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Abstract: This paper considers distributed control of interconnected multi-agent systems. The
dynamics of the individual agents are not required to be homogeneous and the interaction
topology is described by an arbitrary directed graph. We derive the sensitivity transfer functions
between every pair of agents and we analyze stability and performance of non-homogeneous
systems, showing that the low frequency behavior is influenced not only by topology, but also
by static gain and poles of the agents.

1. INTRODUCTION

In numerous mission scenarios, the concept of a group
of agents cooperating to achieve a determined goal is
very attractive when compared with the solution of one
single vehicle. In this class of systems, even if the agents
are dynamically decoupled, they are coupled through the
common task they have to achieve. When the number
of agents grows, centralized control is no longer feasible
and distributed control techniques become attractive. Ap-
plications of coordinated control of multiple vehicles can
be found in many fields, including microsatellite clusters
(Burns et al. [2000], Kapilal et al. [1999]), formation flying
of unmanned aerial vehicles (Wolfe et al. [1996]), auto-
mated highway systems (Swaroop and Hedrick [1999]) and
mobile robotics (Yamaguchi et al. [2001]).

The problem of distributed control has been widely studied
with tools from graph theory (Corfmat and Morse [1976],
Šiljak [1991], Mesbahi and Hadaegh [2001]). We consider
agents with non-homogeneous linear dynamics and we
model the interconnection topology as a graph, in which
the single agents are represented by a vertex, while the
interaction links are the arcs.

The distributed control problem has been handled in dif-
ferent ways and with different tools: dissipative theory and
linear matrix inequalities in Langbort et al. [2004], edge
agreement in Zelazo et al. [2007, 2008], linear quadratic
regulator in Borrelli and Keviczky [2008], decomposition
and linear matrix inequalities in Massioni and Verhaegen
[2009]. In almost all the works mentioned above the con-
trol is applied to homogeneous agents interconnected by
undirected graphs. If the graph is undirected the problem
becomes easier because all the matrices associated with
the graph, like the Laplacian, are symmetric.

One approach to distributed control is to use leader-
follower arrangement. This approach is well studied and
representative papers exploring graph-theoretic ideas in

the context of a leader-follower architecture include Mes-
bahi and Hadaegh [2001] and Jin [2007], where a double-
graph control strategy was proposed. This topology rep-
resents a particular case, where the leader has a more
important role than the other agents and this may not
always be desirable.

The importance of cycles in distributed control has already
been pointed out in several past works: Zelazo et al. [2007,
2008] investigated the role of cycles and trees in the edge
Laplacian for the edge agreement problem, while Fax and
Murray [2004] suggested a relation between the presence
of cycles and the stability of formation. In Liu et al. [2009]
gains over graph cycles are involved in stability conditions
for nonlinear network models.

Limits on multi-agent systems performance have already
been studied in Barooah and J. [2007] and Bamieh et al.
[2009], showing that a global information, such as leader’s
position or state, is needed to achieve reasonable perfor-
mance.

In Tonetti and Murray [2010], we have considered only
systems with the same identical dynamics P (s) and local
controller C(s). However in the most of the distributed
physical systems this is only an approximation. We can
just think for example to formation of satellites in different
orbits, robotics vehicles with different dynamics, internet
routers and peer to peer systems. Even if there are agents
with different dynamics, the analysis in Tonetti and Mur-
ray [2010] still holds, as long as the open loop transfer
function L(s) is the same for all the vehicles. This means
to shape the controller in order to have Ci(s) = L(s)/Pi(s)
for every agent i. But this could not always be feasible.
It becomes therefore important to develop results also
for non-homogeneous systems. In literature we can find
few papers dealing with distributed control of heteroge-
neous systems: Langbort and D’Andrea [2003], Dullerud
and D’Andrea [2004]. In Dunbar and Murray [2006] a
distributed receding horizon control for the stabilization of
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multi-vehicle formation is proposed, where the dynamics
is not required to be homogeneous. In Motee and Jad-
babaie [2008] the structural properties of optimal control
of spatially distributed systems is studied and in Rice
and Verhaegen [2009] a distributed control for spatially
heterogeneous linear systems is considered.

In the present paper we investigate how our previous
results obtained for homogeneous agents can be extended
to heterogeneous systems. The contribution of this work is
to show a general method to derive the transfer functions
between any pair of agents with different dynamics, where
the interconnection topology is described by arbitrary
directed graphs. We study the stability of special multi-
agent systems, where a separation principle is applicable.
We analyze mechanisms that rule the behavior of a non-
homogeneous multi-agent system and we show intrinsic
limits on the controller design due not only to the topology,
but also to static gain and poles of the open loop transfer
function of each agent.

The current paper is organized as follows. In section 2
we briefly review the principal concepts of graph theory,
stability and performance of homogeneous systems. Sec-
tion 3 presents the sensitivity transfer function for non-
homogeneous systems, while in Sections 4 and 5 stability
and performance are discussed, respectively. The conclu-
sions of the paper are reported in Section 6.

2. PRELIMINARIES

In this section we summarize some of the key concepts from
graph theory, stability and performance of homogeneous
interconnected multi-agent systems that will be used in
the paper.

2.1 Graph theory

A directed graph G is a set of vertices or nodes V and a set
of arcs A ⊂ V 2 whose elements a = (u, v) ∈ A characterize
the relation between distinct pairs of vertices u, v ∈ V .
For an arc (u, v) we call u the tail and v the head. The
in(out)degree of a vertex v is the number of arcs with v
as its head (tail). A directed path in a graph is a sequence
of vertices such that from each of its vertices there is an
arc to the next vertex in the sequence. A directed path
with no repeated vertices is called a simple directed path.
A directed graph is called strongly connected if there is
a directed path from each vertex in the graph to every
other vertex. A directed graph is weakly connected if every
vertex can be reached from every other but not necessarily
following the directions of the arcs. A complete directed
graph is a graph where each pair of vertices has an arc
connecting them. A simple cycle is a closed path that is
self-avoiding (does not revisit nodes, other than the first).
A acyclic directed graph is a directed graph without cycles.

The structure of a graph can be described by appropriate
matrices. The normalized Laplacian matrix L of a directed
graph G is a square matrix of size |V |, defined by Lij = 1
if i = j, Lij = 1/di if (i, j) ∈ A, where di is the outdegree
of the ith vertex, Lij = 0 otherwise.

A more detailed presentation of graph theory can be found
in Tutte [2005].

2.2 Stability of homogeneous systems

We consider a formation of N agents with identical lin-
ear dynamics. The normalized Laplacian matrix L of the
graph is used to represent the interaction topology. Sup-
pose each individual agent is a SISO system with local
loop composed of a local controller C(s) and a plant model
P (s). According to Fax and Murray [2004], the multi-agent
system is stable if and only if the net encirclement of the
critical points −λ−1

i (L) by the Nyquist plot of P (s)C(s) is
zero for all nonzero λi(L), where λi(L) are the eigenvalues
of the normalized Laplacian matrix L of the graph.

2.3 Performance of homogeneous systems

The Laplacian weight of a simple directed path of length
k from i to j, where i = i0, i1, . . . , ik = j, is the product
of the negative inverse of the outdegrees d of all the nodes
in the path besides the last one:

Lwk
i0ik

:= sgn(k)
t=k−1∏

t=0

(
− 1

dit

)
, (1)

where sgn(k) = −1 if k is odd, sgn(k) = +1 if k is even. A
path is degenerate if it is a path of length zero between a
node and itself and we define its Laplacian weight as one:
Lw0

ii = 1. The Laplacian weight of a cycle of length k is

Lwk
o := sgn(k − 1)

t=k−1∏
t=0

(
− 1

dit

)
, i0 = ik, (2)

Disjoint cycles in G are a set of non-adjacent simple cycles,
that is, two simple cycles that do not share any common
nodes. The length of disjoint cycles is given by the sum
of the lengths of the composing simple cycles, while the
Laplacian weight of disjoint cycles is given by the product
of the Laplacian weights of the composing simple cycles.
The subgraph Gk

ij is the subgraph of G obtained from G
by removing all the nodes and all the arcs touching the
simple directed path from node i to node j of length k.
The subgraph Gi is the subgraph of G obtained from G by
removing node i.

According to Tonetti and Murray [2010], the transfer
function between every pair of nodes i and j of a generic
graph G can be derived using a version of Mason’s Direct
Rule (Mason [1953, 1956]). It is studied the low frequency
behavior of the network sensitivity functions and it is
proved that no matter how the controller is designed, there
are fundamental limitations to performance. The analysis
demonstrated that the presence of cycles in the interaction
topology degenerates the system’s performance.

3. SENSITIVITY TRANSFER FUNCTION FOR
NON-HOMOGENEOUS SYSTEMS

In this section we show how to derive the non-homogeneous
networked sensitivity transfer functions between any pair
of agents for a given topology, extending the results ob-
tained in Tonetti and Murray [2010].

We consider a formation of N agents. Each individual
agent i is a SISO system with local controller Ci(s) and
plant model Pi(s). The normalized Laplacian matrix L of
the graph is used to represent the interaction topology. A



representation of the feedback control scheme is shown in
Fig. 1, where r ∈ RN is the vector of the reference signals
of each agent, e ∈ RN are the errors between r and the
process outputs y ∈ RN , u ∈ RN is the control signal
vector and d ∈ RN and n ∈ RN are the load disturbances
and the measurement noises respectively. The open loop

Fig. 1. Block diagram of a non-homogeneous multi-agent
feedback system

transfer function of each agent is Li(s) = Pi(s)Ci(s). We
define the networked sensitivity function matrix S̃(s) as

S̃(s) =
(
I + L(n)L(s)

)−1
,

where L(s) = diag(L1(s), L2(s), · · · , LN (s)). From now
on, without loss of generality, we will consider n = 1 so
that each agent has a single output variable that is being
controlled. In analogy with the single agent case, in order
to guarantee stability, robustness and good performance,
we want to have |S̃(jω)| ¿ 1 for ω ¿ ωc, and |S̃(jω)| ≈ 1
for ω À ωc, where ωc is the cutoff frequency.

We define O(o) the set of nodes belonging to the simple
cycle o, P(p) the set of nodes belonging to the directed
simple path p besides the starting node.
Theorem 1. The sensitivity transfer function between ev-
ery pair of nodes i and j of a generic graph G with arbi-
trary dynamics and local controller, can be still expressed
through a version of Mason’s Direct Rule:

S̃ij =
1
∆

∑

paths p ∈ G
Tp∆p, (3)

where now the determinant of (I + LL(s)) is

∆ =
N∏

f=1

(1 + Lf )

+
∑

cycles o ∈ G


Lwo

∏

z ∈ O(o)

(Lz)
∏

m /∈ O(o)

(1 + Lm)


 ,

(4)

the ‘gain’ of the pth simple directed path from node i to
node j of length k is

Tp = Lwij

∏

z ∈ P(p)

(Lz), (5)

and the value of ∆ for the subgraph Gk
ij not touching the

pth simple directed path from node i to node j of length
k is

∆p =
∏

f ∈ Gk
ij

(1 + Lf )

+
∑

cycles o ∈ Gk
ij


Lwo

∏

z ∈ O(o)

(Lz)
∏

m /∈ O(o)

(1 + Lm)


 ,

(6)

where k represents the length of the cycles in Gk
ij .

Proof. For a signal flow graph G, the gain matrix M
(Mason and Zimmermann [1960]) is

M = (I − Ā)−1, (7)
where Ā is the weighted adjacency matrix associated with
the signal flow. Suppose now instead of having G we have
a transformed graph G̃ (as the example in Figure 2), with
the same topology of G but with the weight of each arc
equal to

wij =
1

doi

Lj , ∀(i, j) ∈ G̃,

and self-loops in each node with weight

wii = −Li, ∀i ∈ G̃.

We take the generic case of complete directed graph. In

(a) G (b) G̃

Fig. 2. Example of transformation from a graph G to the
signal flow graph G̃.

this way the transformed weighted adjacency matrix Ã for
the graph G̃ will be:

Ã =




−L1
1
d1

L2 · · · 1
d1

LN

1
d2

L1 −L2 · · · 1
d2

LN

...
. . .

...
1

dN
L1

1
dN

L2 · · · −LN




= −LL.

Applying the equation (7), we get the transformed gain
matrix M̃ of G̃:

M̃ = (I − Ã)−1 = (I + LL)−1.

This is exactly what we need to solve in order to compute
the matrix sensitivity transfer function. Applying the
Mason’s direct rule to G̃ we obtain exactly the denominator
and numerators in equations (4), (5) and (6).

Of course we can observe that if Li = Lj for all i, j,
equations (4)–(6) became exactly like equations for homo-
geneous multi-agent systems in Tonetti and Murray [2010].
Even if polynomials of the network sensitivity functions
include different plant models and local controllers, paths
and cycles structures influence the performances in the
same way as homogeneous systems.

4. STABILITY OF NON-HOMOGENEOUS SYSTEMS

In the following we analyze the formation stability of non-
homogeneous systems for some special class of interaction
topologies.



In order to study the closed loop stability of the relative
formation dynamics we have to look at det

[
I + LL

]
. In

the case of non-homogeneous systems we can no longer
use the Schur transformation of L to find a separation
principle as in Fax and Murray [2004]. We can no longer
transform (I +LL) in a triangular form. Therefore we are
forced to study the entire expression of det

[
I + LL

]
= ∆,

with ∆ defined in equation (4). The only thing we can say
is that the controllers Ci stabilize the non-homogeneous
interconnected system if and only if det(∆) 6= 0 and the
Nyquist plot of det(∆) encircles the origin nu times in the
counterclockwise sense, where nu denotes the total number
of open loop system unstable poles, counting multiplicity.

Because of this limitation, in the following sections will
be presented special topologies for which a separation
principle is applicable.

4.1 Stability on a directed acyclic graph

If the interconnection topology is represented by an acyclic
directed graph, the denominator in (4) simplifies in ∆a and
the stability is given by

∆a =
N∏

f=1

det[1 + Lf ]. (8)

The critical point becomes −1 as in a single-agent system.
Therefore the interconnected non-homogeneous system is
stable if and only if every single-agent system is stable.

4.2 Stability of a condensable multi-agent system

In the following we will recall some definitions about graph
condensation which can be found in Šiljak [1991].
Definition 2. A subgraph G∗k = [Vk, (Vk × Vk) ∩ A] is a
strong component of G if it is strongly connected and there
are no two nodes vi ∈ G∗k and vj /∈ G∗k which lie on the same
cycle in G. Given a digraph G = (V, A), define

V ∗ = {Vk : Vk equivalence class of G},
A∗ = {(Vj , Vi) : vj ∈ Vj , vi ∈ Vi, (vj , vi) ∈ A, Vj 6= Vi}

The digraph G∗ = (V ∗, A∗) is the condensation of G. Given
any digraph G, its condensation G∗ is acyclic.

An example of graph condensation is shown in Fig. 3. In

(a) Digraph G (b) Strong components
G∗1 and G∗2

(c) Condensation
G∗

Fig. 3. How to condensate a digraph: an example

order to deal with non trivial condensation, from now on
we will consider only not strongly connected graphs with
cycles. Matrices related to not strongly connected graphs
have a nice property:

Definition 3. A matrix is reducible if and only if its
associated digraph is not strongly connected. In addition,
a matrix is reducible if and only if it can be placed into
block upper-triangular form by simultaneous row/column
permutations.

We will call a multi-agent system a condensable multi-
agent system (CMAS) satisfying the following property:

(i) agents belonging to the same strong component G∗i
have the same open loop transfer function L∗i .

For example, the system represented in Fig. 3 is a CMAS
if and only if L1 = L2 = L∗1 and L3 = L4 = L5 = L∗2.
Theorem 4. The stability of a condensable multi-agent
system is given by

∆ =
m∏

i=1

∆∗
i , (9)

where

(i) m is the number of strong components in G;
(ii) ∆∗

i is the determinant of the strong component G∗i ,

∆∗
i = (1 + L∗i )

N∗
i

+
∑

cycles o ∈ G∗
i

(Lwk
o

)
(1+L∗i )

(N∗
i −k)(L∗i )

k; (10)

(iii) N∗
i is the number of nodes in G∗i .

Therefore the global system is stable if and only if all the
strong components are stable.

Proof. Since we are considering not strongly connected
graphs, by Definition 3, the normalized Laplacian matrix
associated to G is reducible. It means that choosing an
appropriate ordering for the nodes, L can be placed into
block upper-triangular form, where each diagonal block
L∗i represents a strong component, while the off diagonal
blocks Li∗j∗ represent how the strong components are
connected:

L =




L∗1 L1∗2∗ · · · L1∗m∗

L∗2 · · · L2∗m∗

. . .
...
L∗m


 .

We already know that the stability of a multi-agent system
depends on det(I + LP̂ Ĉ) = ∆, where M̂ = IN ⊗M rep-
resents a matrix M repeated N times along the diagonal.
If L is block upper-triangular, (I + LP̂ Ĉ) has the same
property with blocks equal to (I + L∗i L̂∗i ) on the main
diagonal, where L̂∗i = IN∗

i
⊗L∗i . Equation (9) follows from

the multiplicative property of the determinant of block
triangular matrices.

It has to be noticed that the Laplacian weights in (10)
are computed with the outdegrees of nodes in G, as in the
definition (2) and not with outdegrees of nodes in G∗i .

For a CMAS we can have three cases:

(1) if G is acyclic, it has no strong components and
its condensation G∗ coincides with the graph itself
G∗ ≡ G. The stability of the system depends on the
stability of each single agent (8): ∆ = ∆a;



(2) if G is strongly connected, it has only one strong
component and its condensation G∗ will be a single
node G∗ ≡ i∗. The stability is given by the stability
of the entire homogeneous system (Fax and Murray
[2004]);

(3) if G has cycles but it is not strongly connected, its
condensation G∗ is an acyclic graph. The stability is
given by (9).

4.3 Example

Consider the CMAS with graph topology as in Fig. 3
and open loop transfer functions equal to L∗1 = (800s +
2000)/(s3 + 41s2 + 44s) and L∗2 = (50s + 100)/(0.0475s3

+ 2.375s2 + s). We want to investigate the stability of the
system. The normalized Laplacian matrix is block upper-
triangular:

L =
[L∗1 L1∗2∗

L∗2

]
,

where the diagonal blocks are

L∗1 =
[

1 −0.5
−0.5 1

]
,

L∗2 =

[ 1 −1 0
0 1 −1

−1 0 1

]
,

and the off diagonal block is

L1∗2∗ =
[

0 0 −0.5
−0.5 0 0

]
.

The stability of the two strong components can be checked
applying the stability criterion for homogeneous multi-
agent systems in Fax and Murray [2004], where the critical
points are the nonzero eigenvalues of L∗1 for G∗1 and of
L∗2 for G∗2 . The Nyquist plots in Fig. 4 show that the
global system is stable because the strong components are
separately stable.
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(b) G∗2

Fig. 4. Strong components Nyquist Plot and critical points

5. PERFORMANCE OF NON-HOMOGENEOUS
SYSTEMS

We are going now to analyze the system low frequency
behavior, in order to see where considerations done for
homogeneous agents can be extended to non-homogeneous
systems.

Theorem 5. In a non-homogeneous interconnected multi-
agent system all the asymptotic values of S̃ii, for graph
with do > 0, ∀i ∈ G, sum up to the unity:

N∑

i=1

lim
|Li|→∞

|S̃ii| = 1. (11)

Proof. Even if now polynomials of S̃ii have more than
one variable, if do > 0 the coefficient of

∏N
f=1 Lf at

the denominator is always zero, as proved in Theorem
3 (Tonetti and Murray [2010]). So we will consider only
terms given by

∏
f∈ Gi

Lf . Starting from ∆p/∆, with
∆p expressed in (6) and ∆ in (4), with some algebraic
considerations, as |Li| → ∞ the asymptotic value for a
diagonal interconnected sensitivity function is

lim
|Li|→∞

S̃ii =

lim
|Li|→∞

(
1 +

∑

Gi

(Lwo)

) ∏

f∈ Gi

Lf

N∑

i=1




(
1 +

∑

Gi

(Lwo)

) ∏

f∈ Gi

Lf




,
(12)

and it is clear that the sum over all the nodes is equal to
one, despite the expression of Li.

From Theorem 5 we can see that even in non-homogeneous
multi-agent systems there are fundamental limitations to
what can be achieved by control, and control design is a
redistribution of disturbance rejection at low frequencies
among agents.

5.1 Example

Consider the strongly connected graph of Fig. 5. Agents

Fig. 5. Interconnection topology

1 and 2 have the same stable open loop transfer function
equal to L1 = (800s + 2000)/(s3 + 41s2 + 44s), while
agents 3, 4 and 5 have L2 = (50s + 100)/(0.0475s3 +
2.375s2 + s). The network sensitivity functions are shown
in Fig. 6.

Suppose now we want to improve low frequency behavior
of agents 1 and 2 choosing a higher gain for L1. As we can
see in Fig. 7, a lower asymptotic value for agents 1 and 2
implies a higher value for the other agents, as predicted in
Theorem 5.

Corollary 6. In a non-homogeneous multi-agent system,
interconnected by an arbitrary directed graph with do > 0
∀i ∈ G, the low frequency asymptotic value of the diagonal
sensitivity function is



Fig. 6. Non-homogeneous network sensitivity functions

Fig. 7. Non-homogeneous network sensitivity functions
with higher gain on L1

lim
|Li|→∞

S̃ii =

lim
s→0

(
1 +

∑

Gi

(Lwo)

) ∏

f∈ Gi

µf

sgf

N∑

i=1




(
1 +

∑

Gi

(Lwo)

) ∏

f∈ Gi

µf

sgf




,
(13)

where µf is the zero frequency gain, which will be called
static gain, and gf is the number of poles in the origin of
the open loop transfer function of agent f 6= i.

Proof. A generic open loop transfer function L(s) can be
expressed as

L(s) =
µ

sg

∏
m(1 + sτm)∏
n(1 + sTn)

, (14)

where µ is the static gain, g ≥ 0 is the number of poles in
the origin, τm and Tn are zeros and poles time constants,
respectively.

Equation (13) comes from equation (12), where each Lf

has been substituted by lims→0 L(s) = µ/sg of equation
(14).

In the following some special cases of Corollary 6 will be
considered, showing examples.

5.2 Regular graph and same low frequency behavior

We start first considering directed regular graphs, where
there is a full symmetry and in a homogeneous case
the asymptotic value of the sensitivity functions would
be the same for all the nodes and equal to 1/N . We
moreover consider open loop transfer functions with the
same number of poles in the origin, gi = gj ∀i, j ∈ G.
This means they approach s = 0 with the same speed and
therefore they have the same low frequency behavior.

Starting from equation (13) and following our hypothesis:
if the graph is regular, 1 +

∑
Gi

(Lwo) is the same for
all the nodes and it can first be taken out of the sum
at the denominator and then simplified with the one at

the numerator; if all the open loop functions have the
same number of poles we can simplify all the gf . So the
asymptotic value becomes

lim
s→0

S̃ii =

∏

f∈ Gi

µf

N∑

i=1

∏

f∈ Gi

µf

, (15)

and it is evident that, since µi does not appear in the
numerator of S̃ii, if agent i has the highest µi with respect
to the other agents, the numerator of S̃ii will have the
lowest low frequency magnitude. An agent with the lowest
µi, will have the highest S̃ii low frequency magnitude and
therefore the poorest disturbance rejection behavior. Same
considerations can be done for all the other agents.

In a non-homogeneous interconnected multi-agent system,
connected by a directed regular graph and with Li(s) with
the same number of poles in the origin for all the nodes,
the highest is the static gain µi of an agent with respect
to the others, the better disturbance rejection properties
has that agent in the formation. This tell us that even
if the interconnection topology is symmetric, the agents
behavior is different and it is ruled by the static gain of
the open loop function.

Consider a formation of 3 agents connected by a complete
graph and with the following stable open loop transfer
functions with one pole in the origin: L1 = (80s + 200)/(s3

+ 41s2 + 44s), L2 = 18/(s3 + 5s2 + 17s) and L3 =
(5s + 10)/(0.0475s3 + 2.375s2 + s). Static gains are:
µ1 = 4.54, µ2 = 1.06, µ3 = 10. The magnitude of
Li(s) is depicted in Fig. 8(a) and it is clear that all
the functions approach s = 0 with the same speed, but
|L2(s → 0)| < |L1(s → 0)| < |L3(s → 0)|. We expect S̃33

to have the lowest value at low frequencies, while agent
2 to have the worst disturbance rejection behavior, as
shown in Fig. 8(b). We can also verify that the sum of the

(a) Open loop functions

(b) Diagonal networked sensitivity functions

Fig. 8. Non-homogeneous system transfer functions

asymptotic values is equal to one: |S̃11(s → 0)| = 0.174,
|S̃22(s → 0)| = 0.747, |S̃33(s → 0)| = 0.079.



5.3 Arbitrary graph and same low frequency behavior

What does it happen if the graph is not regular but the
number of poles is still the same for all the Li(s)? Starting
from equation (13) we will have that 1 +

∑
Gi

(Lwo) will
be different from agent to agent, while all the gf can be
simplified and the asymptotic value will be

lim
s→0

S̃ii =

(
1 +

∑

Gi

(Lwo)

) ∏

f∈ Gi

µf

N∑

i=1




(
1 +

∑

Gi

(Lwo)

) ∏

f∈ Gi

µf




. (16)

Here the product of the static gains of all the other agents
has to be weighted by a value depending on the cycles not
passing through that agent. The fewer cycles pass through
a node, the lower is 1 +

∑
Gi

(Lwo) and the better is the
agent low frequency behavior.

Consider the formation of Example 5.1 but with arc 35
added. The open loop transfer functions have the same
number of poles in the origin. With this topology on nodes
3 and 5 pass more cycles than on node 4. Therefore, even
if agents 3, 4 and 5 have the same open loop transfer
function, we can see in Fig. 9 that agent 4 has a better
low frequency behavior with respect to 3 and 5, while in
Fig. 6 the behavior was the same.

Fig. 9. Non-homogeneous network sensitivity functions
affected by topology

5.4 Regular graph and different low frequency behavior

Consider now a formation connected by a regular graph
but with at least one vehicle with different number of poles
with respect to the others gi 6= gj . The asymptotic value
is

lim
s→0

S̃ii =

∏

f∈ Gi

µf

sgf

N∑

i=1

∏

f∈ Gi

µf

sgf

. (17)

The agent with the highest g, which will be called gmax,
since it will appear only at the denominator, will lead
its asymptotic value to zero. From Theorem 5 we know
that the asymptotic values sum up to the unity, so the
redistribution of disturbance rejection will affect only the
agents with g < gmax. For example if there is only one
agent with g < gmax, the disturbance entering in it will
not be attenuated at all because its asymptotic value will
be equal to one.

Consider the same formation of the example in Section 5.2,
but with L2 with two poles in the origin, instead of one.

In Section 5.2 the low frequency behavior of agent 2 was
the poorest, but in Fig. 10, because of the pole added, the
disturbance rejection is very good. The asymptotic values
of |S̃11| = 0.687 and |S̃33| = 0.312 get higher if compared
to the example in Section 5.2 because they have to sum
up to the unity.

Fig. 10. Non-homogeneous network sensitivity functions
with different low frequency behavior

5.5 Bode’s integral formula

In Tonetti and Murray [2010] is proved that in a ho-
mogeneous multi-agent system, Bode’s integral formula
for stable open loop systems still holds for each diagonal
interconnected sensitivity function S̃ii, no matter what the
interconnection topology is:∫ ∞

0

log(|S̃ii(jω)|)dω = 0.

This theorem can easily be extended to non-homogeneous
multi-agent systems because numerator and denominator
of S̃ii have the same constant term. We have that ∆p

expressed in (6) and ∆ in (4) are both equal to one for
|L(s)| = 0.

6. CONCLUSION

In this paper we have explored stability and performance
of non-homogeneous systems, extending results obtained
by Fax and Murray [2004] and Tonetti and Murray [2010]
for homogeneous systems.

We have presented a class of multi-agent systems for which
a separation principle is possible, in order to relate forma-
tion stability to interaction topology. Future research must
investigate this interaction for more arbitrary formation
graphs.

We have shown that cycles and paths are still involved
in the network sensitivity functions, but if the agent
dynamics is different, topology is not the only player
in determining system’s performance. The low frequency
behavior is also influenced by static gain and poles of the
open loop function of each agent. If every single agent has
the same number of poles, the larger the low frequency
gain, the better the formation disturbance rejection. If an
agent has a higher number of poles with respect to the
others, it will behave like a single agent in the formation.

We can conclude that there are fundamental limitations
to what can be achieved by distributed control of non-
homogeneous systems. If the behavior of one agent im-
proves, the behavior of the others get worse. Control design
is a redistribution of disturbances at low frequency among
agents.
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