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Abstract— Establishing performance metrics is a key part of
a systematic design process. In particular, specifying metrics
useful for quantifying performance in the ongoing efforts
towards biomolecular circuit design is an important problem.
Here we address this issue for the design of a fast biomolec-
ular step response that is uniform across different cells and
widely different environmental conditions using a combination
of simple mathematical models and experimental measure-
ments using single-cell time-lapse microscopy. We evaluate two
metrics, the difference of the step response from an ideal
step and the relative difference between multiple realizations
of the step response, that can provide a single number to
measure performance. We use a model of protein production-
degradation to show that these performance metrics correlate
with response features of speed and noise. Finally, we work
through an experimental methodology to estimate these metrics
for step responses that have been acquired for inducible protein
expression circuits in E. coli. These metrics will be useful to
evaluate biomolecular step responses, as well as for setting
similar performance measures for other design goals.

I. INTRODUCTION

Significant progress has been made in the design of
biomolecular circuits. These include demonstrations of cir-
cuits that can respond quickly [1], oscillate [2], [3], and
switch from one state to another [4]. There are two ma-
jor challenges for the next stage of biomolecular circuit
design. The first challenge is to ensure robust operation
of these circuits in different environmental conditions. The
second challenge is to implement circuits with a larger
number of components by connecting existing circuits with
smaller component numbers [5]. In general, these challenges
are interrelated. Robust circuit performance should help in
connecting circuits with one another, and larger circuits
may exhibit robust circuit performance. A systematic design
process that focuses on characterizing circuit performance
and developing a specification-oriented methodology should
facilitate solutions to these challenges. An important part of
this process is to define performance metrics for biological
circuits that are useful for bioengineers.

Quantitative performance measures are widely used in
engineering design. For example, a typical controller design
might start with specifications for sufficient gain and phase
margins to ensure stability. These are then used to deter-
mine the desired controller parameters. If the controller is
to be implemented electronically, the controller parameters
are matched against the performance specifications of the
electronic device listed on its data sheet. Precise knowledge
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of the quantitative capabilities of the device and the ability to
compare it with the requirements helps in a systematic design
process. In accordance with such a design process, there
have been efforts to catalog properties of biomolecular parts
and devices [6]. More recently, as part of a combined effort
aimed at a critical assessment of biomolecular circuit designs
(CAGEN, [7]), there have been steps towards a specification
oriented-design.
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Fig. 1. Step responses of an inducible protein expression circuit in single
cells. Schematic illustrates the biomolecular circuit in which a fluorescent
protein YFP can be induced by a chemical IPTG. Solid black line is an
example of a step response from a single cell. Red, magenta and blue
lines represent step responses in other cells at temperatures 34�C, 32�C,
and 30�C, respectively. Symbols like circles, squares, and dots on each
trace denote the time of cell division. Dashed black line is a trajectory
from a single cell that is not induced. All traces show mean single-cell
fluorescence values above camera background. The concentration of IPTG
used for induction is 1mM. The time of induction is ⇡ �10 min.

Consider the goal of designing a biomolecular circuit that
responds quickly to a step change in input signal in a way
that is uniform across different cells and environmental con-
ditions. A step response for an inducible protein expression
circuit in E. coli [8] for a single cell is highlighted in Fig.
1 (solid black line). The other responses are for different
cells at either the same temperature as the highlighted trace
or at slightly different ones (colored lines, Fig. 1). Here,
temperature is used to illustrate the possible effect of differ-
ent environmental conditions. These measurements underline
three aspects that are typical in biomolecular step responses
— a timescale that determines when the response reaches
its equilibrium, an equilibrium amplitude sufficiently distinct
from a basal level, and variability that can exist in responses
from different cells and across conditions. Accounting for
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these features is important in generating a single number that
can be used to quantify the performance of a biomolecular
step response.

Here we ask the question of how to generate a single num-
ber that can measure performance for a biomolecular step
response. We address this issue using simple computational
models of biomolecular circuits and experimental single-cell
fluorescence time-lapse microscopy measurements acquired
towards establishing baseline protocols for the CAGEN as-
sessment [7]. First, we state two metrics, the difference of the
step response from an ideal step and the relative difference
among multiple realizations of a step response, that can
generate a single number for a transient response. Second,
we use a simple computational model of protein production-
degradation to show that these performance metrics correlate
with the properties of fast and uniform response. Third,
we work through a sequence of steps to estimate these
performance metrics experimentally for simple inducible
protein expression circuits from E. coli. Our results should
be useful to bioengineers in establishing performance metrics
for a biomolecular step response.

II. PERFORMANCE METRICS

We first revisit the transient performance specifications for
a step response in the context of an electronic amplifier [9].
These specifications capture how the output responds to a
step increase in input voltage. There are three key measure-
ments that are typically used for this purpose (Fig. 2). One,
the settling time, or the time it takes for the response to
reach an equilibrium. This can be estimated as the time it
takes to go from 10% of the final value to the time after
which the response stays within 10% of this final response.
Two, the rise time, or the speed of the response. This can be
estimated as the time it takes to go from 10% of the final
value to 90% of its final value. Three, the overshoot, or the
extent of deviation of the amplitude from an ideal step. This
can be estimated as the amplitude of the maximum value of
the response relative to the final value.

By replacing the voltage waveform with that of protein
concentration, the transient response specifications discussed
above can be transferred to a biomolecular step response.
These provide a set of measurements that quantify the speed
of the response, an important property of a step response. The
second feature of a biomolecular step response that needs to
be quantified is its amplitude relative to the basal level. This
is important as expression and/ or activity of proteins has
a basal non-zero level even when they are turned off. One
possibility to ensure sufficient amplitude is to require that
the equilibrium value in response to a step is at least 10

times the basal level. The third feature of the response that
needs to be quantified is the extent to which it is uniform
across different cells or widely varying conditions. Typical
measurements of variability in biology are based on the ratio
of the standard deviation of the equilibrium amplitude among
cells to the mean value [10]. Together, the transient response
measurements, fold-change upon induction, and equilibrium

noise provide a set of individual measurements that can be
used to quantify the step response.
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Fig. 2. Transient specifications of a step response. ts, tr , and Mp denote
the settling time, rise time and maximum overshoot of a step response
respectively.

Further, we note how normalizing these responses with
their characteristic scale is an important step in contextual-
izing the design. This is because these designs may operate
in diverse biological contexts, including different species,
different genetic backgrounds within a species, and widely
different environmental conditions for the same genetic
background. In particular, the cell cycle is the characteris-
tic timescale in most biological contexts, and normalizing
time by cell cycle can be used to qualify the temporal
specifications. Similarly, the concentration of a characteristic
molecular species, such as a housekeeping sigma factor,
can be used as a normalizing factor for amplitude. This is
frequently used in various biological assays like blots and
gels.
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Fig. 3. Schematic illustrating the performance metrics. (a) Red line
indicates a step response. Dashed black line indicates an ideal step. Grey
region indicates the area calculated in the step metric. (b) Red line indicates
a reference trace from a step response. Grey region indicates the possible
spread due to multiple realizations of the step response. This is also the
area calculated in the relative metric.

Based on how these individual specifications capture dif-
ferent aspects of the transient response, we state a perfor-
mance metric that can generate a single number for each
response. We base this performance metric on the difference
between the transient response and an ideal step response
(Fig. 3a.). Mathematically, this can be expressed as,

S =

R T2

T1
(y(t)�M)

2dt

M2
.



Here, y(t) is the measured response with equilibrium ampli-
tude M , T1 is a time close to the initiation of the response,
for example, when the response is 10% of its final value,
and T2 is the settling time. One way of checking that the
response reaches an equilibrium value M is to specify that
the response is within 10% of its equilibrium value for an
additional time T2�T1 after T2. A smaller value of this step
metric indicates a better performance. As the value should
decrease for a faster response, this performance metric should
account for the important requirement of response speed.

Due to the variability associated with a biomolecular
step response, there might be multiple realizations of each
response. To compute a performance metric for this case,
one of these traces can be chosen as a reference trace to
determine the quantities M , T1 and T2. The step metric can
then be computed in a worst-case fashion, as the maximum
of the difference between an ideal step and each response,

S = max

j

R T2

T1
(yj(t)�M)

2dt

M2
, j = 1, 2, 3 . . . N.

Here, yj(t) are the multiple realizations. This performance
metric should be able to penalize larger variability, as the
worst-case value of a variable response will be generally
higher than that of a less variable response. In this way, the
metric should account for the variability in responses across
different conditions.

An alternative measure of the performance is the relative
variation among the traces (Fig. 3b.). This is another per-
formance metric that can generate a single number for a
response. Mathematically, this can be expressed as,

Sr = max

j

R T2

T1
(yj(t)� r(t))2dt

M2
, j = 1, 2, 3 . . . N.

Here, yj(t) are the multiple realizations, r(t) is a reference
trace from among them which is used to obtain an equilib-
rium amplitude M , a time T1 close to the initiation of the
response, and a settling time T2. This relative metric should
decrease if all realizations are close to the reference trace.
In other words, performance should improve if the responses
are uniform.

III. SIMULATION RESULTS
To further explore the correlation between the step metric

and speed, we used a standard model of a simple protein
production-degradation circuit. In this model, the total level
of a protein X depends on the balance between its produc-
tion, modeled as a zero-order process that changes from a
basal rate of ↵0 to ↵1 upon induction, and its dilution due
to cell growth, modeled as first-order processes with rate
constant �. As a result of these interactions, the dynamics of
the protein concentration X are,

dX

dt
= ↵� �X,

where ↵ = ↵0 before induction and ↵ = ↵1 after induction.
This differential equation can be analytically solved as,

X(t) =
↵

�
(1� exp(��t)).

As the equilibrium value of the response is ↵/�, the fold-
change upon induction is ↵1/↵0. A fold-change in excess of
a factor of 10 should ensure sufficient increase in amplitude
upon induction. Similarly, the speed of this response can be
estimated from the analytic solution to be proportional to
1/�. Finally, the step metric for this trace can be calculated
as,

S =

Z T2

T1

exp(�2�t)dt =
0.4

�
.

Here, M = ↵1/� is the equilibrium amplitude after induc-
tion, T1 is the time when the response is 10% of its final
value, and T2 is the settling time. This shows that the step
metric is directly proportional to the speed. As the response
speeds up, this performance metric decreases, indicating a
better response.

To evaluate the step metric for a set of variable responses,
we generated multiple realizations of the step responses for
this model (Fig. 4). These realizations were generated from
stochastic simulations performed using the standard software
package BioNets [11]. The performance score generated
using these traces is 0.63 (N = 15). Recalculating the
performance score for another set of stochastic traces (=
0.63, N = 15) or for a larger set of traces (= 0.64, N = 100)
yields a similar value.
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Fig. 4. Trajectories of the protein production-degradation process generated
using stochastic simulations. Black trace is the reference trace, arbitrarily
picked as the first trace, and green traces are the other 14 traces. All
traces are sampled at a 10 minute resolution. Shaded area indicates the
time duration (T1 = 0, T2 ⇡ ln(10)/� hr) over which the performance
score integral is evaluated. The model parameters for this calculation are
↵1 = 1000 nM/hr, ↵0 = 1 nM/hr, � = 1 /hr.

Next, we used these stochastic simulations to verify that
the step metric correlates with circuit properties of speed
and noise in accordance with intuitive expectations. Both
speed and noise can be analytically estimated for this model.
As shown above, the response speed is proportional to 1/�.
Similarly, using standard methods [12], the equilibrium noise
can be shown to be 1/

p
↵/�. To compare the performance

metric with these properties, we performed two additional
set of simulations. First, the noise was increased for a fixed
speed, by varying only ↵ and not �. Second, the speed was



increased at a fixed noise, by varying � and changing ↵
so that ↵/� is fixed. For each value of noise and speed
in these cases, two sets of 15 trajectories were simulated.
The performance score was calculated as outlined above. In
addition, for comparison with a larger number of trajectories,
the performance score was also calculated for an additional
set of 100 trajectories. For all sets of trajectories, we find
that the performance score improves if noise decreases or
if response speeds up (Fig. 5). The relation between the
performance score and the response speed is especially
strong.

10−2 10−110−0.3

10−0.1

100.1

100.3

 

 
N=100
N=15
N=15

10−1 100 10110−1

100

 

 
N = 100
N = 15
N = 15

Noise 

a. 

S
co

re
 

Speed (hr) 

S
co

re
 

b. 

Fig. 5. Performance improves as noise reduces or response speeds up.
Performance scores using the step metric are calculated as (a) noise is varied
for fixed speed and, (b) speed is varied for fixed noise. Red crosses and blue
circles are the performance scores for two sets of 15 trajectories. Black line
connects points representing performance scores for a set of 100 trajectories,
and are similar to the red crosses and blue circles. To change noise levels
for fixed speed in (a), the values of ↵1 are varied logarithmically from 10
nM/hr to 104 nM/hr, for fixed �. To change speed values for fixed noise in
(b), the values of � are varied logarithmically from 0.1 /hr to 10 /hr and
↵1 values are adjusted so that the ratio ↵1/� is fixed (= 1000 nM). The
integrals are performed from T1 = 0 to T2 ⇡ ln(10)/� hr.

We repeated these simulations to evaluate the relative
metric. For multiple realizations of a step response, the
performance metric for these traces is 0.005 (N = 15). A
recalculation of this performance score for another set of
traces (= 0.012, N = 15) or for a larger set of traces (=
0.008, N = 100) yields a similar value. Finally, comparing
this performance metric with the circuit properties of speed
and noise showed that the perfrmance score improves if noise
decreases or if response speeds up (Fig. 6).
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Fig. 6. Performance improves as noise reduces or response speeds up.
Performance scores for the relative metric are calculated as (a) noise is
varied for fixed speed and, (b) speed is varied for fixed noise. Red crosses
and blue circles are the performance scores for two sets of 15 trajectories.
Black line connects points representing performance scores for a set of 100
trajectories, and are similar to the red crosses and blue circles. To change
noise levels for fixed speed in (a), the values of ↵1 are varied logarithmically
from 10 nM/hr to 104 nM/hr, for fixed �. To change speed values for fixed
noise in (b), the values of � are varied logarithmically from 0.1 /hr to 10
/hr and ↵1 values are adjusted so that the ratio ↵1/� is fixed (= 1000
nM). The integrals are performed from T1 = 0 to T2 ⇡ ln(10)/� hr.

Together, these simulation results are in accordance with
intuitive expectations of how the scores should vary relative
to properties like speed and noise. It also underlines the
utility of these performance metrics in generating a single
number to capture the required specifications.

IV. EXPERIMENTAL RESULTS
As the next step, we worked through the task of estimating

these performance metrics from experimental measurements.
These measurements are from simple protein expression
circuits in E. coli, where expression of proteins can be
initiated with the addition of an inducer.

We measured the step response in single cells based on
circuits and methodology used previously [8], [13]. Both
circuits are encoded on plasmids that propagate in the E.

coli strain background MG1655Z1. In these circuits, the
addition of the inducer IPTG increases the expression of
proteins, a yellow fluorecent protein (YFP, from plasmid
pZS2-123, Fig. 1) and YFP fused to another protein CI
(CI-YFP, from plasmid pNS2-�VL, Fig. 7). Both types of
constructs, expression of YFP from the promoter region



of genes, which initiates protein production, and fusion
of YFP to another protein, are widely used to report for
the dynamics of protein concentrations in growing cells.
Protein fusions have the advantage of reporting for specific
protein activity, for example spatial localization, provided
that the fusion itself does not distort the functionality of
the native protein. Both types of reporters use the property
that proteins such as YFP emit fluorescence when excited
at their characteristic wavelengths. The dynamics of the
process under measurement are also filtered by the reporter
dynamics, such as the maturation time or the time it takes
for a fluorecent protein to fluoresce after excitation.
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Fig. 7. Single-cell dynamics of an inducible protein expression circuit.
Schematic illustrates a biomolecular circuit where the fluorescent protein
CI-YFP can be induced in response to the chemical IPTG. Solid black
line represents the reference trajectory. Dashed black line is a trajectory in
the absence of induction. Red and blue colors represent the temperatures
34�C and 30�C, respectively. Symbols like circles, squares, and dots on
each trace denote the time of cell division. All traces show mean single-
cell fluorescence values above camera background. The time of induction
is ⇡ �10 min. The IPTG concentration for induction is 10 µM. Shaded
region indicates the time duration over which the integral is evaluated.

For the measurement, cells were first grown overnight in
selective LB media at 37

� C. The overnight culture was
diluted 1 : 100 in MGC (M9 minimal media containing 0.2%
Glycerol, 0.01% Casamino acids, 0.15 µ g/ml Biotin, and
1.5µ M Thiamine), and grown at 32�C for 3 hours. 0.5 µl
of this culture was placed on semi-solid pads made out of
MGC media containing 1.5% Low melting point Agarose
(Omni) and the required amount of IPTG. These pads
were flipped onto a glass-bottom dish (Wilco), sealed with
parafilm, and then placed under the microscope. Induction
of fluorescence was imaged every 10 minutes and at the
required temperature using an automated microscopy setup
(Nikon Eclipse-Ti inverted microscope with perfect focus,
ASI motorized stage, Photometrix Coolsnap HQ2 camera,
Sutter Lambda LS Xenon Arc lamp, and controlled using
MetaMorph software). The resulting experimental data is in
the form of a time-sequence of images. Processing these
images to estimate fluorescence in each cell and tracking

the change in fluorescence over time was performed using
custom image processing software. To mimic variability in
the responses due to different conditions, we performed
measurements at different temperatures in the neighborhood
of the nominal temperature of 32�C used previously [13].

For the first circuit, the reference trace reaches its equi-
librium value of ⇡ 60 a.u. (in arbitrary units) at T = 160

minutes (Fig. 1, black line). In the absence of induction,
the equilibrium value for a trace is ⇡ 2 a.u. Therefore, the
reference trace exhibits a greater than ten-fold induction. The
time after which this response stays approximately within
10% of this equilibrium value is T2 = 150 minutes. Further,
our measurements indicate that the response stays in this
range for another duration of T2 minutes, suggesting that
this response settles at this equilibrium value. The other
traces also show an increase in fluorescence in response
to induction. Using the values of these traces in the time
duration T1 = 0 to T2 = 150 minutes, we estimate the
performance metrics for this dataset to be S = 1.45 for the
step metric and Sr = 0.29 for the relative metric.

Similarly, the reference trace for the second circuit reaches
its equilibrium value of ⇡ 45 a.u. at T = 100 minutes (Fig. 7,
black line). In the absence of induction, the equilibrium value
of a trace is ⇡ 1 a.u. Therefore, this reference trace exhibits
a greater than ten-fold induction. This trace stays approxi-
mately within 10% of this equilibrium value after T2 = 80

minutes. Further, in our measurements this response stays
in this range for another duration of T2 minutes, suggesting
that this response settles at this equilibrium value. The other
traces also show an increase in fluorescence in response to
induction and their values in the duration T1 = 0 to T2 = 80

minutes are used to estimate the performance metric. The
performance metrics for this dataset are estimated to be
S = 1.22 for the step metric and Sr = 0.30 for the relative
metric.

We note that these performance scores are largely similar.
This is to be expected as even though one of the datasets
appears more variable than the other, it is also faster. There-
fore, these features balance each other and give rise to similar
score. Together, these measurements establish a sequence of
steps that can be used to estimate the performance metrics.

V. CONCLUSIONS AND FUTURE WORK

Defining performance metrics is an important step for the
systematic design of biomolecular circuits. Here we address
this for the design of a step response that is desired to be
quick, of sufficient amplitude, and uniform across different
cells and widely different environmental conditions through
a combination of simple computational models of biomolec-
ular circuits and experimental measurements with single-
cell time-lapse fluorescence microscopy. First, we state two
metrics, difference between the step response from an ideal
step and the relative difference between multiple realizations
of a step response, that can generate a single number for
the performance of a circuit response. Second, we use
a mathematical model of a protein production-degradation
circuit to show that these performance metrics correlate with



circuit properties of speed and noise. Third, we use simple
inducible protein expression circuits in E. coli to establish
a sequence of steps to estimate these performance metrics
experimentally. These should be useful in establishing a
performance metric for biomolecular step responses.

An interesting feature of these specifications how nor-
malization enables comparison across species, genetic back-
grounds, and environmental conditions. In fact, this is analo-
gous to the inherent normalization widely prevalent in control
theory and engineering. For example, in measuring the gain
of a system, the output amplitude is normalized by that
of the input. Similarly, phase measurements automatically
report the output timescale in terms of the input timescale.
As the characteristic scales of amplitude and time may vary
according to the biological contexts, normalization can be
useful for biomolecular circuit design.

An important challenge for the future is to set performance
specifications and metrics for other design goals, including
for oscillators, switches, and spatial patterns. We expect that
normalizing by the characteristic scales of time, space, and/
or amplitude will be relevant for the specifications in these
goals as well. In particular, the key specifications for an
oscillator include its period and the peak amplitude, both of
which can be normalized by the characteristic timescale and
amplitude of the biological context. For an oscillator with
sufficient peak amplitude, its period is typically the most
important specification. Therefore, the difference between a
thresholded version of the oscillation and a square wave of
the specified period is one way of generating a single number
that can be used as a performance metric. An alternative
metric for performance is to measure the relative difference
between multiple realizations of the oscillation responses.

A systematic design process for biomolecular circuits
will facilitate applications in agriculture, in medicine, and
in generating clean energy. Importantly, a comprehensive
characterization of performance may also ensure operational
safety, an important requirement for complex systems, and
especially so for those constructed from biological substrates.
Future work should reveal if the success of this design
methodology in traditional engineering design has a parallel
in the design of biomolecular circuits.
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