
Efficient control synthesis for augmented finite transition systems with an
application to switching protocols

Fei Sun, Necmiye Ozay, Eric M. Wolff, Jun Liu and Richard M. Murray

Abstract— Augmented finite transition systems generalize
nondeterministic transition systems with additional liveness
conditions. We propose efficient algorithms for synthesizing
control protocols for augmented finite transition systems to
satisfy high-level specifications expressed in a fragment of linear
temporal logic (LTL). We then use these algorithms within
a framework for switching protocol synthesis for discrete-
time dynamical systems, where augmented finite transition
systems are used for abstracting the underlying dynamics. We
introduce a notion of minimality for abstractions of certain
fidelity and show that such minimal abstractions can be exactly
computed for switched affine systems. Additionally, based on
this framework, we present a procedure for computing digitally
implementable switching protocols for continuous-time systems.
The effectiveness of the proposed framework is illustrated
through two examples of temperature control for buildings.

I. INTRODUCTION

Hybrid control systems are widely used in various real-
world applications, such as mode-switched flight control,
vehicle management systems and automated highway sys-
tems [2]. As these applications are mostly safety-critical,
the problem of correct-by-construction control synthesis
for hybrid systems has been extensively studied in recent
years [17]. Among these control synthesis problems, control
of switched systems is of particular interest due to its
practical importance [16], [9], [5], [4], [10]. The objective of
switching protocol synthesis is to identify a mode sequence
that allows the system to switch among a set of controllers
to guarantee the satisfaction of certain specifications.

A common hierarchical approach to this problem is, first,
to abstract the behaviors of continuous system as a finite
transition system and, second, based on this abstraction, to
solve a discrete synthesis problem to satisfy a given speci-
fication. Such approaches vary in the types of abstractions
computed as well as in the nature of the discrete synthesis
problem being solved. In this paper we focus on a particular
type of finite transition systems, namely the augmented finite
transition systems [13], that not only preserve propositional
properties of the continuous systems, but also augmented

F. Sun is with the Information Security Center, Beijing University of Posts
and Telecommunications, China. email: feisun@caltech.edu

N. Ozay is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109, USA. email:
necmiye@umich.edu

E. M. Wolff and R. M. Murray are with the Department of Control
and Dynamical Systems, California Institute of Technology, Pasadena, CA
91125, USA. emails: ewolff, murray@caltech.edu

J. Liu is with the Department of Automatic Control and Systems Engi-
neering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United
Kingdom. email: j.liu@sheffield.ac.uk

with additional liveness conditions to enforce the progress
properties that are derived from the underlying continuous
dynamics and essential for achieving certain specifications
including reachability.

We adopt linear temporal logic (LTL) as the specification
language. LTL enables us to specify a wide variety of system
behaviors, such as safety, reachability, progress, stability,
response and combinations of these. However, constrained
by the prohibitively high computational complexity of full
LTL specification, we restrict the specification to a fragment
of LTL proposed in [18] that is computationally efficient. The
first contribution of this paper is to extend the algorithms in
[18] to synthesize efficient control protocols for augmented
transition systems.

In the second part of the paper, we present a frame-
work to synthesize switching protocols for discrete-time
switched systems. Within this framework, switched systems
are abstracted as augmented finite transition systems; and
proposed efficient algorithms are used for solving the discrete
synthesis problem. We introduce a notion of minimality for
the abstraction that is an indicator of how well the augmented
finite transition system encodes the transitions and transience
properties of underlying dynamics. We also present an exten-
sion of this framework to synthesize digitally implementable
control protocols for continuous-time switched systems.

We apply the proposed techniques to two examples related
to temperature control. In particular, we consider a radiant
system for office buildings described by a three-dimensional
switched system with thousands of discrete states in the
augmented finite transition system. Based on the efficient
fragment of LTL, our algorithms are able to solve discrete
synthesis problems of such size, whereas a commonly used
symbolic implementation tool, JTLV [15], cannot.

II. PRELIMINARIES

In this section, we introduce the notation used throughout
this paper, augmented finite transition system as the system
model and fragments of linear temporal logic (LTL) as the
specification language.

A. Notation

The nonnegative integers are denoted by N and the real
numbers by R. The n dimensional Euclidean space is de-
noted by Rn. A polytope P is a convex set in Rn, defined
as P = {x 2 Rn | Lx  b,whereL 2 Rm⇥n, b 2 Rm}.
For two sets X1, X2, their difference is denoted by X1\X2.
For a finite set Q, Q⇤ denotes the set of finite sequences of
elements in Q.

Submitted, 2014 American Control Conference (ACC)
http://www.cds.caltech.edu/~murray/papers/sun+14-acc.html



An atomic proposition is a statement that is either True or
False. A propositional formula is composed of only atomic
propositions and propositional connectives, i.e., ^ (and),
_ (or), ¬ (not), and ! (implication).

B. Augmented finite transition systems

In this paper, we consider augmented finite transition
systems [13] that generalize non-deterministic transition sys-
tems by including liveness properties that enforce progress.
This type of transition systems are particularly suitable for
abstracting dynamical systems in that it is possible to encode
transience properties of the underlying dynamics using the
additional liveness properties.

Definition 1: An augmented finite transition system
(AFTS) is a tuple T = (Q,A,!T ,⇧, h

Q

,G) where Q is
a finite set of states, A is a finite set of actions (i.e., control
inputs), !T ✓ Q ⇥ A ⇥ Q is a transition relation, ⇧ is a
finite set of atomic propositions, h

Q

: Q ! 2

⇧ is a labeling
function and G : A ! 2

2Q a progress group map. The
progress group map G maps each action a 2 A to a set of
subsets of Q such that the system cannot remain indefinitely
within the set of states G 2 G(a) by using only the action
a. A set G 2 G(a) is called a progress group under action
a.

For each action a 2 A of an AFTS T , there is an
associated directed graph T

a

= (Q,
a�!), where the set a�!

of edges corresponds to the transitions in !T with action a.
Definition 2: An AFTS is said to be well-formed if for all

a 2 A and for all G 2 G(a), given a state q1 2 G, there
exists a path from q1 to some state q2 /2 G in the graph
T
a

. Note that, otherwise, the system cannot make progress
from the state q1 to a state not in G, which contradicts the
definition of a progress group.

An execution ⇢ of an AFTS T is an infinite sequence
of pairs ⇢ = (q(0), a(0))(q(1), a(1))(q(2), a(2)) . . ., where
(q(i), a(i), q(i + 1)) 2!T for all i � 0 and ⇢ satis-
fies the progress conditions encoded by G. The run pro-
duced by an execution ⇢ is an infinite sequence � =

h
Q

(q(0))h
Q

(q(1))h
Q

(q(2)) . . ..
A control strategy for an AFTS T is a partial function

µ : (Q ⇥ A)

⇤ ⇥ Q ! 2

A that maps the execution history
to the possible next actions. A µ-controlled execution of T ,
denoted T µ, is an execution where for each step i � 0,
the action a(i) is chosen according to the control strategy
µ. A counter-strategy (or environment strategy) for T is a
partial function µ(e)

: (Q⇥A)

⇤ ! Q that resolves the non-
determinism in the transitions based on the execution history.

C. Temporal logic

We use two computationally efficient fragments of linear
temporal logic to specify properties such as safety, reacha-
bility, progress, and stability. These logics are Generalized
Reactivity(1) (GR(1)) [14] and the fragment in [18]. The
complexity of controller synthesis for both fragments is
polynomial in the size of the system and specification, as
opposed to doubly-exponential in the size of the specification

for linear temporal logic. We first introduce the fragment
in [18].

For a propositional formula ', the notation �' means
that ' is true at the next step, 2' means that ' is always
true, 23' means that ' is true infinitely often, and 32'
means that ' is eventually always true [1].

Syntax: We consider formulas of the form

' = 'safe ^ 'act ^ 'per ^ 'rec, (1)

where

'safe
.
= 2 

s

, 'act
.
=

^

j2Ir

2( 
r,j

=) �'
r,j

),

'per
.
= 32 

p

, 'rec
.
=

^

j2It

23 
t,j

.

Note that 2 
s

= 2V
j2Is

 
s,j

=

V
j2Is

2 
s,j

and 32 
p

=

32V
j2Ip

 
p,j

=

V
j2Ip

32 
p,j

. In the above definitions,
I
s

, I
r

, I
p

, and I
t

are finite index sets and  
i,j

and '
i,j

are
propositional formulas for any i and j.

Semantics: We use set operations between an execution
⇢ of T = (Q,A,!T ,⇧, h

Q

,G) and subsets of Q where
particular propositional formulas hold to define satisfaction
of a temporal logic formula [6]. We denote the set of states
where propositional formula  holds by J K. An execution
⇢ satisfies the temporal logic formula ', denoted by ⇢ |= ',
if and only if certain set operations hold.

Let ⇢ be a execution of the system T , Inf(⇢) denote the set
of states visited infinitely often in ⇢, and Vis(⇢) denote the
set of states visited at least once in ⇢. Given propositional
formulas  and ', we relate satisfaction of a temporal logic
formula of the form (1) with set operations as follows:
• ⇢ |= 2 iff Vis(⇢) ✓ J K,
• ⇢ |= 32 iff Inf(⇢) ✓ J K,
• ⇢ |= 23 iff Inf(⇢) \ J K 6= ;,
• ⇢ |= 2( =) �') iff ⇢

i

/2 J K or ⇢
i+1 2 J'K for all i.

An execution ⇢ satisfies a conjunction of temporal logic
formulas ' =

V
m

i=1 'i

if and only if the set operations for
each temporal logic formula '

i

holds.
A µ-controlled execution of T might include many pos-

sible executions because of the non-determinism. A µ-
controlled execution of T satisfies the formula ' starting
at state q 2 Q, denoted T µ

(q) |= ', if and only if ⇢ |= ' for
all ⇢ 2 T µ

(q). Given a system T , state q 2 Q is winning (for
the system over the “environment”) for ' if there exists a
control strategy µ such that T µ

(q) |= '. Let W ✓ Q denote
the set of winning states.

GR(1): We now (informally) define GR(1) by inheriting
syntax and semantics from above. GR(1) formulas are given
in the assume/guarantee form '

.
= '(e) ! '(s) where for

each ↵ 2 {e, s}, '(↵) has the following structure:

'(↵) .
= '(↵)

init ^ '(↵)
safe ^ '(↵)

act ^ '(↵)
rec , (2)

where '(↵)
safe, '(↵)

act , and '(↵)
rec , are as defined above and

'(↵)
init

.
= p(↵)0 is a propositional formula characterizing the

initial conditions.



III. CONTROL SYNTHESIS FOR AUGMENTED FINITE
TRANSITION SYSTEMS

In this section, we state the main problem studied in this
paper and present algorithms for solving this problem when
the LTL specification ' is given in the form (1). Then, we
establish the correctness of these algorithms.

A. Control synthesis problem

Problem 1: Given an AFTS T and a specification '
expressed in the form of equation (1), synthesize a control
strategy µ such that T µ |= '.

We will use (T ,') to denote an instance of Problem 1.
Given an augmented transition system T , let PostT ,a

(q)
denote the set of a-successors of a state q in T , i.e.,
PostT ,a

(q)
.
= {q0 | (q, a, q0) 2!T }. The set of successors

of q is PostT (q) = [
a2APostT ,a

(q). Likewise, PreT (q)
denotes the set of predecessor defined as PreT (q)

.
= {q0 |

9a 2 A, (q0, a, q) 2!T }. Successors and predecessors for a
set Q0 ✓ Q of states are defined similarly.

B. Algorithms

Wolff et al. [18] characterized the winning sets of control
synthesis problems for the LTL fragment in (1) in terms
of controllable predecessor sets and forced predecessor sets.
Our starting point is this characterization of winning sets,
however, we take a primal viewpoint to compute control-
lable predecessor sets and forced predecessor sets because
dynamic programming based approaches as in [18] are less
suitable for AFTSs.

For an AFTS T and a target set B ✓ Q, the controllable
predecessor set of B is defined as follows:

CPre1T (B)

.
={q 2 Q | 9µ, 9i 2 N, s.t., the ith state ofµ-

controlled execution starting at q, is inB}.

That is, for any state in CPre1T (B), there exists at least one
control strategy that makes the system reach a state in B in
a finite number of steps. Indeed, CPre1T (B) is the largest
set that satisfies this property.

Similarly we have the forced predecessor set of a given
set B ✓ Q on T ,

FPre1T (B)

.
={q 2 Q | 8µ, 9µ(e), s.t., anyµ-controlled

execution starting at q, visitsB},
which includes all states that no matter what the control
strategy is can be forced to visit B by a counter strategy
µe.

We present the detailed procedures in Algorithm 1 and
Algorithm 2 to compute, respectively, the controllable pre-
decessor sets and the forced predecessor sets for AFTSs.

Theorem 1: Given a well-formed AFTS T and a set B ✓
Q, Algorithm 1 computes the controllable predecessor set
CPre1T (B).

Proof: (Sketch) Algorithm 1 consists of two nested
fixed point like operations. The set C is initialized with the
set B. Then, for all predecessors q0 of C, two things are
checked. First, if there exists an action a that forces the a-
successors of q0 into C, then q0 is part of the controllable

Algorithm 1 Computing the controllable predecessor set
CPre1T (B)

Input: AFTS T = (Q,A,!T ,⇧, h

Q

,G) and a set B ✓ Q.
Output: Controllable predecessor set CPre

1
T (B) and strategy µ

1: Set C = ;, C
n

= B

2: Initialize µ(q) = ; for all q 2 Q

3: while C

n

6= C do
4: C = C

n

5: for p 2 PreT (C) \ C do
6: for a 2 A do
7: if PostT ,a

(p) ✓ C then
8: µ(p) = {a}
9: C

n

= C

n

[ {p}
10: else if PostT ,a

(p) \ C 6= ; then
11: for G 2 G(a) do
12: if p 2 G then
13: F = {p}
14: for i 2 0 : |G| do
15: F = (PostT ,a

(F ) [ F ) \ C
16: if F ✓ G then
17: µ(G) = {a}
18: C

n

= C

n

[ F

19: return CPre

1
T (B) = C and µ

predecessor set of C (lines 7-9). Second, if q0 belongs to a
progress group G 2 G(a) and all a-successors of q0 up to
|G|+1 steps that do not enter C (F after lines 14-15) remain
in G, F is part to the controllable predecessor set of C (lines
10-18). This last statement follows from the definition of
progress group, that is the execution must eventually exit G
if action a is used, and the fact that consecutive a-successors
only exit G through C. Therefore, at each step all states
added to C is in CPre1T (C). Finally, noting that for all C ◆
B, if C ✓ CPre1T (B), then CPre1T (C) = CPre1T (B); it
is possible to see that once the monotonically growing set C
initialized at B convergences to a fixed point, CPre1T (B)

is reached.

Algorithm 2 Computing the forced predecessor set
FPre1T (B)

Input: AFTS T = (Q,A,!T ,⇧, h

Q

,G), a set B ✓ Q.
Output: Forced predecessor set FPre

1
T (B)

1: Set F = ;, F
n

= B

2: while F

n

6= F do
3: F = F

n

4: for p 2 PreT (F ) \ F do
5: if 8a 2 A, PostT ,a

(p) \ F 6= ; then
6: F

n

= F

n

[ {p}
7: return FPre

1
T (B) = F

Theorem 2: Given an AFTS T and a set B ✓ Q, Algo-
rithm 2 computes the forced predecessor set FPre1T (B).

Proof: Algorithm 2 starts by initializing F to B. At
each iteration the set of states that cannot avoid F under any
action a 2 A are added to F . Finally, noting that for all F ◆
B, if F ✓ FPre1T (B), then FPre1T (F ) = FPre1T (B); it
is possible to see that once the monotonically growing set F
initialized at B convergences to a fixed point, FPre1T (B)

is reached. Since Q is finite, algorithm terminates.



As shown in [18], computing the winning set of a control
synthesis problem with a specification ' expressed in the
form of equation (1) reduces to a sequence of controllable
predecessor set and forced predecessor set computations,
together with basic set operations on these sets. Roughly
speaking, controlled predecessor sets are used to check the
satisfaction of reachability and liveness parts of ' and forced
predecessor sets are used to establish invariance. Synthesis of
corresponding strategies follows by refining or concatenating
(with a finite memory in the case of multiple goals in
recurrence formula '

rec

) of the strategies computed during
the process.

While algorithm 2 does not directly return a control
strategy, a strategy that guarantees invariance can be readily
computed from FPre1T (B) as follows. Given an unsafe set
B, the set Q \FPre1T (B) is the largest controlled-invariant
set that contains all the states for which there is a control
strategy µ that guarantees that µ-controlled executions avoid
the set B. In particular, such a strategy is given by µ(q) =
{a 2 A | PostT ,a

(q) ✓ Q \ FPre1T (B)}, for all q 2
Q\FPre1T (B). It is also worth noting that progress groups
do not have an effect on the forced predecessor sets as
progress groups encode liveness properties whereas forced
predecessor sets are related to safety [8]. Therefore, they are
not used in Algorithm 2.

C. Complexity, comparisons and discussions

Let n
g

=

P
a2A |G(a)| be the number of progress groups

in T , s
g

= max

a2A,G2G(a) |G| be the size of the largest
progress group, n

out

= max

q,a

|PostT ,a

(q)| be the max-
imum number of a-predecessors a state in T has, n

in

=

max

q

|PreT (q)| be the maximum number of successors
a state in T has, then the complexity of Algorithm 1 is
O(n

g

n
in

n
out

s
g

|Q|) and O(n
in

n
out

|Q|) for Algorithm 2.
For an AFTS T , the progress group map G forces the

executions of T to satisfy exactly the following LTL formula:

'
g

.
=

^

a2A

^

G2G(a)

¬32(( _
q2G

q) ^ a). (3)

Using this characterization of progress groups, a synthesis
problem (T ,') for an AFTS T can be reduced to a synthesis
problem (

ˆT , '̂) for a nondeterministic transition system
ˆT , where ˆT = (Q,A,!T ,⇧, h

Q

) and '̂ = '
g

! '.
When the original specification ' is in GR(1) fragment of
LTL, so is '̂. Hence, standard implementations of GR(1)
synthesis can be used. Note that '̂ includes n

g

additional
environment liveness assumptions with which the complexity
of GR(1) synthesis scales linearly. This is consistent with the
complexity of the proposed algorithm.

Algorithms 1 and 2 are very close in spirit to the fixed
point operations proposed in [14] for GR(1) synthesis. How-
ever, instead of a symbolic computation as in [14], the
computation is performed on explicit transition graphs as
in [18]. In model-checking community, it has been observed
[7] that for certain applications Binary Decision Diagram
(BDD) based symbolic model-checkers (e.g., NuSMV [3])
are more efficient and for others explicit model-checkers

(e.g., SPIN) are better; although there is no difference in
asymptotic complexities. In this work, we have observed a
similar trend in the context of synthesis. In particular, when
the transition graph is sparse (i.e., the branching factor is
low), the proposed algorithms perform significantly better
than symbolic counterparts like JTLV [15]. Moreover, this is
mostly the case for abstractions of dynamical systems.

Finally, compared to [18], the proposed algorithms can
handle specifications in a slightly extended fragment than the
one in Eq. (1) since they implicitly allow specific liveness
assumptions of the form (3) and can be generalized to
handle assumptions like Eq. (2) with an additional fixed
point operation in Algorithm 1. The dynamic programming
based approach in [18] is not readily suited for this type
of assumptions because cost-to-go becomes ill-defined as
the system can wait within a progress group arbitrarily long
before making progress.

IV. APPLICATION TO SWITCHING PROTOCOL SYNTHESIS

In this section, we present an application of the proposed
synthesis method to switching protocols. Here, we briefly
present the overall hierarchical approach for synthesizing a
control strategy for switched systems. First, we construct an
AFTS that abstracts the continuous behavior of the given
switched system. Second, based on the finite abstraction we
formulate a discrete synthesis problem. Finally, we synthe-
size a discrete switching protocol using the methods from
Section III and implement it at the continuous level.

A. Discrete-time switched systems

A discrete-time switched affine system is a tuple S =

(X,A, {f
a

}
a2A), where the domain (i.e. state-space) X ✓

Rn is a compact set, A is a finite set of modes, and {f
a

}
a2A

is a family of vector fields satisfying f
a

(x) = A
a

x + K
a

.
The evolution of the system is governed by

x(k + 1) = A
a(k)x(k) +K

a(k). (4)

A trajectory of S is a pair (x, a) where the state sequence
x : N ! X and the mode sequence a: N ! A satisfy Eq. (4)
for all k 2 N. A switching protocol u : (X⇥A)

⇤X ! A, is
a feedback law that determines the value of a(k) based on
the state at time k and the trajectory up to time k � 1.

B. Problem statement

We are interested in designing switching protocols for
switched systems that satisfy a given LTL specification. In
order to reason about the trajectories of S using LTL, we
define a set ⇧ = {⇡0,⇡1, . . . ,⇡np} of atomic propositions
where each proposition corresponds to a polytope P

i

2 X .
These propositions on the states represent the regions of
interest in the state space X . Let h

X

: Rn ! 2

⇧ denote
the corresponding observation map such that ⇡

i

2 h
X

(✓)
if and only if ✓ 2 P

i

. A switched system decorated by
propositions is denoted by S = (X,A, {f

a

}
a2A,⇧, h

X

).
Now we formally state the problem of switching protocol
synthesis.



Problem 2: Given a switched system S =

(X,A, {f
a

}
a2A,⇧, h

X

) and a linear temporal logic
specification ' of the form (1), synthesize a discrete
switching protocol such that solutions (x, a) of S satisfy '.

C. Abstraction via over-approximation

We start by partitioning the continuous state space X into a
partition P = {P

i

}N
i=1. The partition is said to be proposition

preserving, if for all continuous states in P
i

, the same atomic
propositions ⇡

i

2 ⇧ are true, i.e., ✓1, ✓2 2 P
i

, ⇡
i

2 h
X

(✓1)
iff ⇡

i

2 h
X

(✓2).
Next, based on the proposition preserving partition, we

construct the AFTS that abstracts the continuous behavior
of the switched system S . For switched systems, since
there do not exist external control inputs, we need to know
the inherent properties of dynamics before establishing the
AFTSs. We call a subset of X a transient region if any
trajectory starting from a state in this region eventually leaves
this region. In the corresponding finite transition system, the
discrete states mapped from the transient regions need to
progress accordingly.

Next, we give definitions of finite-state approximations
(abstractions) for switched systems (following [13]) and
present the explicit algorithm for building such AFTS from
a given discrete-time switched system.

Definition 3: An AFTS T = (Q,A,!T ,⇧, h
Q

,G) is
said to be an over-approximation for the switched system
S = (X,A, {f

a

}
a2A,⇧, h

X

) if there exist a function ↵ :

Rn ! Q such that the following conditions hold.
(i) For all ✓ 2 X , h

X

(✓) = h
Q

(↵(✓)). There exists a
unique q

out

2 Q such that ⇡
out

2 h
Q

(q
out

) and for some
✓ 2 Rn\X , we have ↵(✓) = q

out

.
(ii) Given q, q0 2 Q and q0 6= q, there is a transition

(q, a, q0) 2!T , if there exists ✓0 2 ↵�1
(q) such that

f
a

(✓0) 2 ↵�1
(q0). For all a 2 A, (q

out

, a, q
out

) 2!T .
(iii) The progress group map G is such that given an action

a 2 A, for all G 2 G(a), the set [
q2G

↵�1
(q) is transient

on mode a of S .
In the above definition, condition (i) shows that the con-

tinuous state ✓ of switched system S and its corresponding
discrete state ↵(✓) in the finite transition system should
be mapped to the same propositions which transforms the
propositions of interest from continuous states into discrete
states. For instance, a proposition preserving partition in-
duces such a function ↵ which maps each region in the
partition to a discrete state. Condition (ii) means a transition
(q, a, q0) will be included in !T as long as there is a possible
trajectory implemented by the subsystem f

a

of S in one
step. The transient property of the underlying dynamics is
represented in condition (iii), which demonstrates for each
action a every state in progress group G(a) should be mapped
as the transient region of S on mode a. The notion of the
progress group is important for switched systems in order to
prevent the execution of T from repeating spurious cycles
indefinitely. Note also that by Def. 3, any AFTS that is an
over-approximation of a switched system is well-formed.

Next definition introduce a qualitative notion for over-
approximations.

Definition 4: An AFTS T = (Q,A,!T ,⇧, h
Q

,G) is
said to be a minimal over-approximation of a switched
system S with respect to a proposition preserving partition P ,
if it is an over-approximation and for all over-approximations
T 0

= (Q,A,!T 0 ,⇧, h
Q

,G0
) of S , we have !T ✓!T 0 ;

and for any action a 2 A, for all G 2 G(a), there exists
G0 2 G0

(a) such that G ◆ G0.
Def. 4 first illustrates that a minimal over-approximation

has minimal transitions in !T that only include the exact
transitions in accordance with the dynamics. In other words,
a transition will be included in !T if and only if there is
an trajectory strictly implemented by the subsystem f

a

of S
in one step and therefore !T ✓!T 0 . The second part of the
definition shows G(a) includes all possible subsets of states
mapped from all transient regions of S under action a 2 A.

D. Computation of abstractions

Given a switched system S and a proposition preserving
partition P , an over-approximation of S can be computed by
Algorithm 3.

Algorithm 3 Abstraction Procedure
Input: switched system S = (X,A, {f

a

}
a2A,⇧, h

X

), a proposi-
tion preserving partition P = {P

i

}N
i=0.

Output: AFTS T = (Q,A,!T ,⇧, h

Q

,G).
1: Let ↵ be the mapping induced by P

2: Set Q = {↵(P0), · · · ,↵(PN

), q
out

}, h
Q

= h

X

� ↵�1

3: Initialize !T = ;
4: for a 2 A do
5: G(a) = find transients(P )
6: !T =!T [{(q

out

, a, q

out

)}
7: for i 2 {0, 1, · · · , N} do
8: for j 2 {0, 1, · · · , N} do
9: if f

a

(P
i

) \ P
j

6= ; then
10: !T =!T [{(↵(P

i

), a,↵(P
j

))}
11: if f

a

(P
i

)\X 6= ; then
12: !T =!T [{(↵(P

i

), a, q
out

)}
13: return T = (Q,A,!T ,⇧, h

Q

,G)

The main idea of Algorithm 3 is to compute the exact evo-
lution of each region in P according to dynamical equations
f
a

in one step and get the exact transition relations between
the original regions in P and the next regions in f

a

(P ) under
each mode. During this procedure, the algorithm encodes
all transient properties of the continuous switched system
into the resulting AFTS. The procedure find transients
checks all subsets of P , and if the transience of a subset
can be verified, includes it in G(a). This can be potentially
exponentially complex, however implementing relaxed ver-
sions is possible. Moreover, for most affine systems, this
procedure can be performed exactly and very efficiently
as follows: (i) find the set X

c

of all equilibrium points
(i.e., X

c

= {x
c

| x
c

= A
a

x
c

+ K
a

}) of f
a

, (ii) set
G(a) = {{↵(P

i

) | P
i

2 P,P
i

\ X
c

= ;}}. Regions that
satisfy P

i

\X
c

6= ; are called critical regions.
Theorem 3: For a switched affine system S and a propo-

sition preserving partition P , if the system does not have any



poles on the unit circle, a minimal over-approximation of S
with respect to P can be computed via Algorithm 3 and the
simple procedure described above for find transients.

Remark 1: Algorithm 3 is not restrictive to switched affine
systems as in Eq. (4). It can be applied to nonlinear systems
as well, if an outer-approximation of the post of a given
set under the nonlinear dynamics can be computed. It is
also possible to handle systems subject to uncertainties and
disturbances.

Remark 2: Most of the set operations in Algorithm 3 can
be easily computed when the proposition preserving partition
consists of convex polytopes.

V. DIGITAL SWITCHING PROTOCOLS FOR
CONTINUOUS-TIME SYSTEMS

In this section, we show how the proposed framework
can be used to synthesize digitally implementable switching
protocols for continuous-time switched systems.

A. Continuous-time switched systems

The continuous-time switched systems can be written as:

ẋ(t) = A⇤
a(t)x(t) +K⇤

a(t), t � 0, (5)

where x(t) 2 X ✓ Rn is the state, X is a compact set, a(t) 2
A is the mode of the system at time t and K⇤

a(t) is the offset
term. We can also describe the continuous-time system as the
tuple S = (X,A, {f⇤

a

}
a2A,⇧, h

X

) where f⇤
a

(x) = A⇤
a

x +

K⇤
a

. The problem of switching protocol synthesis for the
continuous-time systems is to generate a controller to ensure
that starting from any state in the domain, the continuous-
time trajectories of (5) satisfies a given LTL formula '.

B. Discrete-time switched systems

We can use the exact solutions of (5) to derive the
following discrete-time system

x̂(k + 1) =

ˆA
â(k)x̂(k) + ˆK

â(k), (6)

where x̂(k) = x(kT
s

) and â(k) = a(kT
s

) for all k � 0,
T
s

> 0 is a fixed sampling period, ˆA
a

= eA
⇤
aTs , and ˆK

a

=R (k+1)Ts

kTs
eA

⇤
a((k+1)Ts�⌧)d⌧K⇤

a

. In other words, the values of
states of (6) correspond to those of (5) at sampling times.

C. Relations between continuous-time systems and discrete-
time systems

Instead of using the over approximation method to directly
establish the AFTS for the continuous-time system, we use
the discrete-time model discretized from the continuous-time
system to synthesize the controller. Then we determine the
relationship between these two systems in order to digitally
implement the discrete control strategy on the continuous-
time system created by its discrete-time model. This is
summarized in the following result. Let � = MT

s

/2, where
M = max

x2X,a2A kf⇤
a

(x)k. We use '
�

to denote the �-
contraction of a given LTL formula (which essentially means
a stronger version of ' by a margin �; see [11] for a precise
definition).

Theorem 4: If we can find a strategy to make the solutions
of the discrete-time switched system (6) satisfy '

�

, then this
strategy can be digitally implemented to ensure the solutions
of the continuous-time switched system (5) satisfy '.

The proof essentially follows from Proposition 2 in [11].
Thus, given a specification ' and a continuous-time switched
system, we can use the approaches in Section III and IV to
synthesize the controller from its discrete-time model with
respect to certain contraction of the specification and digitally
implement it to ensure the trajectories of continuous-time
system satisfy '. In other words, whenever we can find a
switching strategy for realizing '

�

on the time-discretized
system, we can also use this strategy to realize ' on the
continuous-time system. Note that M can be computed by
solving |A| linear programs when the dynamics in each mode
is affine.

VI. IMPLEMENTATION DETAILS

Some details of the implementation are presented next.

A. Numerical considerations

In order to establish more reachability relations, we refined
the proposition preserving partition P by adding grids that
increase the number of regions in the partition without
changing any property of the underlying dynamics. Then
we created the AFTSs based on the refined proposition
preserving partition. We started refining the partition with a
relatively large grid size and check whether the specification
was realizable. If not, kept refining with a smaller grid size
until the specification was realizable.

For the critical region, the exact equilibrium points can
be treated as the critical regions. But we created the corre-
sponding critical regions with an epsilon expansion. Sets of
equilibrium points for affine systems are affine subspaces
which are typically sets with empty interior. Thus, for
numerical stability of polytopic computations, we expanded
the critical regions by some ✏ > 0.

B. A heuristic for minimizing switching

For switched systems, the lower the switching frequency
is, the lower the energy consumption and the higher the
efficiency of the controller. We aim at generate a switch-
ing controller that uses a minimal number of switches to
realize the given specification. In order to reduce the switch
frequency, for the controllable predecessor set CPre1T (B),
for each state in the winning set we compute all actions that
makes progress towards the target set B in the outer loop
in Algorithm 1 by keeping track of those actions relevant to
progress groups. For the forced predecessor set FPre1T (B),
the safe set is Q\FPre1T (B) and the set of all safe actions
are already included in the strategy for each state.Then when
choosing the next action from a state q at step i, we use the
action used at step i� 1 if this action is available instead of
arbitrarily picking a possible action from µ(q).



! ! ! ! ! ! ! ! ! ! OFF! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! HEATING!

x (k +1) = 0.9998x (k )+0.0032
y (k +1) = y (k ) !

! ! ! ! !
x (k +1) = 0.9998x (k )+0.0002 y (k )
y (k +1) = y (k )+0.01

!

x (k +1) = 0.9998x (k )+0.0002 y (k )
y (k +1) = y (k )−0.01

! ! ! ! ! !
x (k +1) = 0.9998x (k )+0.0002 y (k )
y (k +1) = y (k )

!

! ! ! ! ! ! ! ! COOLING! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ON!

!
Fig. 1. A four-mode thermostat system.

VII. EXAMPLES

In this section, we demonstrate the proposed techniques
on two examples. We used the Temporal Logic Planning
(TuLiP) toolbox [19] for polytope operations and generating
the controller from GR(1) formulas. TuLiP toolbox is a
software package that can synthesize controllers for GR(1)
specifications by calling JTLV [15]. The proposed synthesis
algorithms for the fragment in Eq. (1) are implemented
in Python. All computations are done on a MacBook Pro
2.5GHz with 8GB RAM.

A. Thermostat system

We first consider a thermostat system also used in [10]
which is a continuous-time switched system. We discretize
the dynamics with sampling time 0.1 seconds. The discrete-
time thermostat system with four modes, ON, OFF, HEAT-
ING and COOLING, is shown in Fig. 1, where x represents
the room temperature and y is the heater temperature. The
domain for the state variables are taken to be 15  x  24

and 15  y  24.
We consider a specification for a maintenance test where

the thermostat is required to change the room temperature
between two ranges LOW (17  x  19 and 20  y 
22) and HIGH (21  x  22 and 20  y  22). The
corresponding LTL formula is given by '1

.
= 23LOW ^

23HIGH .
To create an AFTS, we started with a proposition pre-

serving partition. We then added regions corresponding to
equilibria with an ✏ = 0.1 expansion. Note that both ON
and OFF modes have non-unique equilibria for this system.
We used a grid size of 0.5 to refine the partition further.
Algorithm 3 was used to create the AFTS which included 416

discrete states and one progress group per mode that includes
all non-critical regions within that mode. The procedure for
abstraction took 609 seconds.

We synthesized controllers both with the proposed algo-
rithm and JTLV. The former took 5 seconds and the latter
took 19 seconds. A simulation result is shown in Fig. 2.
Although the proposed algorithm was faster than JTLV in
this example, the main advantage of the our method will
be highlighted in the next example which requires a larger
discrete state-space.

0 5000 10000 15000
15

16

17

18

19

20

21

22

23

24

Time (sec)

Te
m

pe
ra

tu
re

 (°
 C

)

 

 

Room 
Heater

0 5000 10000 15000
0

1

2

3

Time (sec)

M
od

e

Fig. 2. Simulation results. Left: The continuous trajectories of the room
temperature and the heater temperature. Right: The control inputs (i.e., the
mode sequence) where we used the number 0, 1, 2, 3 to denote the mode
OFF, HEATING, ON and COOLING, respectively.

Supply

Return

Pump

Zone pipes

Zone 1 Zone 2

Fig. 3. Diagram of a radiant system for two zones.

B. Radiant systems in buildings

In this section, we consider a hydronic radiant system [12]
for buildings. In the hydronic radiant system, hot or chilled
supply water is pumped through the system tubes (i.e., the
piping system) to adjust the temperature of the room.

Figure 3 shows two zones equipped with one radiant
system. The dynamics of this system can be modeled as
a switched system with two modes and with states T

c

(temperature of the pipe), T1, T2 (temperatures of zones).
When the pump is circulating water in its piping system,
Mode 0 dynamics are active:

C

r

Ṫ

c

=
2X

i=1

K

r,i

(T
i

� T

c

) +K

w

(T
w

� T

c

),

C

i

Ṫ

i

= K

r,i

(T
c

� T

i

) +K

i

(T
a

� T

i

) +
X

j 6=i

K

ij

(T
j

� T

i

) + q

i

,

for i = 1, 2, where T
a

is the ambient air temperature and T
w

is the temperature of the supply water. The other parameters
are listed in Table I (see [12] for details). Similarly, when
the pump is not running, Mode 1 dynamics are active, which
is essentially the same as Mode 0 with K

w

set to zero.
We set the domain as 20  T

c

, T1,2  27. The specifi-
cation is to get the zone temperatures to a desired range,
denoted by a proposition SET (21  T

c

 27 and 22 
T1,2  26), and guarantee invariance in this range. The LTL
formula for this specification is '2

.
= 32SET .

To compute the abstraction, we started with a proposition
preserving partition. This system has an equilibrium point at
(20.09, 22.75, 22.64) for Mode 0, and the equilibrium point



TABLE I
PARAMETER VALUES FOR THIS TWO-MODE RADIANT SYSTEM.

T
w

= 18�C T
a

= 30�C
q1 = 6 (W/m2) q2 = 8 (W/m2)
K12 = 1/0.2 = 5 (W/Km2)
K1 = 1/2.1 = 0.48 (W/Km2) K2 = 1/2.2 = 0.45 (W/Km2)
K

w

= 1/0.05 = 20 (W/Km2) C
r

= 4000 (kJ/K)
K

r,1 = 1/0.125 = 8 (W/Km2) K
r,2 = 1/0.130 = 7.7 (W/Km2)

C1 = 1900 (kJ/K) C2 = 2100 (kJ/K)

0 5000 10000 15000
20

21

22

23

24

25

26

27

Time (sec)

T
e

m
p

e
ra

tu
re

 (
°
C

)

 

 
Core
Zone1
Zone2

0 5000 10000 15000

0

1

Time (sec)

M
o

d
e

Fig. 4. Simulation results. Left: The continuous trajectories of the core
temperature T

c

and the zone temperatures T1,2. Right: The control inputs
(i.e., the mode sequence) .

for Mode 1 is outside the domain. A region is added around
the equilibrium point with ✏ = 0.1 expansion. The refinement
grid size was 0.5. Running Algorithm 3 resulted in an AFTS
T1 with 2746 discrete states.

Note that persistence specifications are not in GR(1).
Instead, we tried a simple GR(1) representable sufficient
condition in JTLV. We also tried a recurrence formula.
However, for an AFTS of this size, JTLV ran out-of-memory
in all cases. On the other hand, with the proposed algorithms,
synthesis took only 52 seconds. Fig. 4 depicts a simulation
trajectory that starts at an initial state outside SET , eventu-
ally reaches SET and remains there as expected.

To compare quality of different abstractions, we con-
structed two additional AFTSs, T2, T3, on the same partition
with the same transitions but smaller progress groups. All
progress groups of T2 were set to empty sets. And, those
of T3 were all singletons corresponding to regions without
equilibrium points. Therefore, T1 is minimal but T2 and T3
are not. The number of winning states for the specification '2

for T1, T2 and T3 were respectively 1570, 768 and 768, where
the SET was satisfied in 768 states. This illustrates how the
number of states that can be controlled to reach a target set
increases when using minimal over-approximations.

VIII. CONCLUSIONS

In this paper we presented a framework for control strategy
synthesis for AFTSs with respect to a given specification
expressed in an efficient fragment of LTL. The algorithm
uses an explicit graph-based representation of AFTSs and
works on this graph to compute fixed points. Our experiments
show that when the transition graph is sparse, the algorithm
is faster and uses significantly less memory compared to
BDD-based symbolic implementations. In order to apply
the proposed approach to switching protocol synthesis, in
the second part of the paper, we proposed an algorithm

for abstracting switched systems as AFTSs. For discrete-
time switched affine systems, we show that it is possible to
compute a minimal AFTS that contains the exact transition
relations and inherits all transience properties. We then solve
the discrete synthesis problem to ensure the trajectories
of the system fulfill the specification. We also considered
the problem of digital implementation on continuous-time
systems and based on the relations between continuous-time
systems and discrete-time system, it is possible to directly
construct the continuous controller from its discretized model
dictated by the discrete strategy. Future work will include
improving the efficiency of the abstraction process.
Acknowledgements: The authors wish to thank Prof. Yixian
Yang for helpful suggestions and Dr. Vasu Raman for dis-
cussions on symbolic implementations of GR(1) synthesis.
This work is supported in part by IBM and UTC through
iCyPhy consortium. The work of EMW is supported by an
NDSEG fellowship and the Boeing corporation.

REFERENCES

[1] C. Baier and J.P. Katoen. Principles of Model Checking. MIT Press,
2008.

[2] M.S. Branicky. Analyzing and synthesizing hybrid control systems.
In Lectures on Embedded Systems, pages 74–113. Springer, 1998.

[3] A. Cimatti et al. NuSMV 2: An opensource tool for symbolic model
checking. In Computer Aided Verification, pages 359–364, 2002.

[4] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. IEEE Trans. on
Autom. Control, 55(1):116–126, 2010.

[5] E.A. Gol, X.C. Ding, M. Lazar, and C. Belta. Finite bisimulations for
switched linear systems. In CDC, pages 7632–7637, 2012.

[6] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of Lecture
Notes in Computer Science. Springer, 2002.

[7] G.J. Holtzman. The SPIN Model Checker, Primer and Reference
Manual. Addison-Wesley, 2003.

[8] O. Kupferman and M.Y. Vardi. Model checking of safety properties.
In Computer Aided Verification, pages 172–183. Springer, 1999.

[9] D. Liberzon. Switching in systems and control. Birkhauser, Boston,
2003.

[10] J. Liu, N. Ozay, U. Topcu, and R.M. Murray. Synthesis of reactive
switching protocols from temporal logic specifications. IEEE Trans.
on Autom. Control, 58(7):1771–1785, 2013.

[11] J. Liu, U. Topcu, N. Ozay, and R.M. Murray. Reactive controllers for
differentially flat systems with temporal logic constraints. In IEEE
CDC, 2012.

[12] T.X. Nghiem, G.J. Pappas, and R. Mangharam. Event-based green
scheduling of radiant systems in buildings. In ACC, 2013.

[13] N. Ozay, J. Liu, P. Prabhakar, and R.M. Murray. Computing aug-
mented finite transition systems to synthesize switching protocols for
polynomial switched systems. In ACC, 2013.

[14] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs.
In International Conference on Verification, Model Checking, and
Abstract Interpretation, pages 364–380, 2006.

[15] A. Pnueli, Y. Sa’ar, and L. Zuck. JTLV: A framework for developing
verification algorithms. In International Conference on Computer
Aided Verification, volume 6174, pages 171–174, 2010. Associated
tool available at http://jtlv.ysaar.net/.

[16] A. Van Der Schaft and H. Schumacher. An Introduction to Hybrid
Dynamical Systems. Springer-Verlag, 2000.

[17] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer-Verlag New York Inc, 2009.

[18] E.M. Wolff, U. Topcu, and R.M. Murray. Efficient reactive controller
synthesis for a fragment of linear temporal logic. In ICRA, 2013.

[19] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R.M. Murray.
TuLiP: a software toolbox for receding horizon temporal logic plan-
ning. In HSCC, pages 313–314, 2011.


	Introduction
	Preliminaries
	Notation
	Augmented finite transition systems
	Temporal logic

	Control synthesis for augmented finite transition systems
	Control synthesis problem
	Algorithms
	Complexity, comparisons and discussions

	Application to switching protocol synthesis
	Discrete-time switched systems
	Problem statement
	Abstraction via over-approximation
	Computation of abstractions

	Digital switching protocols for continuous-time systems
	Continuous-time switched systems
	Discrete-time switched systems
	Relations between continuous-time systems and discrete-time systems

	Implementation details
	Numerical considerations
	A heuristic for minimizing switching

	examples
	Thermostat system
	Radiant systems in buildings

	Conclusions
	References

