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Abstract— In this paper, we pose the N-scalar agent ren- saturation ([11]). Because of the nature of these problems,
dezvous as a polyhedral cone invariance problem in theV  polyhedral invariance literature is well developed whea th
dimensional phase space. The underlying dynamics of the q\yheqdral set is represented in the constraint form (plane

agents are assumed to be linear. We derive a condition tation in [71). H . d licati
for positive invariance for polyhedral cones. Based on this representation in [7]). However, in rendezvous appliceio

condition, we demonstrate that the problem of determining a W€ emp|0y a worst case analysis a_nd thus we usually
certificate for rendezvous can be stated as a convex feasibjl ~ deal with polyhedral sets represented in the generator form
problem. Under certain rendezvous requirements, we show (vertex representation in [7]). In this paper, we derive

that there are no robust closed-loop linear solutions thatatisfy ; i ;
; - - invariance conditions for polyhedral cones represented in
the invariance conditions. We show that the treatment of the poly P
the generator form.

rendezvous problem on the phase plane can be extended to

the case where agent dynamics are non-scalar. In section Il we introduce the notation used in the paper
and basic results from linear algebra. In section Il we
|. INTRODUCTION represent the N scalar agent rendezvous problem on the

The demand for multi-agent coordination and cooperativiehase plane, and define constraints on the trajectories. In
control (as cited in [1] and [2] for instance) has led tosection IV we present a rendezvous certificate theorem. In
the emergence of interesting control problems such as tkection V we analyse the implications of the cone invari-
rendezvous problemin the rendezvous problem, one de-ance conditions on the eigenstructure of the closed loop
sires to have several agents arrive at predefined destinatidynamics. In section VI we demonstrate the applicability
points simultaneously. Real applications of the rendegvo®@f phase-plane concepts to non-scalar agent rendezvous. In
problem include cooperative strike and jamming, ballistisection VIl we provide a summary of the results in this
missile interception, spacecraft docking, formation ftyin paper and describe current research thrust.
and multi-agent consensus. The rendezvous control proble_znpl' N OTATIONS AND MATHEMATICAL PRELIMINARIES
has been treated in [3], [4], and [5]. However, a systematic o i
theory of rendezvous is still to be explored Definition 1: We will denote the2’V hyper-octants of the

) N

In [3], we pose the two-scalar agent rendezvous probleMfCtor SPac&®™ asOy, Oy, -+, Opv.
as a combination of a cone invariance problem and a Definition 2: We denote the strict interior of a sétby
stability problem in a two-dimensional phase space. W&!(S)- The .boundary of the s& will be denoted E’Vﬁ(s)-
presented a level-set method of constructing control Lya- Lémma 1: Leti, vz, ---, vyv be vectors inR™ such
punov functions. Based on this method, we derived the malhat )
result of the paper, a certificate theorem for guaranteeing v; € int(O;).

approximate rendezvous. Using the ideas from [3], Wgnen there is a set ¥ linearly independent vectors in the
pose the N-dimensional rendezvous problem on an Nt ofy;s. In other words, there exist indicgs, jo, - - -, jn
dimensional phase space where the underlying closed-loggch that

agent dynamics are linear. Because the underlying dynamics

are linear, there exist quadratic control Lyapunov funaio _ _

Therefore, in this paper we focus our attention on satigfyinis & linearly independent set.

cone invariance for rendezvous. Proof: The proof of this lemma is presented in the
Invariance of polyhedral domains is well studied in thetppendix. _ _

literature([6], [7], [8]). Traditionally, polyhedral irariance D_eflnIJtVIO_n 3: The conical hull of the points,, e, -,

has been used to study the linear constrained regulatiém in R™ is the region defined by

problem ([9], [10]) and problems with control and |nput{x c RN .

Vj15Vjay** 5 Ujy

x = arertages+- - +amen, a; € R «; > 0}.

;Géfgé’:;fesé‘tﬁgmtdr:“g&a@ﬁd;éhcae'dtuem edu If £ € RNXm then the conical hull of the columns df
§ Postdoctoral Sch()'lar,akti m@ds. cal t ech. edu will be denoted agone(E). The pointsey, ez, - - -, e, are

qProfessornur r ay@ds. cal t ech. edu called the generators for the cof®ne(E).
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Definition 4: A polyhedral cone is the one which can beldeally, rendezvous for N scalar agents , V, , ---
constructed by taking the conical hull of a finite number of Vy is said to be successful if all th& agents reach

generators. the origin at precisely the same time as each other.
Definition 5: A real m x m matrix T is said to be Being consistent with [3] we will refer to this as perfect
nonnegative if all its terms are nonnegative, i.e. rendezvous. For all practical purposes, it is sufficient tha
o the agents reach the origin with in a small time interval of
Tij 20, Vi, j. each other.
We will denote this by We will represent this problem on th& dimensional
70 phase space. Define regions on the phase space
In order to distinguish from nonnegative matrices, we use Ui = {(z1,72, -+ ,2n) | —6 <z; <6},
the following symbols to denote sign definiteness. i € {1,2,---,n} (3)
T is symmetric positive semidefinite—- T >0
T is symmetric negative definte ~— T <0 S= m Ui (4)
T is symmetric negative semidefinite= T <0 i

Definition 6: A real m x m matrix T is said to be The arrival times of the agents in the rendezvous region
essentially nonnegative if all the off-diagonal terms ar@&'€

nonnegative, i.e. ty, = min [t|z(t)eU;] ie{l,2,---,n} (5)
Tij 20, Vi #j. We define the earliest arrival timg as
We will denote this by tq = min(ty,, ty,, - tyy) (6)
T=>0. The approximate rendezvous specification for the N scalar

Definition 7: The spectral abscissa ([12))A) of anN'x  agents case can be written as

N matrix A is defined as the maximum real parts of its

eigenvalues. p = max(lz(ta)l Jealta)l, - Jon(ta)l) ) gy
5 <

r(A) = max{Re(}) : A € spec(A)}. For perfect rendezvous,.. = 1. Note that eqn.(7) is an
The following is a well known result in linear algebra and, per bound on the infinity norm of the position of agents
can be derived by extending Perron’s results (theorem 8.3

i 1130 § . . il ~at the earliest time of arrivad,. In other words eqn.(7)
Ir?laEtrig)esor honnegative matrices to essentially nonnagatl o5 that at the time of the earliest entry of an agent into

T il __the rendezvous region, the rest of the agents should not be
Lemma 2: If T is anm x m essentially nonnegative ¢, . thans pacs.

matrix, thenr(T') is an eigenvalue of T and there is a

nonnegfatlve vectar > 0, x.# 0, such _thath N T(T)i?' Consider the hypercultkof sided(pges—1) in R™ whose
Proof: The proof of this lemma is presented in theIOOdy diagonal is the line joining the points

appendix.

A: (6751 75)
Ill. N SCALAR AGENT RENDEZVOUS

In this section we will define the rendezvous problen"Fmd
for N scalar agents trying to rendezvous at the origin of B = (0pdes Opdes * * * , 0 Pdes)

lt_he rea:jl line. We considel scalar agents with closed loop Let T be the set of all the vertices @f exceptA and B.
Inear dynamics. Define the polyhedral cong as

= Az, . (1) Z=Cone(x:ze)
r = [rym2 - aN], (2) . - :
s € R Note thatY has2"¥ —2 points. We will call these points®,

e5°, -+, e _, as generators. The superscrigt is used
For now, we will assume perfect communication betweeto denote that these points are the boundary points under
every pair of agents, therefore in general the matiix oo norm specification of approximate rendezvous. Define
is full. Rendezvous under lossy communication is am@ matrix RV * (2" =2) matrix E> whose ith columns is the
avenue of further ongoing research. The development toordinates of the point©.
this section is very similar to the cone invariance ideas An important observation is that if the polyhedral céhe
developed for the 2 scalar vehicle case in [3]. is positively invariant with respect to the system in egn.(1
and if the system (1) is asymptotically stable then all



trajectories of egn.(1) that originate in the cabesatisfy
the approximate rendezvous specification.

In the following example we demonstrate how to identify
the coneZ for N = 3.

Example 1:Using the approximate rendezvous specifi- 3
cation given in eqn.(7) for the 3 scalar agent case, the
generator pointsf® , e3° , --- , ez in the positive orthant
are found to be
er = (6 9, 6Pdes)
es° = (9,9pdes 9) 1
€3° = (0pdes 9,0) ' ,f‘é,eyij,
e = (0pdes Ipdes ) L4 Ao
ego = (5Pdes, 5 5pdes) . ’4‘/"/7651‘/ ””” B T2
OO = (6 0 pdes 6Pdes) ’
The conical huII of the above points is the outer cone in
fig.2.
. . T
Note that the approximate rendezvous can also be speci-
fied in the 2-norm or 1-norm sence, our regibmwill be a Fig. 1. The desired invariant polyhedral conelijy under1 norm
second order cone or a polyhedral cone with N generators SpeCIflcatlon
respectively. '

The 2-norm case is dealt with in .For the case of 1-norm
the approximate rendezvous specification takes the form

|21 (ta)| + [22(ta)| + -+ + |2 (ta)| < Opoes  (8)
For perfect rendezvous
pdes = N ()]

and for feasible approximate rendezvous

Pdes Z N (10)

Eqn.(8) will give usN generator points in each of the » o1 02 03 o4 s 05 o7 08
hyper-octants. The invariant cones will be defined as the
conical hull of the boundary points in each hyper-octantig. 2. The desired invariant polyhedral cones untievorm and
In the following example we identify the desired invariant>® norm specifications fod = 0.2 and pges = 3.5 in R .
cone inR3.

Example 2:Using the approximate rendezvous specifi-
cation given in eqn.(8) for the 3 scalar agent case, t
generator pointg] , e} andej in the positive orthant are

ositively invariant w.r.t. system of eqn.(1) iff theresti
essentially nonnegative x m matrix T s.t.

found to be AE = ET (11)
Proof: (Sufficiency Assuming condition (11) holds, we
e1 = (0,0,0(pges—2)) need to prove the following implication:
es = (6,6(pdes— 2),9)
2 » 0\ Pdes ' x(0) € Cone(E) = x(t) € Cone(E), Vt >0  (12)
611% = (5(pdes - 2)7 57 6) NOW
The conical hull of the above points is shown in fig. 1.
AE = ET (13)
IV. RENDEZVOUS CERTIFICATE ~ A*E — ET* VkeN (14)
In this section, we first present a lemma on invariance = Atp —  geTt (15)

of polyhedral cones. A similar result appears in [6]. Based . i )
on this lemma, we then state state sufficient conditions for Since z(0) & Z, therefore there exists a nonnegative
rendezvous ofV scalar agents. vectora € R™ o >0, s.t.

Lemma 3: Consider a system with closed loop dynamics 2(0) = Ea (16)
given by eqn.(1). Leky, ez, -, e, be points inRY
and let E be a matrix irRY*™ constructed by choosing
these points as columns. Then the regiGne(E) is z(t) = eMz(0), Vt>0 a7)

The expression fox(t) is given as



Substituting (16) in (17) and then using (15) we get

Now we will use the following classical result from [14]
nonnegative:

T essentially
et >0,vt > 0.

z(t) = Bella

nonnegative <

eTt

(18)

Therefore there exists BR™*"™ essentially nonnegative
matrix T such that
AE = ET (28)

O

The following is a certificate theorem for approximate
rendezvous undeso norm specification.

A nonnegative square matrix multiplied by a nonnegative Theorem 1: Consider N scalar agents with closed loop
vector will give us some nonnegative vector Therefore

x(t) = EB, >0

Thusz(t) € Cone(E).
(Necessity To prove necessity we assume that implicatioqp (2™ —2) x (2¥-2) g,

(12) holds.

Lets represent(t) as

x(t) = Fa(t), a(t) >0Vt >0

Now lets consider an infinitesimal move from the ith ray
of the polyhedral cone. We consider a poirft on the ith

ray given by

1) =Fa, aj=0Vj#i0;=1

Differentiating (20) atz? gives us

0

= Az) = Ea(t)

I:Il

[0
0

(19)

(20)

(21)

(22)
(23)

dynamics
&= Az, zeRN

If there exists a symmetric positive definite matfx €
RY*N and an essentially nonnegative matriX ¢

AE®® E> . .

e Positive Invariance and,
T>0
ATP+PA < 0

P s 0} Asymptotic Stability.

where E* € RN < 27 -2 js the matrix whose columns are
the pointse®,e5°, - - ,e5% _,»
then the agents will achieve rendezvous with norm
specification pges for all initial conditions lying in the
region Cone(E>).

Proof: The Proof of Theorem 1 directly follows from
Lemma 3 and a well known result on asymptotic stability
of linear systems.

O

Notes:
r=a (24) 1) A similar result can be written down for the case

when approximate rendezvous is specified in terms

: of 1 norm.

L 0 ] 2) The conditions in the theorem are linear Thand
For a trajectory starting at = z?, to stay inside the P. Checking v_vhether the conditions are satisfied is a

polyhedral coneZ we should have convex feasibility problem.

Example 3:Consider the a closed loop systenBafcalar

= AF

a;j(t) =0, Vj #1i (25)  agents described by
Combining (24) and (25) we can rewrite —-35 1.0607 1.0607
T 0 F 0 &= | 1.0607 —4.25 075 |z, z€R3 (29)
0 0 1.0607 0.75  —4.25
: : Suppose we want to attain rendezvous in thenorm as
AFE 1 =FET 1 (26) well as thel norm sense fopges = 3.5 andd = 0.2. The
corresponding” matrices in the first quadrant are found to
: : be.
L 0 L 0 ] 0.2 02 0.7 07 07 0.2

02 0.7 02 07 02 0.7
0.7 02 02 02 07 0.7

Where the ith column of the matirx T is given by By =

Tji = (1) o=t @7) 0.2 0.2 0.3
Note that T is essentially nonnegative by construction El=1]02 03 02
Similarly applying positive invariance for other rays of 03 02 02

the polyhedral cone, we can prove that the actiod &f is

) ¢ The eigenvalues of the closed loop system are all negative
the same as the action &' on a basis ofR™.

so it is asymptotically stable. Solving the convex invacian



conditions of Theorem 1 gives us the following certificatesn fig. (4)) , then the required sufficient conditions are the

of invariance for theso norm andl norm case. collection of all invariance conditions for each of these
Pl R (e e S S s 00 cones. But as we will find out in this section, satisfying alll

T = | e voran  o.abres  _dsods 070516 o vavds such conditions imposes restrictions on the eigenstrectur
Ty hesas  0.T3TAS of the closed loop4 matrix and results in solutions which

are non-robust.
In this section we will present results for approximate
1 _ —
= 0'21§§29 515875661 021521357?3 rendezvous under both the norm andl norm specifica-
: : o tions. Due to the nonsingular nature of tAematrices in the
Thus the system in eqn.(29) achieves rendezvous in bothse ofl norm, the result is much stronger, as compared to
oo and1 norm sense for the given set of specifications. the co norm case. We first present results for tkenorm
Now consider the system case.
Recall from Section I, that for theo norm case thé’>°
-3.5  1.299 0.75 i in th itive h h bel Y <2 -2
#= | 1200 —3875 0.6495 |z, z €R?.  (30) matrix in the positive hyper-orthant belongs .-
If pges > 1 then E°° is full rank. From now on we will
0.75 0.6495 —4.625 = "
. . _call the E* matrix in the positive hyper-orthant to kef*.
The eigenvalues of the closed loop matrix have negativene equivalent matrices in the other hyper-orthants will be

—4.8561 0.14389 0.15153

real parts as before. The invariance conditions result in gumberedes®, Eg, - EX.

feasible solution for theo norm case. But fod norm the Note that E5°, Eg°, ---, ES% can be obtained from

problem is infeasible. The certificaie™ is found to be:  pe phy multiplying it with a nonsingular rotation matrix.
—5.6439  0.11616  0.11318  0.20068  0.36674  0.47836 ThereforeEz"o, EB?O’ T Esl?’ are also full rank. We will
. —4. 4 .4 . . 1

soo _ | 051586 058504 41351  Oseals 14422 0.60432 now state and prove the following lemma.
0160755 016985 015555 020365 51806 043858 Theorem 2: LetCone(E7°) be the desired invariant
0.44786  0.1523  0.14784  0.17189  0.2755  —5.4927 cone in the positive hyper-octant foo horm approximate

This example shows that for given values @fs and rendezvous  specificatiopges > 1 and let Cone(E5®),
o0 ... ey i -
5, 1 norm specifications impose stricter constraints on thtgi_ne(E3 f)’C %ﬂf C'O”frgEth)h be hthe syrr][mettrlcho
trajectories thamo norm specifications. Fig. 3 shows some_:1 I(I)Insh N bone( ! )g”*] eESO eg ypzf;‘gc ants. ;W
trajectories of the system in eqn.(30). Notice that whike th"" ! ¢ © above cone one(Ey), Cone(E5°), -~ an
trajectories are invariant w.r.t. to th& norm cone, they Cone(Ey%) are positively invariant with respect to the

move in and out of thé norm cone. system . N
z=Ax, z€R
then all eigenvalues of A are real.
Proof: Cone(E7°), Cone(Es°), --- and Cone(ES)
are positively invariant with respect to the above system,
therefore by Lemma 3 there exist essentially nonegative

7 matricesT}, Ty, -- -, Ty, such that
AE® = E®T; (31)
T, > 0 (32)
03 T, € REY-2)x(2V -2) (33)
oid , Now by lemma 2,+(T;) is an eigenvalue of; and there

, L W/sn existsx; > 0, x; # 0 such that
04 0.5 0.6 0.7 0.8 0.9 1 711/:171/ _ T(TZ)Il (34)
Fig. 3. Trajectories invariant w.r.t. the outer cone but thet inner cone  Multiplying both sides byE™® we get

EXTix; = r(T;)EXx; (35)
V. IMPLICATION OF THE INVARIANCE RESULT ON THE AEXzi = r(T)E (36)
EIGENSTRUCTURE OFA Now E°z; # 0 and Ef°x; € Cone(E$®), thereforer(T;)

Theorem 1 only guarantees rendezvous for initial condis an eigenvalue ofA and there exists a corresponding
tions lying in Cone(E>°) which lies completely inside the eigenvector inCone(E:®).
positive hyper-orthant. If rendezvous has to be guaranteedThis means thatd has 2V eigenvectors in the strict
for initial conditions lying in all equivalent cones in alfteer interior of each orthant. Therefore by Lemma A, of
hyper-orthants (for example the regida UZ, UZ3 UZ, these vectors are linearly independent. Therefore all N



eigenvalues ofA are real and are given by the spectral
abscissa of thd; matrices.

O

We are able to prove a stronger undemorm specification,
which we present now,

Theorem 3: LetCone(E;}) be the desired invariant
cone in the positive hyper-octant farnorm approximate
rendezvous specificatiopges > N and let Cone(FE3),
Cone(E3), --- and Cone(E}y) be the symmetric rota-
tions of Cone(E}) in the other hyper-octants. now if all
are all the above cone€one(E}), Cone(ES), --- and
Cone(E,y) are positively invariant with respect to the
system

&= Az, zeRN

then A has a single real eigenvalue with algebraic multi-
plicity = geometric multiplicity = N.

Proof: All steps of the proof for Theorem 2 hold by
replacing the matrice&$° by the matricesZ}. In addition
now we know thatt} € RV*¥ | therefore the matriced,

Ti, Ty, --- andTy~ are similar. Thus we have
r(Th) =r(Tz) = =r(Taw) (37)

So all eigenvalues ofd are the same withV linearly
independent eigenvectors.

O

Example 4 (2 scalar agent rendezvous):this example
we demonstrate Theorem 3 in tie dimensional phase

space. In2 dimensions the desired invariant cones are the

same for bothbo norm andl norm cases. The corg in
fig. 4 can be represented as

T, = Cone(E}) (38)
1 _ 6pdes o
El B |: J 5pdes :| (39)

The conegl,, Z3 andZ4 can be generated by rotatiflg
by =/2, =, and3n/2 radians respectively therefore

E} = RT'E!, i€{1,2,3,4}and (41)
0 -1
R = [1 0 ] (42)

Now from Lemma 3, if all the cone%;, 7, Z3 andZ,
are positively invariant w.r.t. the system

&= Az, x€R?

then A has a unique real eigenvalue with algebraic mul-

tiplicity = geometric multiplicity = 2. In other words the

systemi = Ax has radial vector fields as shown in fig. (5).
Note:

2

T, I

Opdes

]

I3 I

i

Fig. 4. The desired invariant cones for 2 scalar agent remdsz
2

Fig. 5. Radial vectror fields.

conjecture that the only solution possible in thefty
norm specification is the one that results in radial fields
(all eigenvalues same and real), however we are still
working on the proof of this stronger result.

« The radial fields solutions thus obtained are non-robust
to disturbance and uncertainty. The trajectories live on
the boundary of the polyhedral cone and can easily
deviate out of the cone under uncertainty.

« If rendezvous is desired for initial conditions lying in
all the hyperoctants, nonlinear control design along the
lines of [3] is likely to give a robust solution.

VI.

In this section we will demonstrate the applicability of

N ON-SCALAR AGENT RENDEZVOUS

the theory developed in sections Ill and IV to the case of
non-scalar agents. We will demonstrate the simple case of
two planar agents trying to rendezvous at the origirRat

Let us consider two planar vehicles with combined closed
loop dynamics

T

€
Y1 —A Y1 (43)
T2 €2
Y2 Y2

wherex;,y; € R.

« If pges> N the polyhedral cone corresponding to the In fig. 6, the rendezvous task for agertsand 2 is to
1norm specification is fully contained in the corre-reach the inner square of sidearound origin within a
sponding polyhedral cone for th& norm case. We small time interval of each other. To accomplish this task,



we require that at the first instant when one agent enters theTheorem 4: If the system in eqn.(43) is asymptotically
inner square, the other agent should be at least inside thimble and there exists &4x 4 matrix T' such that
outer square of sidépges TO state this condition formally

we define: AE{)Ianar _ E{)IanarT (50)
e
ty, = min [t : max{|x;(®)|, |y (®)|} <], T = 0, (51)
; E {1.’ 2}7t . then we can guarantee rendezvous for all initial conditions
o = min {ty, by} such that
In this sensety, is the arrival time of the-th agent to the
inner square, Therefore for successful rendezvous, xi(O),(?éi)(O) = 0
Z1
max [max{|z;(ta)l, [yi(ta)|}}] < 0pdes (44) y1(0)
i e W.
z2(0)
y2(0)
1 Proof: The proof of the theorem follows from Lemma 3
- ﬁ. and Lemma 4.
P O
0pdes |
2Q """ It is important to note that this theorem only provides
sufficient conditions for rendezvous, and yields certifisat
for trajectories where an agent never crosses from one
guadrant to another on the plane. For instance, although
Fig. 6. Rendezvous on a plane. the trajectories shown in fig.7 achieve successful planar
rendezvous, the trajectories violate the invariance ¢
Define the regionV € R* as required by the theorem. Deriving a more general certificate
theorem which covers these cases is the subject of ongoing
1 e S 2] < pdes research.
W = g; : . (45)
Yo P%es < Z—; < Pdes

In order to guarantee rendezvous for all initial conditions

lying in W, we will break down the planar rendezvous (

problem into two scalar rendezvous problems. The idea
being, that ifz;, 22 andy;, yo attain rendezvous in their
respective two dimensional phase spaces, then rendezvous
will be successful on the plane.

We define the matri)EfB“af as Fig. 7. Limitations of Theorem 4.

2

0  pdes O 0

0 0 )

pies &0 pges : (46) VIl. CONCLUSIONS ANDFUTURE WORK

0 0 pges ¢ We have extended the concepts outlined in [3] to the
case of N scalar agents and have demonstrated their
utility for non-scalar agents. While in [3] we considered

planar __
E; =

Its is easy to verify the following result;

Lemma 4: . : . : ;
2 scalar agents with non-linear dynamics, in this paper
1 the underlying dynamics are always assumed to be linear.
| Cone( Eflanar) (47) We. have empl_oyed the theory of invarignce of p_olyhedral
Z2 regions to derive a set of convex conditions, which when
Y2 feasible yield a certificate of successful rendezvous. We
if and only if have also shown that if rendezvous certificates are desired

for initial conditions lying in a much larger symmetric

o1 0 Opdes set around the origin, the problems is over-constrained
€ Cone (48) : ain, pro _ ed.

T2 The only feasible closed-loop linear dynamics that satisfy
M 0 Opdes this over-constrained problem are the ones with radially

€ Cone . (49) . ) )

2 Opdes 0 decaying vector fields. All such solutions are non-robust

Now we can state the rendezvous certificate theorem f@§ uncertainties. This suggests that for robustness in the
planar rendezvous, over-constarined case, we need to use non-linear synthesis



Currently we focus on the problem of designing lineatl in the ith coordinate, then we shall show that €
state feedback controller for rendezvousofcalar agents. span{vi,ve,---,vy~n}. Renumberwv;’s if necessary so
A first attempt at the synthesis problem lead us to that theith coordinate of the firse¥—' vectors is pos-
set of conditions which are bilinear. We are surveyingtive. Let u; be the vectorv; without the ith coordi-

mathematics literature ([15], [16]) for a method to minimiz nate. Thenuy,--- ,uyv-1 are in different hyper-octants of

. n . N-—-1 . .
the spectral abscissa of an essentially nonnegative matii¢ . Therefore by Lemma 5 there exist nonnegative reals
under cone invariance constraints. Future directions alsq, - -, ayv-1 such that

include introducing uncertainity and communication link

failure between the cooperating agents. Qg + ooz + -+ + agvatign -1 =0

Hence
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VIII. A PPENDIX

Proof of Lemma 1We will need the following Lemma
for this proof

Lemma 5: Letvi, v, ---, van be vectors inRY such
that v; € int(0;) then there existy, € R, «; > 0 such
that

Q101 + QoUg + -+ Qgn ey =0 (52)

We skip the proof of Lemma 5. Continuing with the
proof of Lemma 1, lete, = [0,0,---,1,0,---,0] with





