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Abstract: We introduce a theoretical framework for the dynamic sensor coverage
problem for a simple case with multiple discrete time linear dynamical systems
located in different spacial locations. The objective is to keep an appreciable
estimate of the states of the systems at all times by deploying a few mobile sensors.
The sensors are assumed to have a limited range and they implement a Kalman
filter to estimate the states of all the systems. The motion of the sensor is modeled
as a discrete time discrete state Markov chain. Based on some recent results on
the Kalman filtering problem with intermittent observations by Sinopoli et. al., we
derive conditions under which a single sensor fails to solve the coverage problem.
We also give conditions under which we can guarantee that a single sensor is
enough to solve the dynamic coverage problem
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1. INTRODUCTION

Sensor coverage is the problem of deploying mul-
tiple sensors in an unknown environment for the
purpose of automatic surveillance, cooperative ex-
ploration and target detection. Recent years have
witnessed increased interest among the commu-
nication, control and robotics researchers in the
area of mobile sensor networks. Each individual
node in such a network has sensing, computa-
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tion, communication and locomotion capabilities.
When the environment is rapidly changing finding
an efficient deployment strategy becomes a key
issue for any application.

Coverage can be static (fixed sensors) or dynamic
(mobile sensors). Static sensor coverage is desir-
able if the area to be covered is less than the union
of the ranges of the sensor nodes. Static sensor
coverage problem has been considered in (Cortes
et al., 2004b), (Cortes et al., 2004a) and in the
references there in. The dynamic sensor coverage
becomes necessary when a limited number of sen-
sors are available and the area of interest can not
be covered by a static configuration of sensors.
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There have been attempts to empirically solve
the dynamic coverage problem using simulations
and actual robots (Batalin and Sukhatme, 2002)
but a sound theoretical base is still missing in the
literature.

In this paper we consider N discrete time linear
systems located at different points in space. One
may think of dividing the area under considera-
tion using a grid and then these N systems can
be thought to represent the dynamics of local
environment change at the grid points. To begin
with, we consider the case when a single sensor
is employed. The sensor maintains discrete time
Kalman filter estimates of the states of all the
N systems. In order to model the limited range
of the sensor, we constrain the sensor to receive
measurements only for the system where it is
physically located at that time instant. All the
tools developed in this paper can be applied to the
case where multiple grid points fall in the sensory
range and hence the sensor receives measurements
from more than one system, with little modifica-
tions and is left as a future research direction. For
a system where the sensor is located, the sensor
implements both the time update and measure-
ment update laws of the Kalman filter. For all the
other systems for which the sensor did not receive
any measurements, only the time update law is
implemented at that time instant. The motion of
the sensor is governed by a discrete time discrete
state (DTDS) Markov chain, as shown in fig 1.
For successful coverage the sensor needs to hop
from one system to another such that the error
covariance matrices of the estimates of states of all
the N systems are bounded at all times. Intuition
tells us that the sensor should spend more time
at a location where the environment is changing
rapidly than the one where the dynamics are rel-
atively slow.

If multiple locations have fast evolving systems,
one sensor may not be enough to solve the cover-
age problem. We provide conditions under which
such a scenario results. Under a different set of
conditions we prove that a single sensor is enough
to solve the sensor coverage problem.

2. PROBLEM DESCRIPTION

Consider N independently evolving linear discrete
time systems, whose dynamics are given by

{
xi,t+1 = Aixi,t + wi,t

yi,t = Cixi,t + vi,t

(1)

where xi,t, xi,t+1, wi,t ∈ Rni and yi,t, vi,t ∈
Rmi , wi and vi are Gaussian random vectors
with zero mean and covariance matrices Qi and
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Fig. 1. Markov state diagram of sensor motion

Ri respectively and i takes values in the set
{1, 2, 3, · · · , N}.
As already mentioned, the space to be covered
can be discretized using a grid and the above N
systems can be thought to represent the dynamics
of certain local variables at the grid points. These
variables can be temperature, barometric pressure
in case of weather monitoring, threat emergence
rate in case of surveillance and congestion measure
in the case of a network. Cite some references here.

In reality the independent evolution of the sys-
tems assumption may not always hold, as the
dynamics of systems proximate in space may be
highly dependent or even coupled. We are cur-
rently working on the coupled environment case.

We assume that the motion of the sensor is
governed by a DTDS Markov chain. The number
of states is N . If the sensor is in state i at time
t it only has access to the measurement of the
ith system at that time. The state transitions
occur at a fixed time interval which is assumed
to be the same as the sampling period of the
N systems without any loss of generality. An
example discrete time discrete state Markov chain
for N = 3 is shown in figure 1. We will refer to
the transition probability matrix as T . Tij is the
probability that the sensor will be at location j at
time t+1 given that it is in location i at time t.The
matrix T and the relation between the probability
mass functions at time t and t + 1, for the state
transition diagram in Fig. 1 is shown in Eq. (2).
There may be physical constraints on the motion
of the sensor as for example the sensor can not
move between two systems located far away in
space in one time interval. Such restrictions can be
imposed by making the corresponding transition
probability between such states to be equal to
zero.

Let πi(t) be the probability of the sensor being in
the ith location at time t. Then we have eqn. (2).

Markov chains have been used earlier for search
and surveillance problems in the operations re-
search community (Jeffcoat, 2004), (Stone, 1989).

The sensor runs N Kalman filters one for each
of the N systems. For system i the time update



equations of the Kalman filter are implemented
at all time instants, whereas the measurement
update equations are implemented only at those
time instants when the sensor happens to be at
location i.

π(t + 1) =




π1(t + 1)
π2(t + 1)
π3(t + 1)




T

=




π1(t)
π2(t)
π3(t)




T 

T11 T12 T13

T21 T22 T23

T31 T32 T33




︸ ︷︷ ︸
T

(2)

Let Ii,t be the indicator function describing
whether or not the sensor is at location i.

IP[Ii,t = 1] = πi(t) (3)

We model the variance of the measurement noise
for the ith system in the following manner

V ar(vi,t) =

{
Ri, Ii,t = 1
σi

2I, Ii,t = 0
.

When the sensor is not at the location i no obser-
vation is made for system i and this corresponds
to the limiting case of σ →∞. Following a similar
approach as in (Sinupoli et al., 2003) we get the
following Kalman filter equations:

x̂−i,t+1 = Aix̂i,t (4)

P−i,t+1 = AiPi,tA
′
i + Qi (5)

x̂i,t+1 = x̂−i,t+1 + Ii,t+1P
−
i,t+1C

′
i

×(CiP
−
i,t+1C

′
i + Ri)

−1
(yi,t+1 − Cix̂

−
i,t+1)(6)

Pi,t+1 = P−i,t+1 − Ii,t+1P
−
i,t+1C

′
i

×(CiP
−
i,t+1C

′
i + Ri)

−1
CiP

−
i,t+1 (7)

Eqns. (4) and (5) are the time update relations
for the estimate and the error covariance. It can
be clearly seen from eqns. (6) and (7) that the
measurement update is performed only when the
sensor is at location i.

Using the above equations the recursive relation
for the a priori error covariance matrix can be
written as

P−i,t+1 = AiP
−
i,tA

′
i + Qi

− Ii,t+1AiP
−
i,tC

′
i(CiP

−
i,tC

′
i + Ri)

−1
CiP

−
i,tA

′
i (8)

For the rest of this section we will drop the −
superscript from P−i,t.

An important observation is that eq.(8) is stochas-
tic in nature due to presence of the random vari-
able Ii,t+1. We now have N of these stochastic

recursive equations, one for each of the N sys-
tems. So to maintain an appreciable estimate of
the states of all N systems we would want that
limt→∞ IE[Pi,t] remains bounded for all i.

Since both Ii,t+1 and Pi,t are random variables,
we know that

IE[Pi,t+1] = IE
[
IE[Pi,t+1|Pi,t]

]
(9)

where the inner expectation operator is over Ii,t+1

and the outer expectation is over Pi,t. Therefore

IE[Pi,t+1]
= IE[AiPi,tA

′
i + Qi − πi(t + 1)AiPi,tC

′
i

(CiPi,tC
′
i + Ri)

−1
CiPi,tA

′
i]

= IE[gπi(t+1)(Pi,t)] (10)

where

gπi(t+1)(X) = AiXA′i + Qi

− πi(t + 1)AiXC ′i(CiXC ′i + Ri)
−1

CiXA′i (11)

The above is a modified algebraic Riccati equation
(MARE). As in (Sinupoli et al., 2003), for 0 <
πi < 1 we define another MARE as

gπi
(X) = AiXA′i + Qi

− πiAiXC ′i(CiXC ′i + Ri)
−1

CiXA′i (12)

Its easy to observe that the difference between
the MAREs (11) and (12) is that for (11) the
random process Ii,t+1 is non-stationary and hence
πi(t + 1) is time varying, and it varies according
to a DTDS Markov chain as shown in eqns. (2)
and (3). We will now prove that to analyze the
properties of IE[Pi,t] as t → ∞, its sufficient to
work with the steady state probability density
of the Markov chain but before that we need
some basic definitions and results from the DTDS
Markov chain literature.

Definition 1. A DTDS Markov chain is called ir-
reducible if, starting from any one of the states, it
is possible to get to any other state (not necessar-
ily in one jump) with a non-zero probability.

Definition 2. A state i of a Markov chain X has
period d if, given that X0 = i, we can only have
Xn = i when n is a multiple of d. We call i periodic
if it has some period > 1. If the markov chain X
is irreducible, then either all states are periodic or
none are.

Definition 3. Suppose X is a DTDS Markov chain
with finite number of states, X is ergodic if

• X is irreducible
• X is not perodic.

Lemma 4. (Ergodic Theorem). If a DTDS Markov
chain is ergodic, with transition matrix T , then



there is exactly one probability vector π which
satisfies

πT = πTT
In addition, for each i and j,

IP(Xn = j|X0 = i) → πj .

We need the following properties of the function
gπ(X)

Lemma 5. Monotonicity. If 0 ≤ X ≤ Y , then
gπ(X) ≤ gπ(Y )

PROOF. See (Sinupoli et al., 2003)

Lemma 6. Concavity. If β ∈ [0, 1], then gπ(βX +
(1− β)Y ) ≥ βgπ(X) + (1− β)gπ(Y ).

PROOF. See (Sinupoli et al., 2003)

Lemma 7. If X is a random variable then

IE[gπ(X)] ≤ gπ(IE(X)).

PROOF. From lemma 6, we know that gπ(X) is
a concave function of X, therefore the result holds
by Jensens’s Inequality.

Lemmas 5, 6 and 7 all hold for π time varying
and constant. So π in the above results can be
both π(t + 1) and π.

Lemma 8. Suppose π(t) varies according to an
ergodic Markov chain and limt→∞ πi(t) = πi if
(12) remains bounded for all positive semi definite
initial conditions, then (11) remains bounded for
all positive semi definite initial conditions

PROOF. If Pi,0 = Y 0 = 0 then Pi,1 = Y 1 =
gπi(1)(Y

0) = Qi ≥ 0. Hence Y 1 ≥ Y 0, therefore
from lemma 5 gπi(1)(Y

1) ≥ gπi(1)(Y
0) or Pi,2 =

Y 2 ≥ Y 1 = Pi,1. Using an induction argument we
have

0 = Y 0 ≤ Y 1 ≤ Y 2 ≤ Y 3 ≤ · · ·

Let for some tf ≥ 0, πi(tf ) = πi, and we know
that Pi,tf

= Y tf ≥ 0. For t ≥ tf both MAREs (11)
and (12) have the same recursive relation, and
since (12) converges for all positive semi definite
initial conditions it converges for Pi,tf

≥ 0.

If Pi,0 = Z0 ≥ 0, by lemma 5 we know that
gπi(1)(Z

0) ≥ gπi(1)(Y
0), which implies Z1 ≥

Y 1 and thus Ztf ≥ Y tf ≥ 0. Again for t >
tf both recursive relations are the same and
from the assumption of the lemma we know that
(12) converges for all positive semi definite initial
conditions.

In order to find the conditions under which
limt→∞ IE[Pi,t] is unbounded, we define the fol-
lowing recursive relation

hπi(t)(X) = (1− πi(t))AiXA′i + Qi (13)

Lemma 9. For Y ≥ X ≥ 0

(a)hπi(t)(Y ) ≥ hπi(t)(X).
(b)gπi(t)(X) ≥ hπi(t)(X).
(c) If X is a random variable IE[gπi(t)(X)] ≥
hπi(t)(IE[X]).

PROOF.

(a)hπi(t)(Y ) − hπi(t)(X) = (1 − πi(t))Ai(Y −
X)A′i ≥ 0.

(b) See (Sinupoli et al., 2003).
(c) By linearity of the expectation operator.

Lemma 10. Suppose π(t) varies according to an
ergodic Markov chain and limt→∞ πi(t) = πi. Let
Ai be unstable and (Ai, Qi

1
2 ) be controllable, then

limt→∞ IE[Pi,t] is unbounded for some Pi,0 ≥ 0 if

πi < 1− 1
αi

2

where αi = maxj |λi,j |, and λi,j are the eigenval-
ues of Ai.

PROOF. Lets consider the recursive equation

Y t+1 = hπi(t+1)(Y t) = (1−πi(t+1))AiY
tA′i +Qi

(14)
For t > tf , πi(t) = πi, therefore the above
recursive equation is the same as

Zt+1 = (1− πi)AiZ
tA′i + Qi (15)

Zt+1 = ÃiZ
tÃ′i + Qi, (16)

where Ãi =
√

1− πiAi. Eqn. (16) is the discrete
time Lyapunov equation. Since (Ai, Qi

1
2 ) is con-

trollable, so is (Ãi, Qi
1
2 ). If πi < 1− 1

αi
2 , then Ãi

is unstable, therefore the Lyapunov equation does
not have a positive semidefinite fixed point to the
Lyapunov equation (16).

From lemma 9 we know that hπi
(Zt) is a non-

decreasing function, and it does not have a fixed
point, thus it can be shown that limt→∞ Zt is
unbounded for any Z0 ≥ 0.

Now since the recursion (14) initialized at any
Y 0 ≥ 0 yields Y tf ≥ 0, therefore limt→∞ Y t is
also unbounded for any Y 0 ≥ 0.

Again from lemma 9(c), we know that if the
recursive relation defined by MARE (11) and
recursive eqn. (14) are initialized at the same
Y 0 = Pi,0 ≥ 0, then

hπi(t+1)(Y t) = IE[gπi(t+1)(Pi,t)] = IE[Pi,t+1]



But limit of Y t+1 is unbounded, therefore there
exists a Pi,0 ≥ 0, s.t. limt→∞ IE[Pi,t] is un-
bounded.

Lemmas 8 and 10 tell us that if the sensor motion
is modelled by an ergodic DTDS Markov chain,
then the convergence properties of the MARE (11)
can be completely determined by MARE (12) with
the steady state probability πi.

Using the above facts and additional results from
(Sinupoli et al., 2003) we will derive conditions
under which a single sensor fails to solve the
dynamic coverage problem.

Definition 11. We say that the dynamic sensor
coverage problem has been successfully solved
if for any initial probability distribution of the
sensors π(0) the N limits

lim
t→∞

IE[Pi,t] , i ∈ {1, 2, · · · , N}
are finite for any set of initial conditions Pi,0 ≥ 0.

If there exists an i ∈ {1, 2, · · · , N} such that
limt→∞ IE[Pi,t] is unbounded for some Pi,0 ≥ 0,
then the sensors have failed to solve the dynamic
coverage problem.

Theorem 12. Consider the system in eqn. (1). Let

(Ai, Q
1
2
i ) be controllable, (Ai, Ci) be detectable

and Ai be unstable for all i. The sensor motion
is governed by an ergodic DTDS Markov chain
π(t), s.t. limt→∞ π(t) = π. Now if

N∑

i=1

1
α2

i

< N − 1, (17)

where αi = maxj |λi,j |, and λi,j are the eigenval-
ues of Ai, then a single sensor fails to solve the
dynamic coverage problem.

PROOF.

N∑

i=1

1
α2

i

< N − 1

⇒
N∑

i=1

(
1− 1

α2
i

)
> 1

(18)

Therefore for any steady state probability distri-
bution π there exists an i s.t. πi < 1 − 1/αi

2.
Now by lemma 10 we know that limt→∞ IE[Pi,t]
is unbounded for some initial condition Pi,0 ≥ 0.
Thus a single sensor can not solve the dynamic
sensor coverage problem.

It can be seen that eqn. (17) is a measure of how
fast the systems evolve. In fig. 2 the region above

Fig. 2. Failure region

the curve is where a single sensor fails to solve the
dynamic coverage problem for 2 systems. It should
be noted that if one system is evolving very slowly
then the sensor can tolerate very fast dynamics of
the other system before it fails. In such a scenario
the sensor distributes its time in such a way, that
it spends relatively large amount of time observing
the fast system.

We now give some conditions under which its
possible to solve the dynamic sensor coverage
problem by employing a single sensor. Before that
we need to carry over a few terms from (Sinupoli
et al., 2003).

For real symmetric Y , define Ψi(Y,Z) as

Ψi(Y,Z) =


Y
√

π(Y Ai + ZCi)
√

1− πY Ai√
π(A′iY + C ′iZ

′) Y 0√
1− πA′iY 0 Y




(19)

and πu
i

πu
i = argminπ[∃0 ≤ Y ≤ I, Z|Ψi(Y, Z) > 0]

(20)

Theorem 13. If
∑N

i=1 πu
i < 1 then any sensor

motion algorithm defined by an ergodic Markov
chain πi(t) whose steady state probability vector
π lies in the convex hull of the N points



1−
∑

i6=1

πu
i

πu
2
...
...

πu
N




· · ·




πu
1
...

1−
∑

i6=j

πu
i

...
πu

N




· · ·




πu
1

πu
2
...
...

1−
∑

i 6=N

πu
i




solves the dynamic coverage problem.

PROOF. Since π lies in the convex hull of
the above points, therefore there exists βi ≥ 0,∑

i βi = 1, s.t.



Fig. 3. Convex hull in two dimensions

πj = πu
j

∑

i6=j

βi + βj(1−
∑

i 6=j

πu
i )

= πu
j (1− βj) + βj(1−

∑

i6=j

πu
i )

> πu
j (1− βj) + βjπ

u
j

= πu
j

Now it was shown in (Sinupoli et al., 2003) that
if πi > πu

i then the recursive relation defined by
MARE (12)

Y t+1 = gπi
(Y t)

is bounded for all initial conditions Y 0 ≥ 0.

Therefore from lemma 8, we know that the recur-
sive relation defined by

Zt+1 = gπi(t+1)(Zt)

is bounded for all initial conditions Z0 ≥ 0.

IE(Pi,t+1) = IE(gπi(t+1)(Pi,t))

≤ gπi(t+1)(IE(Pi,t))

by lemma 7

Now since gπi(t+1)(IE(Pi,t)) is bounded as t →∞
for all IE(Pi,0) ≥ 0, therefore limt→∞ IE(Pi,t) is
bounded.

For the two system case the convex hull is shown
in fig. 3.

We are currently working on a geometric inter-
pretation of the conditions in theorem 13, as we
did for theorem 12. Our intuition says that the
region where a single sensor can solve the dynamic
coverage problem should lie somewhere in between
the curve 1/α1

2 + 1/α2
2 = 1 curve and the axes

in fig. 2.

3. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we have used existing mathematical
tools from the Markov chains and Kalman filter

literature to define the dynamic sensor coverage
problem. We have considered a simple case in
which N spatially separated linear systems whose
dynamics are decoupled have to be observed by a
single mobile sensor. Due to the finite range of the
sensor, it can make measurements for a particular
system only if it happens to be at that system.
We have modelled the motion of the sensor using
an ergodic DTDS Markov chain. The conditions
derived in the paper satisfy intuition.

There are several avenues of research that this
paper opens up. The most immediate one is the
construction of an appropriate transition proba-
bility matrix, once it is confirmed that a single
sensor can solve the dynamic coverage problem.
This will allow the sensor to make decisions on its
next move based on its present location. One can
also think of defining a cost function which can
be used to trade off quality of estimates for overall
sensor movement, thus reducing fuel consumption.
One simple way to reduce sensor motion is to
maximize the trace of the transition probability
matrix. The matrix T can be sparse if movement
between certain states is prohibited due to large
separation in space.

Other research directions that we currently pur-
suing are solving the coverage problem, when the
dynamics of the environment are coupled and de-
pendent at different locations and multiple sensor
case for non-cooperating and cooperating sensors.
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