Models
The kernel function k is the crucial ingredient in GP trajec-
tory models, since it captures “how” dynamic agents move
(how smoothly, how linearly, etc.). A class of useful kernel
functions are explained in [26]. These individual kernels
can be combined to make new kernels via summation and
product; we chose a sum of a Matern kernel, a linear kernel,
and a noise kernel for the human and the robot. This kernel
allowed us to capture nonlinear and linear motion, and sensor
noise. We trained the four parameters of the human kernel
(the “hyperparameters”) with track data (Section V-A.3). We
trained the robot kernel with robot odometric data.

Although the hyperparameters are fixed once they are
learned, the actual mean and kernel functions change at each
time step; with GPs then, the kinematic model for both the
humans and the robot is adaptive. That is, online learning of
the kinematic models of the agents occurs.

C. Modeling Robot Human Cooperation
IGP couples each individual agent model via an interaction
potential  (f (R), f) =  (f (R), f (1), f (2) . . . , f (nt)

) that re-
sults in a joint model over the n

t

+ 1 agent function space:

p(f (R), f | z1:t) =

1

Z
 (f (R), f)

ntY

i=R

p(f (i) | z(i)
1:t), (II.1)

using the notation f = (f (1), . . . , f (nt)
). We choose  to be
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i=R

ntY

j=i+1

TY

⌧=t

⇣
1 � ↵

exp(

1
2h2 |f (i)

(⌧) � f (j)
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where |f (i)
(⌧)� f (j)

(⌧)| is the Euclidean distance at time ⌧
between agent i and agent j. The rationale behind our choice
is that any set of paths f (R), . . . , f (nt) becomes very unlikely
if, at time ⌧ , two agents i and j are too close. The parameter
h controls the “safety margin”, and ↵ 2 [0, 1] its strength.

D. Reducing Planning to Inference
Our model p(f (R), f | z1:t) immediately suggests a natural
way to perform navigation: at time t, find the MAP value

(f (R)⇤, f⇤) = arg max

f (R)
,f

p(f (R), f | z1:t),

and take f (R)⇤
(t+1) as the next action in the path (where t+1

means the next step of the estimation). At t+ 1, we receive
observations, update the distribution to p(f (R), f | z1:t+1),
find the MAP, and choose f (R)⇤

(t+2) as the next step. This
process repeats until the robot arrives at its destination.

III. MULTIPLE GOAL INTERACTING GAUSSIAN
PROCESSES

In practice there may be uncertainty between multiple,
discrete goals that an agent could pursue; similarly, it is
exceedingly rare to know in advance the time it takes to travel
between these waypoints. For this reason, we develop a novel
probabilistic model over waypoints and the transition time
between these waypoints by generalizing the GPs of Section
II-B to a mixture of GPs interpolating between waypoints.
Figure 2 illustrates our motivation.

We begin with the assumption that the environment in
which we will be doing trajectory prediction has a fixed
number of goals G (corresponding roughly to the number
of eating stations in the cafeteria):

g = (g1,g2, . . . ,gG

).

For the purposes of this analysis, we restrict the distributions
governing each goal random variable to be Gaussian. We also
restrict our goals g

k

(k = 1, . . . , G) to lie in the plane R2.
In order to learn the distribution of the goals g, we gridded

the cafeteria floor, collected frequency data on pedestrian
linger time within each cell, and then used Gaussian Mixture
Model clustering ([27]) to segment the pedestrian track data
into “hot spots”. In particular, we learned

p(g) =

GX

k=1

�
k

N
�
g
k

;µgk
,⌃gk

�
.

where �
k

is the weight of each component, µgk
is the mean

of the goal location, and ⌃gk is the uncertainty around the
goal. The perimeter ovals in Figure 2 illustrate this idea.

Given p(g), we derive, from experimental data, the transi-
tion probability p(g

a

! g
b

) for all a, b 2 {1, 2, . . . , G}. For
transitions between two goals g

a

! g
b

, we learn p(T
a!b

),
the density governing the duration random variable T

a!b

.
Finally, we introduce a waypoint sequence ¯g

m

=

(g
m1 ! g

m2 ! · · · ! g
mF ), composed of waypoints

g
mk with m

k

2 {1, 2 . . . , G}, for locations indexed by
m1,m2, . . . ,mF

where F 2 N, with associated way point
durations ¯T

m

= {T
m0!m1 , Tm1!m2 , · · · , TmF�1!mF }

where T
m0!m1 is the time to the first goal.

A. Generative process for a sequence of waypoints
We now describe a generative process for a sequence of
waypoints that we will use as a prior in our Bayesian model.
Beginning with the set of goals g, we draw indices from
the set {1, 2, . . . G}. The first index is drawn uniformly
at random, with the following indices drawn according to
p(g

a

! g
b

). Simultaneously, we draw transition times
T
a!b

⇠ p(T
a!b

). Thereby, a possibly infinite series of
waypoints and transition times is generated.

We formulate agent i’s prediction model by marginalizing
over waypoint sequences ¯g

m

and durations ¯T
m

:

p(f (i) | z(i)
1:t) =

X

ḡm

✓Z

T̄m

p(f (i), ¯g
m

, ¯T
m

| z1:t)

◆
.

Fig. 2. A patron moves through the cafeteria (solid green circle). Trailing
yellow dots are history, and tubes are GP mixture components. GP mixture
weights are in the upper left corner. Colored ovals are hot spots.

Using the chain rule, we have

p(f (i) | z(i)
1:t) =

X

ḡm

Z

T̄m

p(f (i) | z1:t, ¯gm

, ¯T
m

)p(¯g
m

, ¯T
m

| z1:t). (III.1)

Notice that for each goal sequence ¯g
m

, we potentially have
a different number of waypoints g

mk .
The mgIGP density is Equation II.1 with the mixture

models (Equation III.1) substituted for p(f (i) | z(i)
1:t).

IV. COOPERATIVE PLANNING AND INFERENCE

We introduce a sampling based inference algorithm for the
mgIGP density. We interpret mgIGP as a navigation density,
and derive action commands according to Section II-D. We
employ two different sampling steps to approximate the
mgIGP density: a sample based approximation of the mixture
process Equation III.1, and a sample based approximation of
the mgIGP posterior.

A. Sample based approximation of mixture models
Since Equation III.1 is intractable, we employ a sample based
approximation:

p(¯g
m

, ¯T
m

| z1:t) ⇡
NpX

k=1

w(i)
k

�
h
(

¯g
m
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k

� (
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)

i
,

where we utilize the empirically derived density�
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m

, ¯T
m

�
k
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m

, ¯T
m

) and N
p

samples. Substituting



(a) (b) (c) (d)
Fig. 3. (a) The robot workspace consists of a 20m2 area surrounded by a buffet (left), a pizza station (right), and a soda fountain (background). Distance
between start and goal was 6m. (b) Old form factor (c) New form factor (d) 3 overhead stereo cameras comprising the tracker.
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we generate

p(f (i) | z(i)
1:t) ⇡

NpX

k=1

w(i)
k

p(f (i) | z1:t, ¯gk

, ¯T
k

). (IV.1)

The samples collapse the infinite sum of integrals to one
finite sum. This illustrated in Figure 2.

In order to generate samples (

¯g
k

, ¯T
k

), we draw a sequence
of waypoints ¯g

k

and then the corresponding sequence of
waypoint durations T

ka!kb . To draw the waypoints, we
sample g

k1 uniformly from the G goals. We then draw
T
k0!k1 according to a distribution with mean given by the

average time to travel from the current point to g
k1 . Then,

g
k2 is drawn according to p(g

k1 ! g
k2), and T

k1!k2 is
consequently sampled. We continue until the sum of the
duration waypoints reaches or exceeds T

max

, and then drop
the most recently sampled goal.

Additionally, we evaluate the individual mixture compo-
nent weights according to

w(i)
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=
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�
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That is, we evaluate the likelihood that z1:t is true con-
ditioned on the waypoint-duration pair (

¯g
m

, ¯T
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)

k

. Specifi-
cally, p(z1:t |
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) is a GP conditioned on (
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)

k

and the first measurement z1, and evaluated over z2:t.

B. Sample based approximation of mgIGP
We expand the mgIGP density to take goal and waypoint
duration uncertainty into account by using Equation IV.1:
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We wish to approximate p(f (R), f | z1:t) using samples. To
do this, we extend the method outlined in [10] by adding a
step to account for the multiple GP components—that is, to
draw the l’th joint sample (f (R), f)

l

from the mgIGP density
we first draw agent i’s mixture index from the discrete
distribution {w(i)

1 , w(i)
2 , . . . , w(i)

Np
}. Given the mixture index

�, we draw (f (i)
)

l

⇠ p(f (i)|z1:t, ¯g�
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�

). We iterate through
all n

t

+1 agents (including the robot), and then arrive at the
joint sample weight ⌘

l

=  ((f (R), f)
l

). With this collection
of N

mgIGP

weights, we arrive at the approximation

p(f (R), f | z1:t) ⇡
NmgIGPX

l=1

⌘
l

�[(f (R), f)
l

� (f (R), f)].

V. EXPERIMENTS

In this section, we perform the first comprehensive quantita-
tive study of robot navigation in a crowded environment.
In particular, we study the navigation of a Pioneer 3-
DX R�differential drive mobile robot through dense crowds
in a public cafeteria. The purpose of these experiments
is to understand how cooperative navigation models affect
robot safety and efficiency in human environments. To that
end, we tested the following five navigation protocols: a
noncooperative planner detailed in Section V-B.1, the single
goal IGP algorithm, the mgIGP algorithm, and a reactive
planner, based on the Dynamic Window approach of [28],
and detailed in Section V-B.4. As an “upper bound” on nav-
igation safety and efficiency, we benchmarked line of sight
teleoperation. Sections V-B and V-C, explains how these
choices represent nearly all existing navigation algorithms.

A. Experimental setup
Our experiments were conducted in a university cafeteria
(see Figure 3(a)). During typical lunch hours, the number
of patrons ranged between five and thirty individuals. The
robot’s task was to travel through natural, lunchtime crowds
from point A = (0, 0) to point B = (6, 0) (in meters). This
brought the robot through the center of the scene in Figure



3(a). Cafeteria patrons were unscripted, although doorway
signs warned of the presence of filming and a robot.

1) Salient human factors engineering: To build a salient,
but not conspicuous, robot we began with a form factor
that indicated to human observers that the robot was both
sensing and comprehending its environment (see Figure
3(b))—a camera mounted at 3 feet, with a laptop set atop
the robot. Unfortunately, this form factor was nearly invisible
to cafeteria patrons, especially in crowds of density greater
than 0.3 people/m2. We thus filled out the volume, so that
the robot had roughly the shape of a human torso; this was
accomplished by mounting 3 camera arms, such that from
any angle at least 2 arms were discernible. Additionally, we
mounted an 80/20 “head” with a computer tablet “face” at
around 4 feet, and adorned the robot’s head with a sun hat.
Patrons responded positively to this costume (Figure 3(c)).

2) Robotic workspace: Figure 3(a) provides an image of
the actual robot workspace used in our experiments. Due to
the available coverage of our pedestrian tracker (Figure 4),
robot motions were limited to a 20m2 area between the buffet
station, the pizza counter, and the soda fountain.

3) Pedestrian Tracking System: Our pedestrian tracking
system utilized three Point Grey Bumblebee2 stereo cameras
mounted in an overhead configuration (Figure 3(d)) with
overlapping workspace at a nominal height of 3.5m. The
Point Grey Censys3DTM software2 was used to provide
accurate tracks of observed pedestrians at an update rate of
approximately 20Hz. All identified tracks (up to a maximum
of 40) were tagged with an ID and broadcast wirelessly to
the Pioneer robot, which used the tracks for navigation.

Figure 4 is a screenshot of the 3D tracker used in our
experiments. The bottom pane of the screenshot shows three
separate overhead images from each of the stereo camera
pairs (only left camera image is displayed). The top pane
is our OpenGL GUI displaying all the Censys3DTM tracks
in red with magenta circles used to indicate which tracks
are currently being reasoned about by the robot. The green
path indicates the robot’s current planned path. Overlayed
underneath all tracks is an image projection of the scene
from the stereo cameras to provide scene context.
B. Testing Conditions and Baseline Navigation Algorithms
In our cafeteria experiments, a testing operator was required
to stay within a few meters of the robot during every run
for emergency stops and for pedestrian safety. The close
proximity of the operator to the robot likely influenced
the crowd, and probably biased the performance of the
robot, for any given run. In order to buttress against any
algorithm gaining an unfair advantage, every effort was made
to reproduce identical testing conditions for each algorithm
and for every run. Additionally, we collected as many runs
per algorithm as was possible—approximately 3 months of
testing, with 488 runs collected, and around 800 attempted.

2Censys3DTM is a tracking system that utilizes background subtraction
with a plane fit to extract a cumulative set of 3D points belonging
to pedestrains from all available stereo cameras. A clustering algorithm
segments point cloud data to generate pedestrian blobs which are then
tracked using a simple motion model with nearest neighbor association.
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1. Current Research/Platforms

Robotic navigation in dense lunchtime crowds. Over the past 2 years, I have developed novel

machine learning algorithms for robot navigation in human crowds. In tandem, I instrumented

Caltech’s student cafeteria as a challenging testbed for this theory. Ultimately, the motivation

underlying this work is the following: if the robot correctly anticipates human reaction, then superior

trajectories become possible. In other words, by capitalizing on human cooperation, robots can shape

the future to their benefit.

Our theoretical model uses Gaussian processes to learn independent agent trajectories, while coupling

of the agent trajectories is achieved via a multiplicative interaction function. This results in a

predictive distribution over the joint function space of human and robot trajectories in a crowd—see

Figure 1. We call this distribution interacting Gaussian processes. Importantly, this formulation

provides for an integrated and intuitive notion of robotic navigation: if the robot is treated as an

agent in the crowd, then the prediction of what is most likely to happen is exactly what action the

robot should take. When implemented in a receding horizon framework, the navigation protocol is

merely the maximum a-posteriori statistic of the predictive distribution.

Figure 1. Robot (wearing sun hat, bottom middle pane) navigating through 20

people in a 10 square meter space. Green dots are robot’s present plan, red dots are

cafeteria patrons, and magenta circles are patrons currently being reasoned over.

The robot has demonstrated safety and e�ciency in nearly 100 runs of this di�culty.

1

Fig. 4. Robot (wearing sun hat, bottom middle pane) navigating through
densities nearing 1 person/m2. Green dots are robot’s present plan, red dots
are cafeteria patrons, and magenta circles are “salient” patrons. See Section
VII for movies of the robot in action.

1) Noncooperative Gaussian Processes: Given crowd
data from time t0 = 1, . . . , t, this algorithm predicts in-
dividual trajectories using the Gaussian process mixture
models. This prediction model is similar to the state of
the art crowd prediction models of [29], [30] and [31].
Additionally, our mixture model is nearly identical to the
state of the art models used for navigation in [14], [32]
and [15]. We also point out that when pedestrian track data
indicates linear movement, the Gaussian process mixture
model predicts linear movement. Linear prediction models
are common to many of the navigation algorithms that we did
not test. Our noncooperative planner then uses importance
sampling to produce a navigation command at time t+1 that
approximately minimizes the time to goal while maximizing
safety. These two steps are iterated in a receding horizon
control manner. We remark that optimizing over the most
probable trajectories is similar to the state of the art crowd
navigation algorithm of [33].

2) Interacting Gaussian Processes: We often refer to this
algorithm as the IGP planner. Implementation details of this
algorithm are presented in [10].

3) Multiple Goal Interacting Gaussian Processes: We
implement mgIGP as described in Sections IV-A and IV-B.

4) Reactive Navigation: This planner moves forward in a
straight line towards the goal, replanning its velocity profile
each time step �t ⇡ 0.1s (since the overhead tracking
algorithm runs at about 10Hz, any planner in the cafeteria
is limited by this constraint) so that it continues moving
at the maximal speed while avoiding collision. This is
accomplished in four steps. First, crowd agents are predicted
forward in time 0.5s using a Gaussian process (0.5s is
how long it takes the robot to come to a complete stop
from maximum velocity). Next, six potential robot trajectory
velocity profiles are computed in the direction of the goal.
The velocity profiles range from 0 m/s to 0.3 m/s, discretized
in increments of 0.05 m/s. Then, each velocity profile is eval-
uated for potential collisions using the formula for “important
patrons” detailed in the appendix to [34]; those velocity
profiles with an unsafe probability of collision are discarded
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Fig. 5. (a) Unsafe runs for the noncooperative planner (called mgGP, in magenta) and mgIGP (in blue). Overall, the noncooperative planner fails more
than 3 times as often as the cooperative planner. At extremely high densities (above 0.8 people/m

2, when patrons are standing nearly shoulder to shoulder)
all planners consistently fail. Anecdotally, it is extremely hard to teleoperate a robot at these densities. (b) Unsafe runs for the noncooperative planner and
IGP (in black). Even without goal based prediction, the cooperative planner is more than twice as safe as the noncooperative planner.

(we tuned this threshold to be maximally aggressive yet
always safe). The safest profile with the highest velocity is
chosen. This approach is similar to [28], and is always safe.

5) Human Teleoperation: Human teleoperation was con-
ducted at the discretion of the teleoperator: we allowed the
operator to maintain as much line of sight as desired. In
all, six teleoperators controlled the robot, for a total of 85
runs. The data produced served as an “upper bound” of
dense crowd navigation performance: at all densities, the
performance of the human teleoperator exceeded that of the
autonomous navigation algorithm.

C. Description of Untested Navigation Algorithms
We survey existing navigation approaches and explain why
our test algorithms are sufficiently representative. Inevitable
collision states (ICS) are limited to deterministic settings, and
so are inapplicable. Probabilistic ICS ([35]) is designed to
handle predictive uncertainty. However, Probabilistic ICS is a
special case of [14], and so V-B.1 (our noncooperative plan-
ner) is representative. Velocity obstacles (VOs) are limited
to deterministic scenarios, and thus inappropriate. In [36],
VOs are generalized for noise. However, Probabilistic VOs
use linear extrapolation, and so V-B.1 is representative. We
tested reciprocal velocity obstacles (RVOs, [37]). However,
noisy pedestrian tracks caused RVO to behave erratically
(unresponsive to a single person walking directly at the
robot), and RVO assumes all agents choose velocities in
a pre-specified manner, which is untrue for humans. This
algorithm was thus deemed unsuitable for this application.
Potential fields are combined with RRTs to find the minimal
cost robot trajectory in [16]. The primary difference between
this algorithm and V-B.1 is that our cost field is spherical
(rather than ellipsoidal), so V-B.1 is representative.

We point out that the work of [24] and [22] are likely
the most compelling alternatives to mgIGP. In particular,
[24] uses a joint collision avoidance feature in their inverse
reinforcement learning representation, and they learn the
weight of that feature from captured human data. However,

their experiments involve only a single person and a single
robot, and, in their own words, “in more densely populated
environments . . . it is not feasible to compute all topological
variants”. In other words, their current implementation is
unsuitable for real time implementation in dense crowds.

VI. EXPERIMENTAL RESULTS: QUANTITATIVE STUDIES

In [39] numerous metrics for evaluating human-robot in-
teraction are presented. Importantly, safety is pinpointed as
the most important. Accordingly, we evaluate the safety and
efficiency of the algorithms of Section V-B.

A. Robot Safety in Dense Human Crowds

We discuss the human density metric. First, we have normal-
ized to values between 0 and 1—thus, the highest density
(1 person/m2) is a shoulder to shoulder crowd. Further,
patrons rarely stand still; this constant motion increases
crowd complexity. Anecdotally, humans found crowd densi-
ties above 0.8 people/m2 to be extremely difficult to teleoper-
ate through, and densities above 0.4 people/m2 challenging.

We define safety as a binary variable: either the robot
was able to navigate through the crowd without collision
or it was not. Obviously, we could not allow the robot to
collide with either walls or people, and so a protocol for
the test operator was put in place: if the robot came within
1 meter of a human, and neither the robot nor the human
was making progress towards avoiding collision, then the
robot was “emergency stopped” (the velocity command was
set to zero). Note that both our reactive planner and human
teleoperation were always safe, by design.

1) Noncooperative Planner and mgIGP Planner: In Fig-
ure 5(a), we compare the safety of our state of the art nonco-
operative planner to the mgIGP planner. This data suggests
the following: cooperative collision avoidance models can
improve overall safety by up to a factor of 0.63/0.19 ⇡ 3.31.
Additionally, the noncooperative planner is unsafe more than
50% of the time at densities as low as 0.3 people/m2 and
above. At densities of 0.55 people/m2 and above, it is unsafe
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Fig. 6. a Efficiency of reactive planner, mgIGP, and human teleoperation; mgIGP performs similarly to teleoperation, while reactive planning degrades
super linearly. (b) Performance of mgIGP, IGP, and human teleoperation. Performance improvement due to goal inclusion is modest.

more than 80% of the time. In contrast, mgIGP is unsafe less
than 30% of the time for densities up to 0.65 people/m2. At
densities near 0.8 people/m2, mgIGP is still safe more than
50% of the time. The noncooperative planner is unsafe over
90% of the time at this high density. Finally, the safety of
both planners degrades reliably as crowd density increases
(both planners cease to be safe above 0.8 people/m2).

We present the following explanation: the noncooperative
planner believes itself invisible, and so has trouble finding
safe paths through the crowd, and thus tries to creep along
the walls of the testing area. This resulted in many failed
runs: the robot’s movement is not precise enough to avoid
collisions when “wall hugging”. More generally, this is
a manifestation of the freezing robot problem of [10]. In
contrast, failures for mgIGP were rare because the robot was
more likely to engage the crowd. By engaging the crowd, the
robot elicited cooperation, which made navigation safer.

2) Noncooperative Planner and IGP planner: In Figure
5(b), the noncooperative planner is compared to a “com-
promised” cooperative planner, IGP. The noncooperative
planner retains the Gaussian process mixture model.

Although the results are not as stark as in Section VI-
A.1, IGP is still 0.63/0.28 ⇡ 2.25 times as safe as the
noncooperative planner, overall. This result suggests that for
navigation in dense crowds, modeling cooperation is more
important than high fidelity individual trajectory predictive
models.
B. Navigation Efficiency in Dense Human Crowds
Navigation efficiency is defined as the time elapsed from the
start of the algorithm until arrival at the goal.

1) mgIGP Planner, Reactive Planner, and Human Tele-
Operation: In Figure 6(a), we present the efficiency for
the reactive planner, the mgIGP planner, and human tele-
operation. This figure demonstrates that, for most crowd
densities, mgIGP was nearly as efficient as human tele-
operation. We point out that (by definition) the human tele-
operators never had to be emergency stopped.

Whereas the efficiency of all the other planners (including
human tele-operation) increased roughly linearly with crowd

density, the reactive planner grows super linearly with crowd
density. Additionally, no runs for the reactive planner were
collected for densities above 0.55 people/m2. This was a
result of the following: when the reactive planner started at
a density above 0.55 people/m2, it moved extremely slowly.
If the crowd density was any higher than 0.55 people/m2,
it stopped moving forward entirely. Essentially, the reactive
algorithm was waiting until the density was low enough
to ensure safety. By this time, however, the average crowd
density over the duration of the run had dropped substantially
from the maximum crowd density during the run. Thus, the
reactive algorithm was unable to make progress through a
crowd with an average density above 0.55 people/m2.

2) mgIGP Planner, IGP Planner, and Human Tele-
Operation: In Figure 6(b) we present the efficiency results
for the mgIGP planner, the IGP planner, and human tele-
operation. This figure provides insight into how efficiency
is affected when the Gaussian process mixture model of
independent trajectories is removed from the interactive for-
mulation. We note that although the mixture model improves
safety (Figure 5), it does not appear to improve efficiency.
This data again suggests that modeling cooperation between
agents is more important than modeling individual agent
behavior. Human teleoperation serves as an upper bound on
efficiency.

VII. EXPERIMENTAL RESULTS: QUALITATIVE STUDIES

A highly useful behavior of the robot was that it was always
in motion. This was achieved safely by doing the following:
if a collision was imminent, the forward velocity was set to
zero. However, the rotational velocity was not set to zero.
The navigation algorithm continued generating new plans
(even though the forward velocity was held at zero until
collision was not imminent), and each new plan potentially
pointed the robot in a new direction. Indeed, the robot was
searching for a way through a challenging crowd state—
see the movie snippet at http://resolver.caltech.
edu/CaltechAUTHORS:20120911-130046401 ).

Sometimes, this resulted in quite humorous situations: at

http://resolver.caltech.edu/CaltechAUTHORS:20120911-130046401
http://resolver.caltech.edu/CaltechAUTHORS:20120911-130046401


the beginning of one run, while the navigation algorithm
was still starting up, a patron came up and began inspecting
the robot. The robot, sensing an imminent collision, set its
velocity to zero, and began searching for a clear path (i.e.,
rotating in place). The patron realized what was happening,
and moved along with the robot, constantly staying in
front of the robot’s forward velocity vector. This resulted
in what we have since called the “robot dance”—see the
movie snippet at http://resolver.caltech.edu/
CaltechAUTHORS:20120911-125945867).

This behavior can be quite useful in dense crowds. For
instance, the reactive robot did not display this behavior.
When a collision was imminent, it stopped completely.
Unfortunately, a completely stopped robot is very hard
for a human to understand. Is this robot turned off? Is
this robot waiting for me? Meanwhile, the mgIGP robot
displayed intentionality—see the movie snippet at http:
//resolver.caltech.edu/CaltechAUTHORS:
20120911-125828298). Animators call this behavior
“readability”, and it can be employed to create a more
human like intelligence (see [40]).

VIII. CONCLUSION

We posed two questions: how should human-robot coop-
eration be modeled? And would such cooperation improve
navigation in dense crowds? We answered the first question
by introducing mgIGP, and treating that density as a predic-
tion of how the robot should act in order to be cooperative.
We answered the second question empirically: the mgIGP
algorithm was shown to perform comparably with human
teleoperators in crowd densities nearing 1 person/m2, while
a state of the art noncooperative planner exhibited unsafe
behavior more than 3 times as often as our planner. Also,
a state of the art reactive planner was insufficient for crowd
densities above 0.55 people/m2. These experimental results
provide the first strong evidence that safe and efficient crowd
navigation require a human-robot cooperation model.
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