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Abstract: This work examines several dynamical aspects of average consensus
in mobile networks. The results herein allow consensus on general time-varying
signals, and allow tracking analysis using standard frequency-domain techniques.
Further, the frequency-domain analysis naturally inspires a robust small-gain
version of the algorithm, which tolerates arbitrary non-uniform time delays.
Finally, we show how to exploit a dynamical conservation property in order to
ensure consensus tracking despite splitting and merging of the underlying mobile
network. Copyright c©2005 IFAC or Copyright c©2005 IFAC
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1. INTRODUCTION

Consensus problems have attracted much atten-
tion among researchers studying distributed and
decentralized automated systems. Broadly speak-
ing, a consensus problem is one in which several
spatially distributed agents or processors must
reach a common output value, but without re-
course to a central coordinator or global communi-
cation. This work focuses on dynamical aspects of
linear consensus, i.e. consensus in which all agents
must converge to a linear combination of their
individual input values.

Nearly all consensus problems studied thus far
have been static; a classical example is that of
the Byzantine generals, in which a single collective
decision must be made to attack an enemy. How-
ever, the nature of decentralized control requires
tight coordination among agents in a dynamic
environment. Consensus on static inputs is thus
insufficient, and this work shows how to achieve
and analyze tracking of linear consensus on time-
varying inputs.

Communication networks are intrinsically dy-
namic, and careful analysis must be done to en-
sure consensus in spite of network reconfiguration.
Most of this analysis to date has focused on a
single stationary network which is only dynamic in
the sense that its links may occasionally fail. How-
ever, mobile networks demonstrate much richer
dynamics, including splitting and merging of sub-
networks, as well as strongly time-dependent de-
lay properties. This paper exhibits a completely
distributed algorithm which ensures proper con-
sensus tracking despite splitting and merging, as
well as a robust consensus algorithm that con-
verges despite arbitrarily large non-uniform de-
lays. A companion paper, (Spanos et al. 2005),
addresses dynamical aspects of general multivari-
able consensus problems and their application in
distributed Kalman filtering.

The following sections summarizes previous work
on the Laplacian consensus dynamics, and intro-
duce the notation we will utilize in the remainder
of the paper. Sections 4, 5, and 6 discuss our main
results for dynamic consensus, robust consensus,
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and consensus with splitting and merging of mo-
bile networks. We close with a discussion of some
potential applications of these results.

2. BACKGROUND

Consensus problems have been considered by
many authors. A general introduction from a
computer science perspective is available in the
textbook by Lynch (Lynch 1997). The Control
community has considered the problem of average
consensus, in which all agents must converge to
the average of their initial states. In fact, simple
modifications of this problem can yield arbitrary
linear functions of the inputs, but we restrict our
discussion to average consensus for clarity.

Average consensus has been considered in the
context of vehicle formations by (Fax and Murray
2002), and in the general framework of distributed
consensus by (Olfati-Saber and Murray 2004).
Both of these studies focused on a special matrix
known as the Laplacian of a graph, which forms
the basis for distributed consensus dynamics.

The Laplacian matrix of a graph G is defined
in terms of the adjacency matrix A. Recall that
the adjacency matrix of a graph with N nodes
is an N × N matrix where the ij entry is one if
the edge (i, j) is included in the graph, and zero
otherwise. The Laplacian is constructed from the
adjacency matrix, and the diagonal degree matrix
D as follows:

Dii =
∑

j

Aij

L = D − A.

The Laplacian consensus dynamics is given by the
differential equation

ẋ =−Lx.

Examining the dynamics of an individual agent,
we have

ẋi =
∑
j∈Ni

(xj − xi) .

This dynamics is completely distributed, in that
each agent need only obtain the values of its
neighbors (the set Nj) in order to implement its
own update.

Three things must be said regarding this dynam-
ics. First, for an undirected graph G, the Lapla-
cian is a symmetric positive-semidefinite matrix.
This implies that the dynamics is stable, and
must converge to a steady-state. Second, note that
this same assumption guarantees

∑
j Lij = 0.

This implies that for any vector x with identical

components xi = xj for all i and j, we have
Lx = 0. Thus, any consensus is an equilibrium.
It can be shown that all equilibria correspond to
a consensus, provided the graph G is connected.
Finally,

∑
j Lij = 0 also implies the following

dynamical conservation property:

d

dt

(∑
i

xi

)
= 0.

The Laplacian dynamics thus drives any initial
condition to a consensus, and conserves the sum of
the initial states. This implies that all components
of the vector x must approach the value

1
N

1T x(0) =
1
N

∑
i

xi(0),

where 1 denotes the N -element vector of ones.
Each component of this vector is equal to the
average of the initial values xi(0).

Additional work utilizing the Laplacian dynamics
includes that of (Xiao and Boyd 2003), which ex-
amines weighting strategies for optimizing conver-
gence rates, as well as (Hatano and Mesbahi 2004)
which studies the case of stochastic link failures.
A study of consensus dynamics on completely
asynchronous peer-to-peer networks is provided in
(Mehyar et al. 2005).

There is much related work in the Control com-
munity pertaining to coordination of multi-agent
systems. We refer to (Moreau 2003) and (Jad-
babaie et al. 2002) as representative of the field,
and direct the reader to references therein for
additional work in this area.

3. NOTATION AND SETUP

Consider a set V of N agents, labeled by an index
i = 1, 2, . . . , N . Their communication is modeled
by a graph G = (V, E) where an edge (i, j) is
in E if and only if agent i can communicate
with agent j. We will only consider undirected
communication structures, i.e. graphs in which
(i, j) ∈ E ⇔ (j, i) ∈ E. We will also assume
that G is connected, i.e. there is a path from
any node i to any other node j. As per the
previous discussion, these assumptions imply that
the Laplacian matrix is a symmetric, positive
semi-definite matrix, and that the nullspace of the
Laplacian corresponds to consensus, i.e. span{1}.
Each agent has an associated signal zi(t), which
represents some quantity for which the network
must reach a dynamic consensus. We will occa-
sionally refer to the vector z(t), which contains the
individual zi terms as its components. Dynamic
consensus is simply a situation in which all agents



asymptotically track the evolution of some aggre-
gate network quantity; an example considered in
(Fax and Murray 2002) is that of finding the time-
varying center of mass of a mobile vehicle network.

For the sake of simplicity, we will focus on average
consensus, i.e. the problem of tracking the time-
varying average of the zi terms. That is, we wish
each agents to track the quantity

z̄(t) =
1
N

∑
i

zi(t). (1)

The results we will present can easily be extended
to track general linear functions.

In addition to the input signals zi, each agent
maintains a local variable xi, which is a time-
varying estimate of the instantaneous average
value z̄. We will present dynamics for x which
ensures tracking of z̄. Further, we will show how to
obtain this result robustly, despite arbitrary time-
delays and network reconfiguration.

4. DYNAMIC CONSENSUS

Recall the Laplacian consensus dynamics with
initial value z0:

ẋ =−Lx

x(0) = z0.

We wish to view the vector of initial conditions
as an input, in order to obtain a frequency-
domain view of the consensus dynamics. Since this
represents a static consensus problem, it is natural
to consider a step function input, i.e. Z(s) = z0

s .
Note that the Laplace transform of x is just

X(s) = (sI + L)−1 z0

= s (sI + L)−1
(z0

s

)
= s (sI + L)−1 Z(s).

Now, this equation has been derived by assuming
a specific Z(s). However, the transfer function it
suggests,

Hxz = s (sI + L)−1

is a very natural mechanism for a simple dynamic
consensus. To see this, we will consider the asso-
ciated LTI system with input z(t):

ẋ =−Lx + ż

x(0) = z(0).

Before proceeding with the analysis, some com-
ments are in order regarding the structure of this

dynamics. First, this is a completely distributed
modification, in that the input terms added to the
Laplacian dynamics are purely local. Second, the
conservation property of the Laplacian dynamics
without input implies that the above dynamics has
the following conservation property:

d

dt

(∑
i

xi

)
=

d

dt

(∑
i

zi

)
.

Thus, the instantaneous sum of the estimate vari-
ables xi is equal to the instantaneous sum of the
input variables zi. Intuitively, this is precisely the
property we would expect in order to track a
time-varying average consensus. This intuition is
formalized in the following propositions.

Proposition 1. Consider the LTI system described
by the MIMO transfer function

Hxz = s (sI + L)−1
,

where L is the Laplacian of a connected undi-
rected graph. Suppose the input signal Z(s) has
all its poles in the left half-plane, and has at most
one pole at s = 0. Then, for all i,

lim
t→∞


xi(t) − 1

N

∑
j

zj(t)


 = 0.

That is, each agent tracks the dynamic consensus
with zero steady-state error.

PROOF. Consider the error signal e(t), and its
Laplace transform

E(s) = X(s) − 1
N

11T Z(s).

This is the vector of deviations between the xi

estimates, and the instantaneous average of the
zi(t) terms. We then have the following MIMO
transfer function from Z(s) to E(s):

Hez = s (sI + L)−1 − 1
N

11T . (2)

The Laplacian is a symmetric matrix, and so
admits a spectral decomposition,

L =
∑

i

λiPi,

where the λi terms are real eigenvalues, and the
Pi terms are orthogonal projections onto mutually
orthogonal eigenspaces. It is a fact from graph the-
ory that connectedness of G implies the following:

(1) λ1 = 0,
(2) P1 = 1

N 11T ,



(3) λi > 0 for all i > 1.

Rewriting 2 with the spectral decomposition, we
have

Hez =

(
1
N

11T +
∑
i>1

s

s + λi
Pi

)
− 1

N
11T (3)

=
∑
i>1

s

s + λi
Pi. (4)

This transfer function has a single zero at s = 0,
and all the terms in the summation are stable.
Thus, for an arbitrary stable input signal Z(s)
with at most one pole at s = 0, the final value
theorem implies that e(t) → 0 as t → ∞. This is
the desired result. �

Corollary 2. Suppose C(s) is a stable transfer
function with stable inverse, and k zeros at s = 0.
Let the input Z(s) be a signal with no right-half-
plane poles, and at most k poles at s = 0. Then
the consensus dynamics given by the transfer
function

Hxz = C(s) (C(s)I + L)−1
,

tracks average consensus on the input Z(s) with
zero steady-state error.

Proposition 1 shows that the addition of a differ-
entiator provides dynamic consensus on any signal
that has a steady-state value. Corollary 2 is the
obvious generalization, which shows that the addi-
tion of an appropriate “predictor” filter C(s) can
accomplish dynamic consensus on more general
time-varying signals with polynomially bounded
growth. For example, vehicles equipped with ac-
celerometers can achieve dynamic consensus on
their positions with zero steady-state error for
ramp inputs.

5. ROBUST CONSENSUS

All communication media introduce time-delays
in signal propagation between source and receiver.
The Laplacian dynamics, like any linear system,
is sensitive to time-delays; this sensitivity was
explored in detail in (Olfati-Saber and Murray
2004). In particular, the integrator dynamics re-
sults in a finite phase-margin. We will now show
a small-gain version of this dynamics that will
converge despite arbitrarily large time-delays, pro-
vided a certain a priori eigenvalue bound is sat-
isfied. Specifically, we assume that the Laplacian
satisfies the bound

λi(L)(t)≤ β

for all i and for all t. This can be guaranteed
by ensuring that the maximal degree within the
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Fig. 1. Dynamic consensus for linearly growing
input signals, using the single differentiator
dynamics from Proposition 1. There is a small
steady-state error due to the ramp inputs,
but it is not visible on the graphs.

network is at most β
2 . We do not discuss how such

networks may arise; for a distributed topology-
control algorithm guaranteeing such a bound, see
(Spanos and Murray 2004).

We will only show the robust version of the single-
differentiator dynamics from Proposition 1; the
general case follows with a similar analysis.

Observe that the Laplacian dynamics can be re-
alized as shown in Figure 2. The feedback loop
has unbounded gain at low frequency, but we can
correct this by adding some dynamics within the
loop. Specifically, we will use a system of the form
xi = zi +vi, where the dynamics of vi is as follows
(illustrated in Figure 3):

v̇i(t) =−γvi(t) −
∑
j∈Ni

(xj(t − τ) − xi(t − τ)) .

Proposition 3. Consider the feedback intercon-
nection in Figure 3, where L is the Laplacian of a
connected undirected graph and τ is an arbitrary
time-delay. Suppose that the bound

λi(L)≤ β < γ

holds for all i. Again suppose that the input signal
Z(s) has all its poles in the left half-plane, and has
at most one pole at s = 0. Then, for each i

lim
t→∞


xi(t) − 1

N

∑
j

zj(t)


 = 0.

That is, each agent tracks the dynamic consensus
with zero steady-state error, for an arbitrary value
of the time-delay τ .
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Fig. 2. Integral feedback realization of dynamic
consensus.
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Fig. 3. A robust consensus loop (See Proposition
3 for explanation).

PROOF. It is straightforward to show that the
time-delay does not affect the conservation prop-
erty; see (Olfati-Saber and Murray 2004) for de-
tails. Further, the closed-loop transfer function in
the absence of the time-delay is just

Hxz =

(
1
N

11T +
∑
i>1

s + γ

s + γ + λi
Pi

)
,

which achieves dynamic consensus. We must show
that the loop is stable despite the addition of the
time-delay. Consider the loop transfer function,
without the time-delay:

1
s + γ

L =

(∑
i>1

λi

s + γ
Pi

)
.

All the terms in the summation are stable, and the
maximum L2 gain of the summation is bounded
by λn(L)

γ , which is strictly bounded by unity.
Since the time-delay is a non-expansive operator,
we have from the small-gain theorem that the
loop is stable, and must go to a steady-state.
From previous arguments, this implies that the
agents each track the dynamic consensus with zero
steady-state error. �

Corollary 4. The above result holds with the
global time-delay τ replaced by non-uniform link
delays τij , provided that the link delay is symmet-
ric (i.e. τij = τji). That is, the following dynamics
for vi achieves dynamic consensus for arbitrary
values of τij :

v̇i(t) =−γvi(t) −
∑
j∈Ni

(xj(t − τij) − xi(t − τij)) .

6. CONSENSUS UNDER NETWORK
SPLITTING AND MERGING

The Laplacian dynamics utilizes a dynamical con-
servation property to achieve the correct consen-
sus value. This conservation property ensures that
the sum of the xi variables across any connected
component of a graph G is constant in time.
However, mobile networks do not necessarily con-
sist of a fixed number of connected components;
large networks split into small ones, and small
networks merge into large ones. As a consequence,
the standard Laplacian dynamics does not provide
consensus tracking for these situations.

To see the source of the problem, consider a trivial
example: a two-node network which splits into
two one-node networks. If the input values are
constants, z1(t) = 0 and z2(t) = 1, we would
like the estimate variable xi(t) to approach z1+z2

2
while the network is connected, and then return
to xi = zi when the network splits. However,
the Laplacian dynamics does not accomplish this.
After the network splits, say at time T , the
estimate variables will be fixed at xi(T ), never
returning to zi. We will present a modification
that corrects this behavior.

Consider the following agent dynamics:

xi(t) = zi(t) +
∑
j∈Ni

δij (5)

δ̇ij = (xi − xj) j ∈ Ni (6)

δij = 0 j /∈ Ni. (7)

A few comments are in order at this point. First,
note that the overall dynamics of the x variables
is just the Laplacian dynamics, i.e.

ẋ =−L(t)x + ż.

Thus, for a fixed network, this dynamics achieves
dynamic consensus as discussed in section 4. Sec-
ond, note that the algorithm requires no more
communication than the standard Laplacian dy-
namics, it merely requires additional memory to
implement the updates on each of the δij terms.
Thus, each agent tracks as many δij terms as it
has links. We will now show that this dynamics
ensures correct consensus tracking despite split-
ting and merging.

We present the following two lemmas without
proof, due to length limitations.

Lemma 5. Consider the modified Laplacian dy-
namics in 5-7. Suppose that at some time T ,



Aij(T ) = 0 but Aij(T−) = 1, i.e. the link (i, j)
is lost. Suppose also that the loss of the link (i, j)
does not separate the connected component of G
containing i and j, say H. Then,

∑
i∈H

xi(T−) =
∑
i∈H

xi(T+).

Lemma 6. Consider the dynamics 5-7, and let H1

and H2 be two arbitrary disjoint subsets of V
whose union is V . Let Eb be the set of boundary
links between H1 and H2, i.e. the links from
agents in H1 to agents in H2. Then, we have the
following transport property:

∑
k∈H2

xk(t) =
∑

k∈H2

zk(t) +
∑

(k,j)∈Eb

δkj

Proposition 7. Consider again the modified dy-
namics 5-7. Let H(t) be an arbitrary connected
component of the graph G(t). Then,

∑
i∈H

xi(t) =
∑
i∈H

zi(t)

PROOF. [Sketch] This property holds at t = 0
by construction of the dynamics. Lemma 5 shows
that this property holds until a time T when the
connected component H splits into two connected
components H1 and H2. Lemma 6 shows that
prior to the splitting, the sum over H2 differs from
the desired value by exactly the sum of the δij

terms corresponding to the lost links. �

Thus, in steady-state each connected component
of the network converges to its own average con-
sensus despite reconfiguration (see Figure 4).

7. CONCLUSIONS

We have shown how to extend the Laplacian con-
sensus dynamics in three directions, all relevant
to applications in mobile networks. First, we have
shown how to achieve consensus on time-varying
signals, and how to analyze tracking in the fre-
quency domain. Second, we have shown how to
design a small-gain consensus loop, thus making
the consensus dynamics robust to arbitrarily large
uncertain time-delays. Finally, we have shown how
to modify the agent dynamics using a completely
local algorithm that compensates for splitting and
merging of subnetworks.
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