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Abstract— In this paper, we pose theN -scalar agent ren-
dezvous as a polyhedral cone invariance problem in theN
dimensional phase space. The underlying dynamics of the
agents are assumed to be linear. We derive a condition
for positive invariance for polyhedral cones. Based on this
condition, we demonstrate that the problem of determining a
certificate for rendezvous can be stated as a convex feasibility
problem. Under certain rendezvous requirements, we show
that there are no robust closed-loop linear solutions that satisfy
the invariance conditions. We show that the treatment of the
rendezvous problem on the phase plane can be extended to
the case where agent dynamics are non-scalar.

I. I NTRODUCTION

The demand for multi-agent coordination and cooperative
control (as cited in [1] and [2] for instance) has led to
the emergence of interesting control problems such as the
rendezvous problem. In the rendezvous problem, one de-
sires to have several agents arrive at predefined destination
points simultaneously. Real applications of the rendezvous
problem include cooperative strike and jamming, ballistic
missile interception, spacecraft docking, formation flying,
and multi-agent consensus. The rendezvous control problem
has been treated in [3], [4], and [5]. However, a systematic
theory of rendezvous is still to be explored.

In [3], we pose the two-scalar agent rendezvous problem
as a combination of a cone invariance problem and a
stability problem in a two-dimensional phase space. We
presented a level-set method of constructing control Lya-
punov functions. Based on this method, we derived the main
result of the paper, a certificate theorem for guaranteeing
approximate rendezvous. Using the ideas from [3], we
pose the N-dimensional rendezvous problem on an N-
dimensional phase space where the underlying closed-loop
agent dynamics are linear. Because the underlying dynamics
are linear, there exist quadratic control Lyapunov functions.
Therefore, in this paper we focus our attention on satisfying
cone invariance for rendezvous.

Invariance of polyhedral domains is well studied in the
literature([6], [7], [8]). Traditionally, polyhedral invariance
has been used to study the linear constrained regulation
problem ([9], [10]) and problems with control and input
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saturation ([11]). Because of the nature of these problems,
polyhedral invariance literature is well developed when the
polyhedral set is represented in the constraint form (plane
representation in [7]). However, in rendezvous applications,
we employ a worst case analysis and thus we usually
deal with polyhedral sets represented in the generator form
(vertex representation in [7]). In this paper, we derive
invariance conditions for polyhedral cones represented in
the generator form.

In section II we introduce the notation used in the paper
and basic results from linear algebra. In section III we
represent the N scalar agent rendezvous problem on the
phase plane, and define constraints on the trajectories. In
section IV we present a rendezvous certificate theorem. In
section V we analyse the implications of the cone invari-
ance conditions on the eigenstructure of the closed loop
dynamics. In section VI we demonstrate the applicability
of phase-plane concepts to non-scalar agent rendezvous. In
section VII we provide a summary of the results in this
paper and describe current research thrust.

II. N OTATIONS AND MATHEMATICAL PRELIMINARIES

Definition 1: We will denote the2N hyper-octants of the
vector spaceRN asO1, O2, · · · , O2N .

Definition 2: We denote the strict interior of a setS by
int(S). The boundary of the setS will be denoted byß(S).

Lemma 1: Letv1, v2, · · · , v2N be vectors inR
N such

that
vi ∈ int(Oi).

then there is a set ofN linearly independent vectors in the
set ofvis. In other words, there exist indicesj1, j2, · · · , jN
such that

vj1 , vj2 , · · · , vjN

is a linearly independent set.
Proof: The proof of this lemma is presented in the

appendix.
Definition 3: The conical hull of the pointse1, e2, · · · ,

em in R
N is the region defined by

{x ∈ R
N : x = α1e1+α2e2+· · ·+αmem, αi ∈ R, αi ≥ 0}.

If E ∈ R
N×m then the conical hull of the columns ofE

will be denoted asCone(E). The pointse1, e2, · · · , em are
called the generators for the coneCone(E).

Richard Murray
Text Box
Submitted, 2004 Conference on Decision and Controlhttp://www.cds.caltech.edu/~murray/papers/2004n_tfbm04-cdc.html



Definition 4: A polyhedral cone is the one which can be
constructed by taking the conical hull of a finite number of
generators.

Definition 5: A real m × m matrix T is said to be
nonnegative if all its terms are nonnegative, i.e.

Tij ≥ 0, ∀i, j.

We will denote this by

T ≥ 0.
In order to distinguish from nonnegative matrices, we use
the following symbols to denote sign definiteness.

T is symmetric positive definite =⇒ T � 0
T is symmetric positive semidefinite=⇒ T � 0
T is symmetric negative definite =⇒ T ≺ 0
T is symmetric negative semidefinite=⇒ T � 0

Definition 6: A real m × m matrix T is said to be
essentially nonnegative if all the off-diagonal terms are
nonnegative, i.e.

Tij ≥ 0, ∀i 6= j.

We will denote this by

T
e

≥ 0.
Definition 7: The spectral abscissa ([12])r(A) of anN×

N matrix A is defined as the maximum real parts of its
eigenvalues.

r(A) = max{Re(λ) : λ ∈ spec(A)}.
The following is a well known result in linear algebra and

can be derived by extending Perron’s results (theorem 8.3.1
in [13]) for nonnegative matrices to essentially nonnegative
matrices.

Lemma 2: If T is anm × m essentially nonnegative
matrix, then r(T ) is an eigenvalue of T and there is a
nonnegative vectorx ≥ 0, x 6= 0, such thatTx = r(T )x.

Proof: The proof of this lemma is presented in the
appendix.

III. N SCALAR AGENT RENDEZVOUS

In this section we will define the rendezvous problem
for N scalar agents trying to rendezvous at the origin of
the real line. We considerN scalar agents with closed loop
linear dynamics.

ẋ = Ax, (1)

x = [x1 x2 · · · xN ]
T
, (2)

xi ∈ R.

For now, we will assume perfect communication between
every pair of agents, therefore in general the matrixA
is full. Rendezvous under lossy communication is an
avenue of further ongoing research. The development in
this section is very similar to the cone invariance ideas
developed for the 2 scalar vehicle case in [3].

Ideally, rendezvous for N scalar agentsV1 , V2 , · · ·
, VN is said to be successful if all theN agents reach
the origin at precisely the same time as each other.
Being consistent with [3] we will refer to this as perfect
rendezvous. For all practical purposes, it is sufficient that
the agents reach the origin with in a small time interval of
each other.

We will represent this problem on theN dimensional
phase space. Define regions on the phase space

Ui = {(x1, x2, · · · , xN ) | − δ ≤ xi ≤ δ} ,

i ∈ {1, 2, · · · , n} (3)

the rendezvous hypercube is then

S =
⋂

i

Ui (4)

The arrival times of the agents in the rendezvous regionR
are

tVi
= min [ t | x(t) ∈ Ui ] i ∈ {1, 2, · · · , n} (5)

We define the earliest arrival timeta as

ta = min(tV1
, tV2

, · · · , tVN
) (6)

The approximate rendezvous specification for the N scalar
agents case can be written as

ρ =
max(|x1(ta)|, |x2(ta)|, · · · , |xN (ta)|)

δ
≤ ρdes (7)

For perfect rendezvousρdes = 1. Note that eqn.(7) is an
upper bound on the infinity norm of the position of agents
at the earliest time of arrivalta. In other words eqn.(7)
means that at the time of the earliest entry of an agent into
the rendezvous region, the rest of the agents should not be
farther thanδρdes.

Consider the hypercubeC of sideδ(ρdes−1) in R
n whose

body diagonal is the line joining the points

A = (δ, δ, · · · , δ)

and
B = (δρdes, δρdes, · · · , δρdes)

Let Υ be the set of all the vertices ofC exceptA andB.
Define the polyhedral coneI as

I = Cone(x : x ∈ Υ)

Note thatΥ has2N−2 points. We will call these pointse∞1 ,
e∞2 , · · · , e∞2N−2 as generators. The superscript∞ is used
to denote that these points are the boundary points under
∞ norm specification of approximate rendezvous. Define
a matrixR

N×(2N
−2) matrix E∞ whose ith columns is the

coordinates of the pointe∞i .
An important observation is that if the polyhedral coneI

is positively invariant with respect to the system in eqn.(1)
and if the system (1) is asymptotically stable then all



trajectories of eqn.(1) that originate in the coneI satisfy
the approximate rendezvous specification.

In the following example we demonstrate how to identify
the coneI for N = 3.

Example 1:Using the approximate rendezvous specifi-
cation given in eqn.(7) for the 3 scalar agent case, the
generator pointse∞1 , e∞2 , · · · , e∞6 in the positive orthant
are found to be

e∞1 = (δ, δ, δρdes)
e∞2 = (δ, δρdes, δ)
e∞3 = (δρdes, δ, δ)
e∞4 = (δρdes, δρdes, δ)
e∞5 = (δρdes, δ, δρdes)
e∞6 = (δ, δρdes, δρdes)

The conical hull of the above points is the outer cone in
fig.2.

Note that the approximate rendezvous can also be speci-
fied in the 2-norm or 1-norm sence, our regionI will be a
second order cone or a polyhedral cone with N generators
respectively.
The 2-norm case is dealt with in .For the case of 1-norm
the approximate rendezvous specification takes the form

|x1(ta)| + |x2(ta)| + · · · + |xN (ta)| ≤ δρdes (8)

For perfect rendezvous

ρdes = N (9)

and for feasible approximate rendezvous

ρdes ≥ N (10)

Eqn.(8) will give usN generator points in each of the
hyper-octants. The invariant cones will be defined as the
conical hull of the boundary points in each hyper-octant.
In the following example we identify the desired invariant
cone inR

3
+.

Example 2:Using the approximate rendezvous specifi-
cation given in eqn.(8) for the 3 scalar agent case, the
generator pointse11 , e12 and e13 in the positive orthant are
found to be

e11 = (δ, δ, δ(ρdes− 2))

e12 = (δ, δ(ρdes− 2), δ)

e13 = (δ(ρdes− 2), δ, δ)
The conical hull of the above points is shown in fig. 1.

IV. RENDEZVOUS CERTIFICATE

In this section, we first present a lemma on invariance
of polyhedral cones. A similar result appears in [6]. Based
on this lemma, we then state state sufficient conditions for
rendezvous ofN scalar agents.

Lemma 3: Consider a system with closed loop dynamics
given by eqn.(1). Lete1, e2,· · · , em be points in R

N

and let E be a matrix inRN×m constructed by choosing
these points as columns. Then the regionCone(E) is

x2

x1

x3

e1

1

e1

3

e1

2

Fig. 1. The desired invariant polyhedral cone inR
3
+

under1 norm
specification.

Fig. 2. The desired invariant polyhedral cones under1 norm and
∞ norm specifications forδ = 0.2 andρdes = 3.5 in R

3
+

.

positively invariant w.r.t. system of eqn.(1) iff there exists
an essentially nonnegativem×m matrix T s.t.

AE = ET (11)
Proof: (Sufficiency) Assuming condition (11) holds, we

need to prove the following implication:

x(0) ∈ Cone(E) ⇒ x(t) ∈ Cone(E), ∀t > 0 (12)

Now

AE = ET (13)

⇒ AkE = ET k, ∀k ∈ N (14)

⇒ eAtE = EeTt (15)

Since x(0) ∈ I, therefore there exists a nonnegative
vectorα ∈ R

m : α ≥ 0, s.t.

x(0) = Eα (16)

The expression forx(t) is given as

x(t) = eAtx(0), ∀t ≥ 0 (17)



Substituting (16) in (17) and then using (15) we get

x(t) = EeTtα (18)

Now we will use the following classical result from [14]
T essentially nonnegative ⇔ eTt nonnegative:
eTt ≥ 0, ∀t ≥ 0.

A nonnegative square matrix multiplied by a nonnegative
vector will give us some nonnegative vectorβ. Therefore

x(t) = Eβ, β ≥ 0 (19)

Thusx(t) ∈ Cone(E).
(Necessity) To prove necessity we assume that implication
(12) holds.

Lets representx(t) as

x(t) = Eα(t), α(t) ≥ 0 ∀t ≥ 0 (20)

Now lets consider an infinitesimal move from the ith ray
of the polyhedral cone. We consider a pointx0

i on the ith
ray given by

x0
i = Eα, αj = 0 ∀j 6= i, αi = 1 (21)

Differentiating (20) atx0
i gives us

ẋ(t)
∣

∣

∣x=x0

i

= Eα̇(t)
∣

∣

∣x=x0

i

(22)

⇒ Ax0
i = Eα̇(t)

∣

∣

∣x=x0

i

(23)

⇒ AE





















0
0
...
1
...
0





















= Eα̇(t)
∣

∣

∣x=x0

i

(24)

For a trajectory starting atx = x0
i , to stay inside the

polyhedral coneI we should have

α̇j(t) ≥ 0, ∀j 6= i (25)

Combining (24) and (25) we can rewrite

AE
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= ET
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(26)

Where the ith column of the matirx T is given by

Tji = α̇j(t)
∣

∣

∣x=x0

i

(27)

Note that T is essentially nonnegative by construction
Similarly applying positive invariance for other rays of

the polyhedral cone, we can prove that the action ofAE is
the same as the action ofET on a basis ofRm.

Therefore there exists aRm×m essentially nonnegative
matrix T such that

AE = ET (28)

�

The following is a certificate theorem for approximate
rendezvous under∞ norm specification.

Theorem 1: Consider N scalar agents with closed loop
dynamics

ẋ = Ax, x ∈ R
N

If there exists a symmetric positive definite matrixP ∈
R

N×N and an essentially nonnegative matrixT ∈
R

(2N
−2) × (2N

−2) s.t.

AE∞ = E∞T

T
e

≥ 0

}

Positive Invariance and,

ATP + PA ≺ 0
P � 0

}

Asymptotic Stability.

whereE∞ ∈ R
N × 2N

−2 is the matrix whose columns are
the pointse∞1 ,e∞2 ,· · · ,e∞2N−2,
then the agents will achieve rendezvous with∞ norm
specificationρdes, for all initial conditions lying in the
regionCone(E∞).

Proof: The Proof of Theorem 1 directly follows from
Lemma 3 and a well known result on asymptotic stability
of linear systems.

�

Notes:
1) A similar result can be written down for the case

when approximate rendezvous is specified in terms
of 1 norm.

2) The conditions in the theorem are linear inT and
P . Checking whether the conditions are satisfied is a
convex feasibility problem.

Example 3:Consider the a closed loop system of3 scalar
agents described by

ẋ =





−3.5 1.0607 1.0607
1.0607 −4.25 0.75
1.0607 0.75 −4.25



x, x ∈ R
3. (29)

Suppose we want to attain rendezvous in the∞ norm as
well as the1 norm sense forρdes = 3.5 and δ = 0.2. The
correspondingE matrices in the first quadrant are found to
be.

E∞

1 =





0.2 0.2 0.7 0.7 0.7 0.2
0.2 0.7 0.2 0.7 0.2 0.7
0.7 0.2 0.2 0.2 0.7 0.7





E1
1 =





0.2 0.2 0.3
0.2 0.3 0.2
0.3 0.2 0.2





The eigenvalues of the closed loop system are all negative
so it is asymptotically stable. Solving the convex invariance



conditions of Theorem 1 gives us the following certificates
of invariance for the∞ norm and1 norm case.

T
∞

=

2

6

6

6

6

6

4

−5.1204 0.27406 0.32365 0.40817 0.38185 0.68189

0.27406 −5.1204 0.32365 0.38185 0.40817 0.68189

0.59777 0.59777 −3.967 1.1164 1.1164 0.75311

0.33292 0.72742 0.40784 −4.2645 0.70919 0.73746

0.72742 0.33292 0.40784 0.70919 −4.2645 0.73746

0.31615 0.31615 0.25364 0.26942 0.26942 −5.237

3

7

7

7

7

7

5

T 1 =





−4.8561 0.14389 0.15153
0.14389 −4.8561 0.15153
2.576 2.576 −2.2878





Thus the system in eqn.(29) achieves rendezvous in both
∞ and1 norm sense for the given set of specifications.

Now consider the system

ẋ =





−3.5 1.299 0.75
1.299 −3.875 0.6495
0.75 0.6495 −4.625



 x, x ∈ R
3. (30)

The eigenvalues of the closed loop matrix have negative
real parts as before. The invariance conditions result in a
feasible solution for the∞ norm case. But for1 norm the
problem is infeasible. The certificateT∞ is found to be:

T
∞

=

2

6

6

6

6

6

4

−5.6439 0.11616 0.11318 0.20068 0.36674 0.47836

0.38285 −4.7636 0.47993 0.45272 0.49437 1.1309

0.51386 0.58304 −4.1351 0.89419 1.4422 0.66432

0.37492 1.0447 0.8554 −3.4123 1.0348 1.0556

0.60755 0.16985 0.15355 0.29562 −5.1806 0.43858

0.44786 0.1523 0.14734 0.17189 0.2755 −5.4927

3

7

7

7

7

7

5

This example shows that for given values ofρdes and
δ, 1 norm specifications impose stricter constraints on the
trajectories than∞ norm specifications. Fig. 3 shows some
trajectories of the system in eqn.(30). Notice that while the
trajectories are invariant w.r.t. to the∞ norm cone, they
move in and out of the1 norm cone.

Fig. 3. Trajectories invariant w.r.t. the outer cone but notthe inner cone

V. I MPLICATION OF THE INVARIANCE RESULT ON THE

EIGENSTRUCTURE OFA

Theorem 1 only guarantees rendezvous for initial condi-
tions lying inCone(E∞) which lies completely inside the
positive hyper-orthant. If rendezvous has to be guaranteed
for initial conditions lying in all equivalent cones in all other
hyper-orthants (for example the regionI1 ∪ I2 ∪ I3 ∪ I4

in fig. (4)) , then the required sufficient conditions are the
collection of all invariance conditions for each of these
cones. But as we will find out in this section, satisfying all
such conditions imposes restrictions on the eigenstructure
of the closed loopA matrix and results in solutions which
are non-robust.

In this section we will present results for approximate
rendezvous under both the∞ norm and1 norm specifica-
tions. Due to the nonsingular nature of theE matrices in the
case of1 norm, the result is much stronger, as compared to
the∞ norm case. We first present results for the∞ norm
case.

Recall from Section III, that for the∞ norm case theE∞

matrix in the positive hyper-orthant belongs toR
N×2N

−2.
If ρdes > 1 thenE∞ is full rank. From now on we will
call theE∞ matrix in the positive hyper-orthant to beE∞

1 .
The equivalent matrices in the other hyper-orthants will be
numberedE∞

2 , E∞
3 , · · · , E∞

2N .
Note thatE∞

2 , E∞
3 , · · · , E∞

2N can be obtained from
E∞

1 by multiplying it with a nonsingular rotation matrix.
ThereforeE∞

2 , E∞
3 , · · · , E∞

2N are also full rank. We will
now state and prove the following lemma.

Theorem 2: LetCone(E∞
1 ) be the desired invariant

cone in the positive hyper-octant for∞ norm approximate
rendezvous specificationρdes > 1 and let Cone(E∞

2 ),
Cone(E∞

3 ), · · · and Cone(E∞

2N ) be the symmetric ro-
tations of Cone(E∞

1 ) in the other hyper-octants. Now
if all the above conesCone(E∞

1 ), Cone(E∞
2 ), · · · and

Cone(E∞

2N ) are positively invariant with respect to the
system

ẋ = Ax, x ∈ R
N

then all eigenvalues of A are real.
Proof: Cone(E∞

1 ), Cone(E∞
2 ), · · · and Cone(E∞

2N )
are positively invariant with respect to the above system,
therefore by Lemma 3 there exist essentially nonegative
matricesT1, T2, · · · , T2N , such that

AE∞

i = E∞

i Ti (31)

Ti

e

≥ 0 (32)

Ti ∈ R
(2N

−2)×(2N
−2) (33)

Now by lemma 2,r(Ti) is an eigenvalue ofTi and there
existsxi ≥ 0, xi 6= 0 such that

Tixi = r(Ti)xi (34)

Multiplying both sides byE∞
i we get

E∞

i Tixi = r(Ti)E
∞

i xi (35)

AE∞

i xi = r(Ti)E
∞

i xi (36)

Now E∞
i xi 6= 0 andE∞

i xi ∈ Cone(E∞
i ), thereforer(Ti)

is an eigenvalue ofA and there exists a corresponding
eigenvector inCone(E∞

i ).
This means thatA has 2N eigenvectors in the strict

interior of each orthant. Therefore by Lemma 1,N of
these vectors are linearly independent. Therefore all N



eigenvalues ofA are real and are given by the spectral
abscissa of theTi matrices.

�

We are able to prove a stronger under1 norm specification,
which we present now,

Theorem 3: LetCone(E1
1) be the desired invariant

cone in the positive hyper-octant for1 norm approximate
rendezvous specificationρdes > N and let Cone(E1

2 ),
Cone(E1

3 ), · · · and Cone(E1
2N ) be the symmetric rota-

tions ofCone(E1
1) in the other hyper-octants. now if all

are all the above conesCone(E1
1 ), Cone(E1

2 ), · · · and
Cone(E1

2N ) are positively invariant with respect to the
system

ẋ = Ax, x ∈ R
N

then A has a single real eigenvalue with algebraic multi-
plicity = geometric multiplicity = N.

Proof: All steps of the proof for Theorem 2 hold by
replacing the matricesE∞

i by the matricesE1
i . In addition

now we know thatE1
i ∈ R

N×N , therefore the matricesA,
T1, T2, · · · andT2N are similar. Thus we have

r(T1) = r(T2) = · · · = r(T2N ) (37)

So all eigenvalues ofA are the same withN linearly
independent eigenvectors.

�

Example 4 (2 scalar agent rendezvous):In this example
we demonstrate Theorem 3 in the2 dimensional phase
space. In2 dimensions the desired invariant cones are the
same for both∞ norm and1 norm cases. The coneI1 in
fig. 4 can be represented as

I1 = Cone(E1
1) (38)

E1
1 =

[

δρdes δ
δ δρdes

]

(39)

The conesI2, I3 andI4 can be generated by rotatingI1

by π/2, π, and3π/2 radians respectively therefore

Ii = Cone(E1
i ), (40)

E1
i = Ri−1E1

1 , i ∈ {1, 2, 3, 4}and (41)

R =

[

0 −1
1 0

]

. (42)

Now from Lemma 3, if all the conesI1, I2 I3 and I4

are positively invariant w.r.t. the system

ẋ = Ax, x ∈ R
2,

then A has a unique real eigenvalue with algebraic mul-
tiplicity = geometric multiplicity = 2. In other words the
systemẋ = Ax has radial vector fields as shown in fig. (5).

Note:

• If ρdes> N the polyhedral cone corresponding to the
1norm specification is fully contained in the corre-
sponding polyhedral cone for the∞ norm case. We

I1

δρdes

x1

x2

2δ

I3

I2

I4

Fig. 4. The desired invariant cones for 2 scalar agent rendezvous.

x1

x2

Fig. 5. Radial vectror fields.

conjecture that the only solution possible in theinfty
norm specification is the one that results in radial fields
(all eigenvalues same and real), however we are still
working on the proof of this stronger result.

• The radial fields solutions thus obtained are non-robust
to disturbance and uncertainty. The trajectories live on
the boundary of the polyhedral cone and can easily
deviate out of the cone under uncertainty.

• If rendezvous is desired for initial conditions lying in
all the hyperoctants, nonlinear control design along the
lines of [3] is likely to give a robust solution.

VI. N ON-SCALAR AGENT RENDEZVOUS

In this section we will demonstrate the applicability of
the theory developed in sections III and IV to the case of
non-scalar agents. We will demonstrate the simple case of
two planar agents trying to rendezvous at the origin ofR2.
Let us consider two planar vehicles with combined closed
loop dynamics

˙







x1

y1
x2

y2









= A









x1

y1
x2

y2









(43)

wherexi, yi ∈ R.
In fig. 6, the rendezvous task for agents1 and 2 is to

reach the inner square of sideδ around origin within a
small time interval of each other. To accomplish this task,



we require that at the first instant when one agent enters the
inner square, the other agent should be at least inside the
outer square of sideδρdes. To state this condition formally
we define:

tVi
= min [ t : max{|xi(t)|, |yi(t)|} ≤ δ ] ,

i ∈ {1, 2},
ta = min {tV1

, tV2
}.

In this sense,tVi
is the arrival time of thei-th agent to the

inner square, Therefore for successful rendezvous,

max
i

[max{|xi(ta)|, |yi(ta)|}}] ≤ δρdes. (44)

δρdes

1

2

δ

Fig. 6. Rendezvous on a plane.

Define the regionW ∈ R
4 as

W =

















x1

y1
x2

y2









:

1
ρdes

≤
∣

∣

∣

x1

x2

∣

∣

∣ ≤ ρdes

1
ρdes

≤
∣

∣

∣

y1

y2

∣

∣

∣ ≤ ρdes









. (45)

In order to guarantee rendezvous for all initial conditions
lying in W , we will break down the planar rendezvous
problem into two scalar rendezvous problems. The idea
being, that ifx1, x2 and y1, y2 attain rendezvous in their
respective two dimensional phase spaces, then rendezvous
will be successful on the plane.
We define the matrixEplanar

1 as

Eplanar
1 =









δ ρdes 0 0
0 0 δ ρdes

ρdes δ 0 0
0 0 ρdes δ









. (46)

Its is easy to verify the following result:
Lemma 4:









x1

y1
x2

y2









∈ Cone(Eplanar
1 ) (47)

if and only if
[

x1

x2

]

∈ Cone

([

δ δρdes

δρdes δ

])

(48)
[

y1
y2

]

∈ Cone

([

δ δρdes

δρdes δ

])

. (49)

Now we can state the rendezvous certificate theorem for
planar rendezvous,

Theorem 4: If the system in eqn.(43) is asymptotically
stable and there exists a4 × 4 matrix T such that

AEplanar
1 = Eplanar

1 T (50)

T
e

≥ 0, (51)

then we can guarantee rendezvous for all initial conditions
such that

xi(0), yi(0) ≥ 0








x1(0)
y1(0)
x2(0)
y2(0)









∈ W .

Proof: The proof of the theorem follows from Lemma 3
and Lemma 4.

�

It is important to note that this theorem only provides
sufficient conditions for rendezvous, and yields certificates
for trajectories where an agent never crosses from one
quadrant to another on the plane. For instance, although
the trajectories shown in fig.7 achieve successful planar
rendezvous, the trajectories violate the invariance conditions
required by the theorem. Deriving a more general certificate
theorem which covers these cases is the subject of ongoing
research.

2

1

Fig. 7. Limitations of Theorem 4.

VII. C ONCLUSIONS ANDFUTURE WORK

We have extended the concepts outlined in [3] to the
case of N scalar agents and have demonstrated their
utility for non-scalar agents. While in [3] we considered
2 scalar agents with non-linear dynamics, in this paper
the underlying dynamics are always assumed to be linear.
We have employed the theory of invariance of polyhedral
regions to derive a set of convex conditions, which when
feasible yield a certificate of successful rendezvous. We
have also shown that if rendezvous certificates are desired
for initial conditions lying in a much larger symmetric
set around the origin, the problems is over-constrained.
The only feasible closed-loop linear dynamics that satisfy
this over-constrained problem are the ones with radially
decaying vector fields. All such solutions are non-robust
to uncertainties. This suggests that for robustness in the
over-constarined case, we need to use non-linear synthesis.



Currently we focus on the problem of designing linear
state feedback controller for rendezvous ofN scalar agents.
A first attempt at the synthesis problem lead us to a
set of conditions which are bilinear. We are surveying
mathematics literature ([15], [16]) for a method to minimize
the spectral abscissa of an essentially nonnegative matrix
under cone invariance constraints. Future directions also
include introducing uncertainity and communication link
failure between the cooperating agents.
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VIII. A PPENDIX

Proof of Lemma 1:We will need the following Lemma
for this proof

Lemma 5: Letv1, v2, · · · , v2N be vectors inR
N such

that vi ∈ int(Oi) then there existαi ∈ R, αi ≥ 0 such
that

α1v1 + α2v2 + · · · + α2N v2N = 0 (52)
We skip the proof of Lemma 5. Continuing with the

proof of Lemma 1, letei = [0, 0, · · · , 1, 0, · · · , 0] with

1 in the ith coordinate, then we shall show thatei ∈
span{v1, v2, · · · , v2N }. Renumbervj ’s if necessary so
that the ith coordinate of the first2N−1 vectors is pos-
itive. Let uj be the vectorvj without the ith coordi-
nate. Thenu1, · · · , u2N−1 are in different hyper-octants of
R

2N−1

. Therefore by Lemma 5 there exist nonnegative reals
α1, · · · , α2N−1 such that

α1u1 + α2u2 + · · · + α2N−1u2N−1 = 0

Hence

α1v1 + α2v2 + · · · + α2N−1v2N−1 = αei

whereα > 0. Henceei ∈ span{v1, v2, · · · , v2N }. Hence
proved.

�

Proof of Lemma 2:If T
e

≥ 0 then there is someψ > 0
such thatψI + T ≥ 0.

Note thatxi is an eigenvector ofψI + T with corre-
sponding eigenvalueλi iff xi an eigenvector ofT with the
corresponding eigenvalueλi−ψ. Now from Theorem 8.3.1
in [13] we know that the spectral radiusρ(ψI + T ) is an
eigenvalue ofψI+T with a nonnegative eigenvector. Hence
ρ(ψI + T ) − ψ is an eigenvalue ofT with a nonnegative
eigenvector. Now ifλi are the set of eigenvalues ofψI+T
then we have

Re(ρ(ψI + T )) − ψ) ≥ Re(λi − ψ)

Hence proved.
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