
Linear System Identifiability from Distributional and Time Series Data

Anandh Swaminathan1 and Richard M. Murray1

Abstract— We consider identifiability of linear systems driven

by white noise using a combination of distributional and time

series measurements. Specifically, we assume that the system

has no control inputs available and can only be observed at

stationarity. The user is able to measure the full stationary

state distribution as well as observe time correlations for small

subsets of the state. We formulate theoretical conditions on

identifiability of parameters from distributional information

alone. We then give a sufficient condition and an effective

necessary condition for identifiability using a combination of

distributional and time series measurements. We illustrate the

ideas with some simple examples as well as a biologically

inspired example of a transcription and degradation process.

I. INTRODUCTION

In this paper, we consider the combination of distributional
and time series measurements in system identification. Distri-
butional measurements consist of measuring the distribution
of an output across an ensemble of systems at one given time.
Time series measurements consist of measuring the output
of one system over time and are standard in control theory.
The central idea of this paper is that it can be advantageous
for system identifiability to combine distributional and time
series measurements.

In synthetic and systems biology, we are often interested
in experimentally probing the dynamics of biomolecular cir-
cuits in single cells. Distributional measurements in biology
such as mRNA FISH (fluorescence in situ hybridization)
[1], [2] and flow cytometry allow for quantifying mRNA
or protein abundance for many genes across thousands of
single cells. This results in output histograms as shown in
Figure 1. Time series measurements such as time lapse fluo-
rescence microscopy [3] allow us to measure a single cell’s
fluorescence over time as illustrated in Figure 1. However,
time lapse microscopy measurements suffer from low output
dimensionality and small sample sizes when compared to
distributional measurements.

Therefore, our central idea is that it can be advantageous
to combine the dynamic information from time series mea-
surements with the high dimensional information from distri-
butional measurements when investigating system dynamics.

It is commonly known that single cells behave stochas-
tically [4], [5]. Common biological models for stochastic
single cell behavior include stochastic linear systems [6],
dynamic Bayesian networks [7], [8], and stochastic chemical
reaction networks [9]. While stochastic chemical reaction
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Fig. 1. Population snapshot measurements generate output histograms (left)
while time series measurements generate output trajectories (right)

models are more physically relevant, for theoretical tractabil-
ity, we restrict our attention in this work to linear system
models, which might still accurately model equilibrium fluc-
tuations in a stationary stochastic process [6].

Linear system identification from time series data is a
very well studied problem [10]. System identification from
distributional data is less common but typically arises in
inference of single cell dynamics from flow cytometry mea-
surements [11], [12], [13]. Distributional measurements in
the form of sample covariances were also used in machine
learning to find sparse graphical models [14], [15]. The
combination of distributional and time series data for fully
observable discrete time stochastic linear systems was con-
sidered computationally in [16]. The theory of dynamical
structure functions has also been applied to identifiability of
stochastic linear systems [17] as well as identifiability when
different subsets of the state can be measured [18].

Importantly, Anderson [19] and Glover [20] considered
system identifiability for stationary stochastic linear systems
from output correlation measurements. In this work, we rely
heavily on Anderson’s and Glover’s results. Our contribution
is a consideration of stochastic linear system identifiability
at stationarity given a combination of output correlation
measurements in addition to the full steady state distribution.
We term this the sensor fusion problem. Like Anderson and
Glover, we assume that we have perfect measurements.

The structure of the paper is as follows. In Section 2,
we cover some preliminaries on linear systems driven by
noise and set up the sensor fusion problem we would like
to solve. In Section 3, we consider the case where we have
only distributional measurements available. In Section 4, we
introduce a sufficient condition and an effective necessary
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condition for system identifiability in the sensor fusion case
when distributional and time series measurements are avail-
able. In Section 5, we consider a detailed simple example,
a more complicated toy example with decaying oscillations,
and a biologically inspired example. We discuss future work
and conclude in Section 6.

II. PROBLEM SETUP

A. Preliminaries

In this paper, we are concerned with linear systems driven
by noise, and we assume that the systems have reached
stationarity. We use the continuous time system description
given in (1).

ẋ(t) = Ax(t) +Bw(t)

y(t) = Cx(t)

E[w(t)w(t+ ⌧)T ] ⇠ I�(⌧),

(1)

where A 2 Rn⇥n, B 2 Rn⇥m, and C 2 Rp⇥n are
real matrices. The state x 2 Rn corresponds to physically
relevant quantities, and w(t) is a unit white noise process
in m dimensions, where m  n. The number of outputs
measured is p, which is smaller than n. In this work, we
assume we can choose each row of C to be a canonical unit
vector, so that the output is some subset of the state. We
refer to A, BB

T , and C as the dynamics, noise, and output
matrix respectively.

The transfer function for this linear system is given by
G(s) = C(sI � A)�1

B, and (A,B,C) is a state space
realization of G(s). A minimal state space realization of
G(s) is one that is both observable and controllable.

We use G

⇤ to denote the conjugate transpose of a complex
matrix G, and we use A

T to denote the transpose of a
real matrix A. We also write P � 0 or P ⌫ 0 to mean
that a matrix P is positive definite or positive semidefinite
respectively.

Finally, general linear systems can have a feed through
term D directly from input to output so that y(t) = Cx(t)+
Dw(t). In this paper, we assume that D = 0, and we
will generally give state space realizations with only three
matrices (A,B,C). However, in some cases we will give
state space realizations with four matrices. In this case, the
final matrix is the feed through matrix D.

We then make the following assumption for the remainder
of the paper.

Assumption 1: Given the linear system (1), we assume
that A is Hurwitz stable and that (A,B) is controllable.

For a review of linear control theory, see [21].

B. Distributional Measurements for Linear Systems

The following standard result, which can be found in
[21], characterizes the stationary state distribution of a linear
system driven by white noise.

Proposition 1: Given Assumption 1, the stationary state
distribution of the linear system (1) is a multivariate Gaussian

distribution with zero mean and covariance P , where P is
positive definite and is the unique solution to (2).

AP + PA

T +BB

T = 0 (2)

Proposition 1 allows us to assume that the distribution we
observe is Gaussian. Since the form of a Gaussian distribu-
tion is fully determined by its mean and covariance and the
mean is zero, we can get full knowledge of the steady state
distribution from the covariance alone. Assumption 1 means
that (A,B) is controllable, which guarantees us a strictly
positive definite covariance P . The Lyapunov equation (2)
provides a constraint that A and B must satisfy in order to
produce a given covariance P .

C. Time Series Measurements for Linear Systems

Time series measurements allow us to measure output
trajectories. There are two main types of time series mea-
surements depending on whether a controllable input to the
system is available. We start with the more standard case.

1) Time Series Measurements with Controlled Input: If
we consider w(t) to be a controllable input in (1), then
we can characterize the input output transfer function G(s)
of the linear system given in (1). The following standard
result characterizes the space of state space realizations
consistent with a transfer function. Again, see [21] for more
information.

Proposition 2: Given a transfer function G(s) with a
minimal realization given by (A,B,C), then (Â, B̂, Ĉ) is
also a minimal realization of G(s) if and only if

Â = TAT

�1
B̂ = TB Ĉ = CT

�1 (3)

for an invertible transformation T .
Proposition 2 tells us that the state space matrices can only

be resolved up to a change of coordinates. This only holds
if the system is of minimal order.

2) Output Correlation Measurements: When the input is
an unobservable noise as in (1), we can only measure the
system output, so we cannot expect to recover the input
output transfer function of the system. However, we can
observe correlations in the output, or equivalently the output
spectral density.

Given the linear system (1), we can measure the time
correlations in the output y. Since the process is at stationar-
ity, this corresponds to measuring the correlation function
R(⌧) = E[y(t + ⌧)y(t)T ]. In the frequency domain, the
spectral density is given by

�(s) = G(s)G⇤(s),

where
G(s) = C (sI �A)�1

B

is the input output transfer function of the system.
The problem of finding state space matrices that generate

a specified spectral density has been studied extensively by
Anderson [19] and Glover [20]. We present some of their
results here.



We first define the notion of a globally minimal system as
done in [19] and [20].

Definition 1: A minimal state space system (A,B,C) is
globally minimal with respect to a spectral density function
�(s) if G(s) = C(sI �A)�1

B satisfies �(s) = G(s)G⇤(s)
and A has the smallest dimension possible for any solution
to �(s) = G(s)G⇤(s).

Specifically, a minimal system can sometimes produce an
output spectral density that can be reproduced by another
minimal system of lower order. In this case, the original
system is minimal but not globally minimal. This scenario
occurs when the original transfer function contains an all
pass component, which is a term like s�a

s+a that cancels out
when forming the spectral density. We make the following
assumption with respect to output correlation measurements.

Assumption 2: Given the linear system (1), we assume
that we know the system order n a priori, that A is Hurwitz
stable, and that (A,B,C) is a globally minimal realization
for the transfer function G(s) = C(sI � A)�1

B for any
choice of C that we use.

Assumption 2 is strictly stronger than Assumption 1. The
following lemma from [19] characterizes the set of globally
minimal systems consistent with a spectral density.

Lemma 1: Given an output spectral density of �(s), let
�(s) = Z(s) + Z

⇤(s), where Z(s) is positive real. Then,
suppose (A,G,C, J) is a minimal realization for Z(s).
Consider the following LMI (4).


AP + PA

T
PC

T �G

CP �G

T �J � J

T

�
= �


B

D

� ⇥
B

T
D

T
⇤

(4)

Then all globally minimal realizations of G(s) such that
�(s) = G(s)G⇤(s) have a realization given by (A,B,C,D)
where B and D satisfy (4) together with P � 0. Also, if
B and D together with P � 0 satisfy (4), then G(s) =
C (sI �A)�1

B + D is a globally minimal solution of
G(s)G⇤(s) = �(s).

Lemma 1 characterizes all globally minimal state space
realizations consistent with the output spectral density. In
addition, the minimal dimension of the positive real transfer
function matrix Z(s) sets the globally minimal dimension
for the system. The following result from [20] describes the
relationship between multiple globally minimal realizations.

Lemma 2: If (A1, B1, C1, D1) is a globally minimal re-
alization for �(s), then (A2, B2, C2, D2) is also a globally
minimal realization if and only if there is an invertible T and
symmetric Q such that

A1 = TA2T
�1

C1 = C2T
�1

QA

T
1 +A1Q = �B1B

T
1 + TB2B

T
2 T

T

QC

T
1 = �B1D

T
1 + TB2D

T
2

D1D
T
1 = D2D

T
2 .

(5)

Lemma 2 gives us an algebraic condition that relates
globally minimal system realizations to each other. It is clear
by letting Q = 0 that a change of coordinates is sufficient

to satisfy the conditions of Lemma 2, meaning that the
space of consistent systems is at least as large as in the
controlled input case. This makes it mathematically clear
why a controlled input is superior for identification.

D. Sensor Fusion Problem

We then set up the identifiability problem when both
distributional and time series measurements are available.
We assume we have a linear system of a known minimal
order n that may be parametrized. However, we assume
no parametrization for our results. We are interested in
recovering the dynamic matrix A and the noise matrix BB

T .
We know the matrix C, because we already know which

system states we are measuring. This corresponds to measur-
ing a certain protein concentration in a cell or the value of a
node in a network. We also might measure multiple subsets
of the state in separate experiments using different matrices
C1, C2, et cetera. For each choice of C, we assume we can
measure the associated output correlation function. We also
assume that we can measure the stationary state covariance
P . Furthermore, we assume that all measurements are perfect
measurements with zero error.

With this information, we would like to assess system
identifiability both using distributional measurements alone
as well as using a combination of distributional and time
series measurements.

III. IDENTIFIABILITY USING COVARIANCE
MEASUREMENTS ONLY

In this section, we consider the set of dynamic matrices
that are consistent with a measured covariance matrix. The
following propositions are straightforward linear algebra
results.

Proposition 3: Define the linear transformation LC(A) =
AP+PA

T . The transformation LC takes n⇥n real matrices
to n ⇥ n symmetric matrices. Then, consider the linear
system (1) with B given. Then, the linear system (1) satisfies
Assumption 1 and has a steady state covariance of P � 0 if
and only if A = � 1

2BB

T
P

�1+N with N 2 kerLC and A

is Hurwitz or equivalently (A,B) is controllable.
Proof: Since LC is a linear transformation that takes

n ⇥ n matrices to n ⇥ n symmetric matrices, we can write
down all solutions to the continuous time Lyapunov equation
(2) by using the particular solution � 1

2BB

T
P

�1 and adding
a term from the kernel. However, this does not guarantee A

must be Hurwitz, so we add that condition in separately.
Since P � 0, the controllability of (A,B) is also sufficient
to imply that A is Hurwitz [21].

The space where A is not Hurwitz and rather marginally
stable is generally a set of measure zero within the affine
subspace of Rn⇥n given by � 1

2BB

T
P

�1 + kerLC . Fur-
thermore, it is easy to see that LC is surjective onto the
space of symmetric matrices and therefore, by rank nullity
theorem, the dimension of kerLC is n(n�1)

2 .
This result is quite different in discrete time, and we briefly

present it here for completeness.



Proposition 4: Consider the discrete time linear system
xk+1 = Axk + Bwk, where wk is a unit normal random
variable of appropriate dimension. Also, fix B and P so that
P � 0 and P ⌫ BB

T ⌫ 0. Then, the system is stable
with steady state covariance P if and only if A = (P �
BB

T )1/2UP

�1/2, where UU

T = I and A is Schur stable or
equivalently (A,B) is controllable.

Proof: The steady state covariance for discrete time sys-
tems satisfies the Lyapunov equation APA

T �P+BB

T = 0
[21]. In the forward direction, A must be Schur stable,
and A must satisfy the Lyapunov equation. If A satisfies
APA

T � P + BB

T = 0, then let F = AP

1/2 and let
G = (P � BB

T )1/2. Then FF

T = GG

T and applying
Lemma 3 in [22] gives that F = GU must hold, which gives
the expression for A. The matrix A must then be Schur stable
by assumption and (A,B) must be controllable since A is
Schur stable and P � 0 [21].

In the reverse direction, substitution reveals that A satisfies
the discrete time Lyapunov equation. If (A,B) is control-
lable, then the fact that P � 0 implies A is Schur. Then, the
fact that A is Schur in addition to the fact that A satisfies
the Lyapunov equation means that the steady state covariance
will be P .

These propositions show that neglecting strict stability of
A, we can resolve the A matrix up to an affine subspace
in continuous time and and up to an orthogonal degree of
freedom in discrete time. By modulating the noise, multiple
covariance measurements in continuous time may resolve A

exactly. In discrete time, the associated Lyapunov equation
is quadratic and thus we can only ever resolve A up to a
choice of sign.

As an example, consider the discrete time dynamics given
by xk+1 = Axk + wk, with

A =

2

66664

0 0 0 0 1
/2

1
/2 0 0 0 0
0 1

/2 0 0 0
0 0 1

/2 0 0
0 0 0 1

/2 0

3

77775
.

These dynamics are that of a damped oscillation where
the state moves from one entry to the next in a damped
fashion. Since wk has covariance I , we can compute a
steady state covariance of P = 4

/3I . Applying Proposition
4 shows that then A = 1

/2U , where U is orthogonal. If we
are interested in obtaining the structure of A, steady state
covariance information does not help since A can be any
orthogonal matrix. Furthermore, even if we know a priori
that A might be sparse, A can still be any permutation matrix
scaled by 1

/2, so it still does not help recover the structure
of A.

IV. SENSOR FUSION

As distribution information alone is inadequate, we now
consider the combination of distribution and time series
measurements. We first give a simple sufficient condition
for identifiability of the dynamic matrix from noise driven

measurements. Recall that the output matrix C allows us to
measure a small number of elements of the state.

Proposition 5: Assume the conditions of Assumption 1.
Given a collection of time series measurements with different
C matrices selected as C1, C2, C3, . . ., if each pair of states
is measured together at least once, then the dynamic matrix
can be identified exactly.

Proof: The proof follows from the autocovariance
function. If all pairs of states are observable together, we
can reconstruct the system’s autocovariance function R(⌧) =
E[x(t + ⌧)x(t)T ]. We can calculate the derivative of the
autocovariance function at zero as R̄ = dR

d⌧

��
⌧=0

= AP .
We also know that R(0) is the steady state covariance P .
We can recover A = R̄R(0)�1.

Proposition 5 gives us a sufficient but highly conservative
condition for the use of output correlation measurements to
infer the system dynamics. If we have a system with 10 states
and can simultaneously measure 2 outputs at a time, then we
would need to conduct

�10
2

�
or 45 experiments to guarantee

that we could resolve the system exactly.
In the sequel, we develop an effective necessary condition

that requires far fewer experiments. To do this, first of all
we extend Lemma 1 to the sensor fusion setting with the
following result.

Theorem 1: Assume the conditions of Assumption 2.
Given a steady state covariance P and an output spectral
density of �(s), let �(s) = Z(s) + Z

⇤(s), where Z(s)
is positive real. Then, suppose (Â, Ĝ, Ĉ) is a minimal
realization for Z(s). Then consider the following equation
(6).

AP + PA

T +BB

T = 0 PC

T = TĜ

A = TÂT

�1
CT = Ĉ

(6)

Then (A,B,C) is a globally minimal system with output
spectral density �(s) and steady state covariance P if and
only if (A,B,C) satisfies (6).

Proof: The proof is a straightforward extension of
Lemma 1. First, we need to show that Z(s) must be
strictly proper. From [20], we know that Z(s) is the Laplace
transform of the autocovariance function Ry(⌧) of the output.
We know that Ry(0) = CPC

T is finite and that Ry(⌧)
exponentially decays to zero since the original system is
strictly proper. Therefore, the Laplace transform Z(s) exists
for all non-negative s. Then, by applying the initial value
theorem, we know that Z(s) goes to zero as s goes to infinity
so Z(s) must be strictly proper. Therefore, the feed through
term J in Lemma 1 is zero, which means Z(s) will have
a realization of the form (Â, Ĝ, Ĉ). Of course, Lemma 1
still holds for any coordinate transformation T that brings
(Â, Ĝ, Ĉ) to (A,G,C), where C is the known output matrix.

Next, consider the top left block of the matrix equality
(4). This yields AP + PA

T + BB

T = 0, which is exactly
the covariance equation, so we can fix P as the steady
state covariance rather than considering it as an additional
variable.

Then, the bottom right block forces D = 0 since J = 0,
and this means that PC

T = G must hold. However, from the



coordinate transformation, we know that G = TĜ, and G is
not constrained, so it is sufficient to write down PC

T = TĜ

as a single equation. Then, we have our set of equations (6)
above.

Theorem 1 fully characterizes the space of systems con-
sistent with a combination of a steady state covariance and
one output correlation. We can search for a solution to the
equations in Theorem 1 by using the coordinate transfor-
mation T and the noise matrix BB

T as variables. We can
extend this result to the case where we measure the steady
state covariance along with multiple different combinations
of states as outputs. We first prove the following lemma.

Lemma 3: Assume that A 2 Rn⇥n has no eigenvalues
with multiplicity greater than one. It follows for invertible
transformations T1 and T2 that T1AT

�1
1 = T2AT

�1
2 if and

only if T1 = T2S⇤S�1, where S is a matrix whose columns
are eigenvectors of A, and ⇤ is an invertible diagonal matrix.
⇤ must have real entries corresponding to real columns of
S and complex conjugate entries corresponding to complex
conjugate columns of S.

Proof: Multiplying the equality by the appropriate
quantities, we get T

�1
2 T1A = AT

�1
2 T1. This holds if and

only if A and T

�1
2 T1 are simultaneously diagonalizable.

Since A has no duplicate eigenvalues, the eigendirections
are fixed, so we can write T1 = T2S⇤S�1, where S

contains the eigenvectors of A. The matrix ⇤ must have
nonzero real entries corresponding to real columns of S

and nonzero complex conjugate entries corresponding to
complex conjugate columns of S. This is because T1 and
T2 must be real. In the reverse direction, substitution shows
T1AT

�1
1 = T2AT

�1
2 .

Lemma 3 tells us that if two similarity transformations T1

and T2 both transform a matrix A to the same final matrix,
then given T1, we have only n degrees of freedom when
choosing T2. This is because we have one real degree of
freedom for each real eigenvector and one complex degree
of freedom for each pair of complex eigenvectors. We can
then formulate an effective necessary condition.

Let Assumption 2 hold and also assume that the dynamic
matrix A has no duplicate eigenvalues. Suppose that we
are given a steady state covariance P � 0 and a set of k

output correlation measurements obtained with k different
C matrices C1 through Ck. Then, we would like to solve
for the true A and BB

T matrices of the system.

Using the observed spectral densities �i(s) where 1  i 
k, we can compute each Zi(s) and find an (Âi, Ĝi, Ĉi) that
realizes each Zi(s). By Assumption 2, all the Âi matrices
will have the same dimension and be similar, so we can
transform coordinates so that Âi = Â for all i. We then
know that the true A matrix is given by T1ÂT

�1
1 . The other

Ti matrices must also transform Â to A and are forced by
Lemma 3 to satisfy the equation Ti = T1S⇤iS

�1 for i > 1,
where S contains the eigenvectors of Â. Then, we can write
down a system of equations in terms of only T1, BB

T , and
⇤i where i > 1.

Combining this with Theorem 1, we can rewrite the
equations as

T1ÂT

�1
1 P + P

⇣
T1ÂT

�1
1

⌘T
+BB

T = 0

PC

T
1 = T1Ĝ1 C1T1 = Ĉ1

PC

T
i = T1S⇤iS

�1
Ĝi CiT1S⇤iS

�1 = Ĉi 8i > 1.

(7)

This gives us a total of n(n+1)
2 + 2kpn equations. We

have n(n+1)
2 variables for BB

T , n2 variables for T1, and an
additional (k� 1)n variables for the ⇤i matrices. This gives
a total of n(n+1)

2 + n

2 + (k � 1)n variables. Then, in order
to have more equations than variables, we get the following
constraint on the number of measurements k.

k � n� 1

2p� 1
(8)

This inequality (8) is our effective necessary condition.
This is not a true necessary condition because nonlinear
equations in high dimensions can have unique solutions
while having far fewer constraints than variables. For exam-
ple, two hyper spheres can be tangent at exactly one point.
Also, if BB

T is not strictly positive definite, the positive
semidefiniteness of BB

T may also help solve for A and
BB

T if for example, the solution set of some subset of
the equations is tangent to the positive semidefinite cone at
exactly one point. However, we typically do expect to need
at least as many constraints as variables to solve a system of
equations.

This condition assumes that the noise structure is com-
pletely unknown. If the noise enters independently at each
node, then BB

T is diagonal, and the Lyapunov equation (2)
adds the same number of constraints but far fewer variables
so identifiability could be easier.

Of course, there is no guarantee at all that the constraints
generated from multiple experiments and equations will be
independent, so more experiments might be required. In the
case of ten nodes and two simultaneous outputs from before,
condition (8) requires three measurements.

V. EXAMPLES

We now consider examples of sensor fusion.

A. Two Dimensional System

In this section, we consider sensor fusion for a two
dimensional system. This example leads to a negative result
and an associated conjecture. We consider the system given
by

A =


�1 1

/2

1
/2 �1

�

BB

T =


0 0
0 1

�

C =
⇥
1 0

⇤
.

(9)

In this system, we also assume that we have prior knowl-
edge that the noise enters the system only from the second
state.



Using the Lyapunov equation (2), we compute a steady
state covariance

P =

" 1
12

1
6

1
6

7
12

#
.

Then, we can apply Theorem 1 to compute the set of A

and BB

T matrices consistent with the given P as well as the
output spectral density of the system. The spectral density
of this system is given by �(s) = 4

16s4�40s2+9 .
Using partial fraction decomposition, we can solve for

Z(s), and we find

Z(s) =
1
8

s+ 1
2

�
1
24

s+ 3
2

.

This verifies that the globally minimal system dimension
is two, and we can write down a state-space realization for
Z(s) as (Â, Ĝ, Ĉ) below.

Â =

"�2 � 3
4

1 0

#
Ĝ =


1
0

�
Ĉ =

⇥
1
12

1
6

⇤

We can solve for all possible globally minimal systems
consistent with this output correlation using Lemma 2. Using
the true system as one globally minimal system, we solve for
all other possible systems. First of all, the constraint QC

T
1 =

0 implies that Q is all zeros except in the bottom right corner.
Then,

A1Q+QA

T
1 +B1B

T
1 =


0 q

2
q
2 1� 2q

�
,

where q is the bottom right entry of Q. Since this term must
be positive semidefinite, then q = 0 must hold, and we see
that Q = 0. Thus, the equations simplify down to A1 =
TA2T

�1, C1 = C2T
�1, and B1B

T
1 = TB2B

T
2 T

T . We can
solve these equations assuming T is a free two by two matrix
and assuming that B2B

T
2 is a symmetric matrix with all zeros

and one positive entry in the lower right hand corner.
Then, solving the equations gives us the following expres-

sions for the set of consistent A2 and B2B
T
2 matrices for this

system.

A2 =

 c
2 � 1 d

2

� c2�1
2d � c

2 � 1

�

B2B
T
2 =


0 0
0 1

d2

�

c, d 2 R

d 6= 0

Time series measurements along with knowledge of the
noise structure do not provide much information about the
structure of A in this case. Of course, the steady state
distribution is also insufficient to determine A as shown in
Proposition 3.

The next step is to consider sensor fusion. In the sensor
fusion case, we solve the equations given in Theorem 1.
These equations can again be solved by letting T be a free

Fig. 2. Three node ”oscillating” system with one noise input and two
measured outputs

variable. In this case, the noise matrix BB

T can be found
exactly. However, the A matrix has two possible solutions.
The first solution is the correct A matrix which leads to the
transfer function G(s) above. The other solution is

Awrong =


1 � 1

2
15
2 �3

�
,

which leads to a transfer function of �G(s), which of
course reproduces the same spectral density �(s) but also
reproduces the same covariance at steady state. With sensor
fusion, there are exactly two consistent A matrices.

Interestingly, this result seems to hold no matter what
output we measure. For example, we could measure the
second state instead of the first state or the difference of
the two states. They all produce either the true A matrix or
the incorrect Awrong. This inspires the following conjecture,
which we hope to address in future work.

Conjecture 1: Given a two dimensional system with
steady state covariance information as well as the output
correlation for one output, it is only possible to determine
the A matrix up to two distinct possibilities.

While Conjecture 1 is a negative condition, sensor fusion
still helps in this case because it narrows the space of possible
A matrices down from either a one or two dimensional
infinite space down to two specific possibilities. In the
following example, we show a positive result.

B. Cyclic Dynamics

In this example, we investigate sensor fusion for a three
node decaying oscillation system.

We try a few different cases in terms of which nodes are
measured in the system. We start with the three dimensional
system given by

A =

2

4
�1 0 1

/2

1
/2 �1 0
0 1

/2 �1

3

5

with noise entering only from the third state, so that

BB

T =

2

4
0 0 0
0 0 0
0 0 1

3

5
.

The system is shown in Figure 2 with the first and second
nodes measured together.



The previous section just showed that measuring steady
state covariance and a single output correlation is not suf-
ficient to recover system dynamics for a two dimensional
system. This limitation of single output measurements still
holds for this system. We then consider the case of measuring
two outputs simultaneously. This is the situation illustrated
in Figure 2. Noise enters into state three while states one
and two are measured simultaneously.

In this case, the algebra associated with Lemma 2 leads
to another messy expression for the space of possible A

matrices consistent with output correlations alone.
Incorporating the steady state information in this case

again leads to two possible A matrices while recovering
BB

T exactly. One of course is the correct A, while the other
is given by

A

12
wrong =

2

6664

3 � 31
6 � 1

2

1
2 �1 0

161
6 � 251

6 �5

3

7775
.

If we measure the first and third states together, then we
again get two possibilities for A, where the incorrect one is
given by

A

13
wrong =

2

6664

�1 0 1
2

� 65
62 1 12

31

508
31 � 63

2 �3

3

7775
.

From these results, it is clear that if we measure steady
state covariance information along with output correlations
for the first and second state together as well as output
correlations for the first and third state together, we can
resolve A exactly.

Interestingly, if we measure the output correlations for
states two and three together, then that alone is sufficient
when combined with the steady state covariance to resolve
A exactly. That is, we can resolve A exactly without ever
measuring state one in time series. Additionally, it is clear
that identifiability is a question of which nodes we measure
in addition to how many nodes we measure. This suggests
a consideration of graph structure and identifiability in the
same vein as well known graph theoretic analyses of con-
trollability and observability [23].

C. Example - RNA Elongation and Degradation

In this section, we consider the biologically inspired
example of a transcription degradation system at equilibrium.
RNA Polymerase is an enzyme that transcribes and lengthens
the RNA molecule polymer while RNAase is an enzyme that
degrades and shortens the RNA. We illustrate this system in
Figure 3 and model it using the dynamics in (10).

ẋ = b+Ax+Bw

x, b,B 2 Rn

A 2 Rn⇥n

(10)

Fig. 3. Transcription and Degradation Process for mRNA

Here, the elements of x correspond to varying lengths of
partial RNA where x(1) is a nascent transcript and x(n) is
a fully completed transcript. The rate matrix

A =

2

66666664

�(�1 + �1) �2

�1 �(�2 + �2)
. . .

�2
. . .

�n�1

. . . �(�n�1 + �n�1) �n

�n�1 ��n

3

77777775

is a tridiagonal matrix where the terms represent the local
rates of elongation and degradation. Namely, the superdiag-
onal terms �k represent the local rates of degradation at
different points along the transcript, the subdiagonal terms
�k represent the local rates of elongation at different points
along the transcript, and the diagonal terms enforce conser-
vation. Note that the �k’s and �k’s must be positive. As
constructed, A is diagonally dominant and thus Hurwitz.

We model the actual transcription and degradation pro-
cesses as proceeding deterministically with noise being
introduced only by initiation events. The bias term b =⇥
b1 0 · · · 0

⇤T with b1 > 0 gives the mean amount
of transcription initiation activity. The noise term B =⇥
1 0 · · · 0

⇤T is the noise in the transcription initiation
process.

We assume that we can measure the steady state distri-
bution of this system, which we might do by looking at
single cell RNA data across a population of cells. Because
of the bias term, we would not only be able to measure the
covariance at steady state, but we could also measure the
mean xeq , where Axeq + b = 0 must hold at steady state.

There are a total of 2n+1 total parameters to identify. The
rate matrix A has 2n� 1 parameters, and the noise and bias
term have one parameter each. Using the steady state mean
information alone gives only the equation Axeq+b = 0. This
only provides n linear equations, so we cannot solve for all
2n+ 1 parameters.

However, using the steady state distribution gives us more
information. First of all, it is clear from the structure of A

and B that (A,B) will be almost certainly be controllable
as the noise can propagate to every state and therefore, the
steady state covariance P will be strictly positive definite and
unique. Knowing the covariance provides us with another
n(n+1)

2 equations through the continuous time Lyapunov
equation (2).

However, since all the equations are linear, we can only
determine the parameters up to multiplication by a positive



scalar. Intuitively, this is because rescaling time does not
affect steady state measurements. Therefore, without some
additional information, we still cannot determine A exactly.

For a specific numerical example, we set

A =

2

664

�2 1 0 0
1 �2 1 0
0 1 �2 1
0 0 1 �1

3

775 ,

and we set b = B = [1 0 0 0]T . In this example,
steady state measurements constrain A to a one dimensional
subspace of Rn⇥n. The set of dynamics consistent with the
steady state mean and covariance is given by kA where
k > 0. Note that k < 0 is impossible because it would
make A not Hurwitz. The set of consistent B matrices is
given by kB.

Then, suppose we measure the output correlation with
C = [0 0 0 1], which is the state corresponding to fully
completed RNA molecules. This results in a spectral density
of

�(s) =
1

s

8 � 19s6 + 87s4 � 70s2 + 1
.

The space of possible consistent spectral densities is given
by �

�
s
k

�
. We immediately see that k = 1 must hold, which

means that sensor fusion is sufficient to resolve A, b, and B

exactly for this example.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the idea of combining full
state covariance information together with limited output
correlations to improve identifiability of stationary linear
stochastic systems driven by white noise. This problem was
motivated by the biological setting, where often distributional
measurements are high dimensional and time series measure-
ments are low dimensional. We formulated conditions for
identifiability using distributional measurements alone and
also for using sensor fusion.

Future work includes more thoroughly investigating Con-
jecture 1 and attempting to develop graph theoretic condi-
tions for identifiability. Also, the results in this paper will all
be extended to the discrete time case. It would also be nice
to tighten the large gap between our effective necessary con-
dition and sufficient condition for sensor fusion. Additional
future work includes developing a numerical algorithm for
solving the sensor fusion system identification problem given
actual data.
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