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SUMMARY

The problem of model reduction of linear systems with certain interconnection structure is considered

in this paper. To preserve the interconnection structure between subsystems in the reduction, special

care needs to be taken. This problem is important and timely because of the recent focus on complex

networked systems in control engineering. Two different model-reduction methods are introduced and

compared in the paper. Both methods are extensions to the well-known balanced truncation method.

Compared to earlier work in the area these methods use a more general linear fractional transformation

framework, and utilize linear matrix inequalities. Furthermore, new approximation error bounds that

reduce to classical bounds in special cases are derived. So-called structured Hankel singular values
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2 H. SANDBERG AND R. M. MURRAY

are used in the methods, and indicate how important states in the subsystems are with respect to a

chosen input-output map for the entire interconnected system. It is shown how these structured Hankel

singular values can be used to select approximation order. Finally, the two methods are applied to a

model of a mechanical device.
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1. INTRODUCTION

The motivation for this work on model reduction of interconnected systems is that many models

that are of interest to the control community have a network structure [1]. Examples include

models of the power grid, formations of vehicles, but also control systems where controllers,

actuators, and sensors are distributed over a computer network. In all of these examples there

can be many subsystems that are interconnected in one way or another, and the order of the

entire system can be very large. It is often desirable to obtain a model with fewer (differential)

equations and whose trajectories are provably close to the original model’s trajectories. There

are standard methods to do this, see for example [2, 3], but unfortunately these methods do

not preserve interconnection structures. A standard reference for model reduction in general

is the book by Obinata and Anderson [4].

The problem of model reduction of linear systems with a special interconnection structure

is considered here. The models consist of interconnected subsystems and the reduced models

should retain the original interconnection structure. A naive approach to solve this problem is

to approximate subsystems separately in open loop and to interconnect them according to the
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 3

original structure. This naive approach does not take the dynamics of the entire system into

account when approximating each subsystem, and will only work under special circumstances.

A typical case when the naive approach does not work is when the surrounding system excites

modes in subsystems that are unimportant in open loop. A more sophisticated method to

approximate subsystems is to use frequency-weighted approximation to take the surrounding

system into account, see [5]. However, this leads to an iterative procedure. The goal here is

to develop more general methods that generate approximation candidates for all subsystems

at the same time, in one shot, and to derive error bounds and guidelines for how many states

that should be retained in the subsystems.

Two different methods are studied in this paper. The first method is a heuristic that often

works, but can fail (generate unstable approximations). The second method is guaranteed to

deliver stable approximations and comes with an a priori error bound. However, it requires that

there are block-diagonal solutions to two linear matrix inequalities, which is a severe restriction.

Hence, we are partly successful in achieving the above goals in this paper. It should be noted,

however, that the second method is more widely applicable than one would first think, since

it can be applied to meaningful intermediate models. The details of this extension is given in

[6].

Earlier work in this area include the work of Li and Paganini [7], and Vandendorpe and

Van Dooren [8, 9]. In [7], linear matrix inequalities are used to find structured coordinate

transformations, suitable for state truncation. In [8, 9], ideas for frequency-weighted balanced

truncation [2] and closed-loop balanced truncation [10] are used to solve the same problem.

Just as in [7], we note here the importance of finding block-diagonal solutions to certain linear

matrix inequalities. Block-diagonal solutions to linear matrix ineqaulites have long been used
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4 H. SANDBERG AND R. M. MURRAY

in model reduction of uncertain systems [11], and for controller order reduction [12]. The main

problem here is that block-diagonal solutions to the relevant linear matrix inequalities only

exist under special circumstances.

The contributions of this paper are that we extend the framework in [8, 9] by using a linear

fractional transformation framework and linear matrix inequalities. Furthermore, bounds on

the approximation error are stated, and it is shown how structured Hankel singular values can

be used to select approximation order for subsystems.

The structure of the paper is as follows. In Section 2, the model framework is introduced

and an example illustrates the framework. In Section 3, the two model reduction methods

are described, and error bounds are derived. In Section 4, the model reduction methods are

applied to the example in the introduction.

Notation

Most notation in the paper is standard. To define transfer function matrices we use the notation

C(sI −A)−1B + D =:




A B

C D



 =: [A,B,C,D], and deg G(s) is the McMillan degree of the

transfer function matrix G(s). The set RH∞ is the set of real and rational transfer function

matrices in the Hardy space H∞ [13]. The Laplace transform of a time-domain signal u(t) is

denoted by u(s), with some abuse of notation. Let ‖ ·‖ [0,τ ] and 〈·, ·〉[0,τ ] denote the standard

norm and scalar product on L2 over the time interval [0, τ ], and ‖G(s)‖∞ denote the H∞-

norm [13] of G(s). With diag{P1, P2} we mean the block-diagonal matrix




P1 0

0 P2



, with

P ≥ 0 (P ≤ 0) that P is a positive (negative) semi-definite matrix, and with |x|P the weighted

Euclidean norm
√

xT Px.
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 5

wz

u y

N(s)





G1(s) 0

. . .

0 Gq(s)





Figure 1. The interconnected system. The subsystem transfer functions to be reduced,

G1(s), . . . , Gq(s), are stored in a block-diagonal transfer function matrix G(s) and are connected

to the transfer function matrix N(s) that models the interconnection topology and excitation and

measurement dynamics.

2. MODEL FRAMEWORK AND PROBLEM STATEMENT

2.1. Model Framework

The model framework that is used throughout the paper is introduced here. An important

restriction is that only interconnections of finite-dimensional linear time-invariant systems are

considered. The interconnected system is modelled with a linear fractional transformation of

two transfer function matrices G(s) and N(s). The interconnection is illustrated in Figure 1.

In G(s), the q subsystem transfer function matrices that we want to reduce are stored. It has

the block-diagonal structure

G(s) =





G1(s) 0

. . .

0 Gq(s)




=:




AG BG

CG DG



 ,

where Gk(s), k = 1 . . . q, are the transfer function matrices of the q subsystems, each with

mk inputs and pk outputs. The block-diagonal transfer function matrix G(s) can always be
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6 H. SANDBERG AND R. M. MURRAY

realized in the form

AG = diag{A1, . . . , Aq}, BG = diag{B1, . . . , Bq},

CG = diag{C1, . . . , Cq}, DG = diag{D1, . . . , Dq},
(1)

where

Ak ∈ Rnk×nk , Bk ∈ Rnk×mk , Ck ∈ Rpk×nk , Dk ∈ Rpk×mk ,

such that Gk(s) = Dk + Ck(sI − Ak)−1Bk ∈ Cpk×mk . The realization of G(s) is assumed

to have the form (1) in the following. The set of all transfer function matrices of the same

block-diagonal structure as G(s) is denoted by StructG(s),

StructG(s) = {F (s) : F (s) = diag{F1(s), . . . , Fq(s)} and Fk(s) ∈ Cpk×mk , k = 1, . . . , q}. (2)

The interconnection dynamics of the subsystems in G(s) and the external excitation and

measurement dynamics are stored in the transfer function matrix N(s), defined by

N(s) =




E(s) F (s)

H(s) K(s)



 =:





AN BN,1 BN,2

CN,1 DE DF

CN,2 DH DK




, (3)

where

AN ∈ RnN×nN , BN,1 ∈ RnN×mN , CN,1 ∈ RpN×nN , DE ∈ RpN×mN ,

and the dimensions of the other matrices are chosen to conform with G(s). The entries of

N(s) have the following interpretation: Let the signal w(t) ∈ RmN be the external excitation

of the interconnected system, and z(t) ∈ RpN be the external measurement signal. Define

the interconnection signals y(t) ∈ R
∑

i pi and u(t) ∈ R
∑

i mi . The entry K(s) models how the

subsystems in G(s) interact with each other and the entry H(s) models how the external signal

w(t) effects the subsystems,

u(s) = H(s)w(s) + K(s)y(s), y(s) = G(s)u(s).
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 7

The Laplace transform of the measurements z(t) are given by the entries E(s) and F (s) as

z(s) = E(s)w(s) + F (s)y(s).

Hence, the transfer function matrix of the complete interconnected system is given by the

lower linear fractional transformation

Fl(N,G) := E(s) + F (s)(I − G(s)K(s))−1G(s)H(s) (4)

=





AN + BN,2LDGCN,2 BN,2LCG BN,1 + BN,2LDGDH

BGMCN,2 AG + BGMDKCG BGMDH

CN,1 + DF DGMCN,2 DF LCG DE + DF DGMDH




(5)

=:




A B

C D



 , L := (I − DGDK)−1, M := (I − DKDG)−1.

We assume throughout the paper that the interconnection (4) is well posed and internally

stable [13], and Fl(N,G) ∈ RH∞. The following definition is made.

Definition 1. A realization of Fl(N,G) in the form (5) where AG, BG, CG, DG are in the

block-diagonal form (1) is called a structured realization of the interconnected system Fl(N,G).

Remark 1. The linear fractional transformation is a systematic tool used to handle structure

in robust control. Often it is used to model structured model uncertainty (“pulling out the

∆’s”), see Chapter 10 in [13], but it can just as well be used to pull out subsystem transfer

functions Gk(s), as is done here.

2.2. Problem Statement

The first problem we would like to solve is

Ĝopt(s) := arg min
Ĝ(s)∈Struct G(s)

deg Ĝk(s)≤rk, k=1,...,q

‖Fl(N,G) − Fl(N, Ĝ)‖∞, (6)
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8 H. SANDBERG AND R. M. MURRAY

k
G1 G2

w = u1,1 u1,2 u2

z1 = y1 z2 = y2

Figure 2. An interconnected mechanical system.

for fixed rk ≤ nk, k = 1, . . . , q, and Struct G(s) is defined in (2). Notice that the dynamics

in N(s) is fixed. A solution to this problem would give optimal (in H∞-sense) reduced-order

subsystems Ĝopt,k(s) with respect to the entire interconnected system. The second problem

we would like solve is to be able to state a simple priniciple on how to choose approximation

orders rk for the subsystems.

Both of these problems are very hard. Even if the structure requirement Ĝ(s) ∈ StructG(s)

in (6) is dropped, (6) is a nonconvex optimization problem; see [14]. Instead of trying

to solve (6), we will therefore suggest two heuristics in Section 3 that generate candidate

approximations Ĝk(s) such that deg Ĝk(s) ≤ rk and Ĝ(s) ∈ StructG(s) and, in some cases,

also provide upper a priori bounds on the error ‖Fl(N,G) − Fl(N, Ĝ)‖∞. Structured Hankel

singular values will be introduced and used to provide guidelines for selecting approximation

orders rk.

Example 1 (Interconnected mechanical models) Consider Figure 2 where two elastic

masses are interconnected by a linear spring. The first mass model, G1(s), takes as input the

two forces u1,1(t) and u1,2(t), and as output the position y1(t) of one of its edges. The second

mass model, G2(s), takes as input the force u2(t) and as output the position y2(t) of one of

its edges. These models may be of very high degree, for instance if they are discretized partial

Copyright c© 2007 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2007; 00:1–1
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 9

differential equations of elastic bodies. The models are interconnected with a linear spring k,

and the mapping of interest could be how the force w(t) = u1,1(t) maps to the two positions

z(t) = [y1(t) y2(t)]T . The entries of N(s) are

E = DE =




0

0



 , F = DF =




1 0

0 1



 , H = DH =





1

0

0




, K = DK =





0 0

−k k

k −k




.

Note that there is no dynamics in the interconnection structure in this case. The model

reduction problem in this example is to find new models Ĝ1(s) and Ĝ2(s) of smaller McMillan

degree such that the input-output behavior w(t) )→ z(t) of the entire system is captured as

well as possible.

3. STRUCTURED BALANCED TRUNCATION

As mentioned in Section 2, it is not known how to solve the optimal approximation problem (6)

effectively even in the unstructured case. To do unstructured model reduction it is customary to

use suboptimal approaches (in H∞-sense), such as Hankel norm approximation and balanced

truncation; see for example [2, 3, 4]. In this paper, structured extensions of balanced truncation

are used.

3.1. Approximation by State Projection

Many methods for model reduction, such as balanced truncation, use state projection [4]. State

projections work as follows. For a given n-th order transfer function matrix [A,B,C,D], two

projection matrices SL, SR ∈ Rn×r satisfying ST
LSR = Ir are constructed (method dependent).

The matrix ST
L projects the n-dimensional original state space down to the r-dimensional

Copyright c© 2007 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2007; 00:1–1
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10 H. SANDBERG AND R. M. MURRAY

reduced-order state space: x̂(t) = ST
Lx(t). The matrix SR is the inverse mapping that gives

the coordinates of x̂(t) in the original state space. A reduced-order transfer function matrix of

McMillan degree less or equal to r is then given by [ST
LASR, ST

LB,CSR, D]. State projection

is used also in this paper, but special care needs to be taken in the construction of SL and SR.

The reason is the structure Fl(N,G) = [A,B,C,D] and it is not true that

[ST
LASR, ST

LB,CSR, D] = Fl(N, Ĝ) and Ĝ(s) ∈ StructG(s), (7)

(Struct G(s) defined in (2)) for just any projections SL and SR. In this section, conditions

are given on SL and SR such that (7) is true. The first step is to define structured coordinate

transformations that do not mix the states of different subsystems.

Definition 2. A structured coordinate transformation x̃ = Tx on Fl(N,G) with structured

realization (5) has the form

T = diag{TN , T1, . . . , Tq}, TN ∈ RnN×nN , Tk ∈ Rnk×nk , k = 1, . . . , q, (8)

where T is invertible.

Observation 1. If a structured coordinate transformation is applied to a structured realization

of Fl(N,G), then the realization remains structured.

The above structured coordinate transformation defines a coordinate transformation Tk on

each realization of the subsystems Gk. Assuming this coordinate transformation is well chosen,

some of the states of Gk may be less important and can be truncated. In order for the error

analysis in the following sections to apply, we choose to first do a coordinate permutation Pc

that collects all states to be truncated in the lower end of the state vector x of Fl(N,G). That

is, let xk =
[
xT

k1 xT
k2

]T

∈ Rnk be the state of Gk, and only xk1 ∈ Rrk is to be retained. Then

Copyright c© 2007 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2007; 00:1–1
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 11

the permutation matrix Pc is defined by

Pcx =
[
xT

N xT
11 . . . xT

q1 xT
12 . . . xT

q2

]T

. (9)

Let us also introduce the canonical projection Cp by

Cp =
[
Ir 0r×r̄

]
∈ Rr×n, r = nN +

q∑

k=1

ri, r̄ =
q∑

k=1

nk − rk, n = r + r̄, (10)

that satisfies CpCT
p = Ir. Using these definitions, the following observation follows almost

immediately.

Observation 2. Suppose the realization of Fl(N,G) = [A,B,C,D] is structured (5), that T

is a structured coordinate transformation (8), and that Pc, Cp are defined as in (9) and (10).

If the projections SL and SR have the structure

ST
L = CpPcT ∈ Rr×n, SR = T−1PT

c CT
p ∈ Rn×r,

then [ST
LASR, ST

LB,CSR, D] is a structured realization of Fl(N, Ĝ) where Ĝ(s) =

[ÂG, B̂G, ĈG, D̂G] ∈ Struct G(s) and

ÂG = diag{Â1, . . . , Âq}, B̂G = diag{B̂1, . . . , B̂q},

ĈG = diag{Ĉ1, . . . , Ĉq}, D̂G = diag{D1, . . . , Dq},

and

Âk ∈ Rrk×rk , B̂k ∈ Rrk×mk , Ĉk ∈ Rpk×rk , k = 1 . . . q.

Observation 2 shows how coordinate projections that preserve the inherent structure of

the interconnected system can be constructed. Obviously great care must be taken in the

choice of structured coordinate transformation T and approximation orders rk to make

‖Fl(N,G) − Fl(N, Ĝ)‖∞ small. How this can be done is analyzed next.
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12 H. SANDBERG AND R. M. MURRAY

3.2. Choosing Coordinate Projections: Method 1

The controllability Gramian P and the observability Gramian Q for the interconnected system

Fl(N,G) = [A,B,C,D] are solutions to the Lyapunov equations

AP + PAT + BBT = 0, AT Q + QA + CT C = 0. (11)

If A is a Hurwitz matrix, which it can be chosen to be when Fl(N,G) ∈ RH∞, then there are

always solutions P ≥ 0 and Q ≥ 0 to (11). The Gramians contain quantitative information

about how controllable and observable the states are [13]. A common approach to model

reduction via state projection is to make the Gramians diagonal and equal by a coordinate

transformation [15]. This in general requires a full coordinate transformation T that is not

structured as in Definition 2. Hence, we will introduce a weaker notion of subsystem balancing.

Let us use the following partition for the Gramians,

Q =




QN QNG

QT
NG QG



 , QG =





Q1 . . . Q1q

...
. . .

...

QT
1q . . . Qq




,

P =




PN PNG

PT
NG PG



 , PG =





P1 . . . P1q

...
. . .

...

PT
1q . . . Pq




,

(12)

conformal to the structured realization of Fl(N,G) with state vector

x =
[
xT

N xT
1 . . . xT

q

]T

. (13)

The block-diagonal elements of the Gramians contain information about the importance of

the states in the subsystems. For example, if all states except the ones in subsystem k are zero
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 13

at time zero, then

‖z(t)‖2
[0,∞] = xk(0)T Qkxk(0). (14)

That is, Qk determines how observable the states in the subsystem k are in the output z(t).

Assume next that all states of the interconnected system are zero at t = −∞, and that we

would like to control the states of subsystem k to the specific state xk(0) = x∗
k. Then the

minimum control signal satisfies

min
u∈L2(−∞,0)

x(0)∈X∗
k

‖u(t)‖2
[−∞,0] = (x∗

k)T P−1
k x∗

k, X∗
k = {x : x has structure (13) and xk = x∗

k}.

(15)

In (15), the states xN (0) and xi(0), i ,= k, are free variables. The result (15) is an application

of Lemma 3 in [9]. The block-diagonal element Pk determines how controllable the states in

subsystem k are, if all other states are free.

Since we are interested in structured coordinate transformations, the following definition is

made.

Definition 3. The structured realization of the interconnected system Fl(N,G) is subsystem

balanced and has subsystem balanced Gramians if the block-diagonal elements of the Gramians

satisfy

Pk = Qk = Σk = diag{σk,1, . . . ,σk,nk}, σk,1 ≥ . . . ≥ σk,nk , k = 1 . . . q,

where σk,· are called structured Hankel singular values of Gk(s).

In a subsystem balanced system, the states of the subsystems are ordered in decreasing order

of controllability and observability, in the sense of (14) and (15). That is, the first state of

Gk(s) is the state that is easiest to control in Gk(s) if all other states in the interconnected

system are free. The first state is also the most observable state in Gk(s), if all other states
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14 H. SANDBERG AND R. M. MURRAY

in the interconnected system are at zero. Also note that the structured Hankel singular values

of Gk(s) generally depend on Gi(s), i ,= k, and N(s). The regular Hankel singular values of

Gk(s) [2, 3, 13] depend only on Gk(s).

The following theorem shows that subsystem balanced realizations can always be obtained.

It is a generalization of the results in [8].

Theorem 1. Assume that Fl(N,G) has a structured realization and Gramians P and Q as in

(12). Then there is a structured coordinate transformation T = diag{TN , T1, . . . , Tq} that makes

P and Q subsystem balanced. Furthermore, the coordinate transformation and the subsystem

balanced Gramians satisfy

TkPkTT
k = T−T

k QkT−1
k = Σk, k = 1 . . . q,

and the structured Hankel singular values can be computed as

σk,i =
√

λi(PkQk),

and are invariant under structured coordinate transformations.

Proof. Under coordinate transformations T , the Gramians transform as P̃ = TPTT and

Q̃ = T−T QT−1; see [13]. Note that for structured coordinate transformations, Tk effects the

block-diagonal elements Pk, Qk, and not Pi, Qi, i ,= k. Hence, each Tk can be constructed

independently by considering only Pk, Qk using normal balancing techniques such that P̃k =

Q̃k = Σk; see [13].

Theorem 1 gives a method to construct structured coordinate transformations T . These can

be used directly together with Observation 2 to construct structured coordinate projections

SL, SR.
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 15

Remark 2. The idea of balancing block-diagonal elements of the Gramians P and Q

goes back to Enns [2] where it was used for frequency-weighted model reduction. The idea

has been extended to closed-loop model reduction in [10] and to interconnected systems

without dynamical interconnections in [8]. Here the idea is extended to the linear fractional

transformation framework.

3.2.1. Choosing Approximation Orders rk. Suppose that we would like to have an r-th

order approximation Fl(N, Ĝ). The question then is how to choose r1, . . . , rq such that

nN +r1+. . .+rq = r and ‖Fl(N,G)−Fl(N, Ĝ)‖∞ is small. Since the structured Hankel singular

values measure the controllability and observability of the states in subsystem balanced

coordinates, these are reasonable to use to choose rk. We propose that all structured Hankel

singular values {σk,i}k,i are sorted together in decreasing order, and that the r − nN largest

values are retained in the construction of Ĝ1(s), . . . , Ĝq(s). This gives a unique selection of

r1, . . . , rq, if the structured Hankel singular values are distinct. The principle is tested in

Section 4 on the example.

3.2.2. Error Analysis. Balanced truncation is often used because there is an a priori error

bound [2, 3]. This bound does generally not hold for truncated subsystem balanced systems

as is seen next. Still we can say something about the approximation error.

For simplicity, the case where only a single state is truncated is studied, and the error bound

is given in the following theorem. Let us partition the realization of Fl(N,G) as

Fl(N,G)









ẋ1(t)

ẋ2(t)



 =




A11 A12

A21 A22








x1(t)

x2(t)



 +




B1

B2



w(t), x(0) = 0,

z(t) =
[
C1 C2

]
x(t) + Dw(t),

(16)
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16 H. SANDBERG AND R. M. MURRAY

where x(t) ∈ Rn, and x1(t) ∈ Rn−1. Assume that the realization (16) is subsystem balanced

and that a state permutation has been applied, see (9), Observation 2, and Theorem 1, so that

it only remains to apply the canonical projection Cp = [In−1 0] to obtain the reduced model

Fl(N, Ĝ) with one state less.

Suppose the system has subsystem balanced Gramians P > 0 and Q > 0 given by

P−1 =




P11 PT

21

P21 σ





−1

=




P̃11 P̃T

21

P̃21 (σ − p)−1



 , Q =




Q11 QT

21

Q21 σ



 , (17)

where p = P21P
−1
11 PT

21 < σ ∈ R. The structured realization of Fl(N, Ĝ) is given by

Fl(N, Ĝ)






˙̂x1(t) = A11x̂1(t) + B1w(t), x̂1(0) = 0,

ẑ(t) = C1x̂1(t) + Dw(t),
(18)

where x̂1(t) ∈ Rn−1. The following truncation error bound then holds.

Theorem 2. The difference between the outputs of (16) and (18) is bounded by

‖z(t) − ẑ(t)‖[0,τ ] ≤ 2σ
√

(1 − p/σ)(1 + ρα(τ))‖w(t)‖[0,τ ] (19)

where σ is the truncated structured Hankel singular value, and

0 < p = P21P
−1
11 PT

21 < σ, ρ = max{|Q21/(σ(σ − p)) + P̃21|, |Q21/(σ(σ − p)) − P̃21|},

α(τ) =
1
2
Kη(τ)(Kx1(τ) + Kx̂1(τ)), K(·)(τ) = sup

w∈L2[0,τ ]

‖(·)(t)‖[0,τ ]

‖w(t)‖[0,τ ]
,

and the entries of P and Q are defined in (17), and where the functions (·) in K(·) are given

by η(t) = A21x̂1(t) + B2w(t), and x1(t) and x̂1(t) are solutions to (16) and (18).

Proof. The result is an extension of Lemmas 3 and 4 in [16]. The extension lies in that off-

diagonal elements P̃21 and Q21 are allowed in the Gramians. By multiplying the observability

Lyapunov equation QA+AT Q+CT C = 0 with




x1 − x̂1

x2



 from the right, and with




x1 − x̂1

x2





T
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 17

from the left,

d

dt

∣∣∣∣∣∣∣∣




x1(t) − x̂1(t)

x2(t)





∣∣∣∣∣∣∣∣

2

Q

+ |z(t) − ẑ(t)|2 = 2η(t)σx2(t) + 2η(t)Q21[x1(t) − x̂1(t)], (20)

is obtained, if we use that

C




x1(t) − x̂1(t)

x2(t)



 = z(t) − ẑ(t), A




x1(t) − x̂1(t)

x2(t)



 =




ẋ1(t) − ˙̂x1(t)

ẋ2(t) − η(t)



 ,

and η(t) is defined by η(t) = A21x̂1(t) + B2w(t).

By transforming the Lyapunov controllability equation PAT + AP + BBT = 0 into a linear

matrix inequality, see equation (30) in [16], and multiplying it with




x1 + x̂1

x2



 from the right

and with the transpose from the left, the following inequality is obtained in a similar way,

d

dt

∣∣∣∣∣∣∣∣




x1(t) + x̂1(t)

x2(t)





∣∣∣∣∣∣∣∣

2

P̃

+ 2η(t)(σ − p)−1x2(t) + 2η(t)P̃21[x1(t) + x̂1(t)] ≤ 4|w(t)|2. (21)

By multiplying (21) with σ(σ − p), and then adding the inequality to (20) and integrating

over the time interval [0, τ ], we obtain

‖z − ẑ‖2
[0,τ ] ≤ 4σ(σ − p)‖w‖2

[0,τ ] + 2〈η, (Q21 − σ(σ − p)P̃21)x1〉[0,τ ] − 2〈η, (Q21 + σ(σ − p)P̄21)x̂1〉[0,τ ]

≤ 4σ(σ − p)‖w‖2
[0,τ ] + 2σ(σ − p)ρ‖η‖[0,τ ](‖x1‖[0,τ ] + ‖x̂1‖[0,τ ])

where the constant ρ is defined in the theorem statement. By introducing the bounds

Kx1(τ),Kx̂1(τ), and Kη(τ) on ‖x1‖[0,τ ], ‖x̂1‖[0,τ ], and ‖η‖[0,τ ] the statement follows.

Remark 3. Notice that p/σ and ρ measure how “unstructured” the Gramians are. In the

case of block-diagonal Gramians, then p = 0 and ρ = 0. When the system is balanced in the

classical sense, i.e., when P = Q = diag{σ1, . . . ,σn}, then σ(σ − p) = σ2
n, Q21 = P̃21 = 0, and

(19) reduces to the classical bound ‖z(t) − ẑ(t)‖[0,∞] ≤ 2σn‖w(t)‖[0,∞]; see [2, 3].
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18 H. SANDBERG AND R. M. MURRAY

The error bound in Theorem 2 is not an a priori error bound if ρ > 0. This is because

the function α(τ) is needed, and it can only be computed after the model Fl(N, Ĝ) has been

constructed. The computation of the induced norms in Kx1(τ) and Kx̂1(τ) is a non-trivial

task, since it requires the solution of time-varying differential Riccati equations; see [17]. Thus

the main value of the theorem is to show that the error scales with the truncated Hankel

singular value σ, and that the bound transitions into an a priori bound as the Gramians

become block diagonal (“become structured”), see Remark 3. Method 2 in Section 3.3 is based

on this observation.

Remark 4. There is no guarantee that Method 1 gives a stable approximation Fl(N, Ĝ),

even if Fl(N,G) is stable. Notice that the other methods mentioned in Remark 2 suffer from

the same problem. Nevertheless, Method 1 often performs well as is seen in Section 4, and

Theorem 2 is always valid because it is a statement over the finite time interval [0, τ ]. If

Fl(N, Ĝ) is unstable, it means that Kx̂1(τ) → ∞ as τ → ∞.

3.3. Choosing Coordinate Projections: Method 2

The bound in Theorem 2 shows that block-diagonal Gramians yield simple a priori error

bounds. However, Gramians satisfying (11) are typically not block diagonal. Therefore we

use more flexible generalized Gramians, see [11], in Method 2. The generalized block-diagonal

Gramians should satisfy the linear matrix inequalities

min trace P min trace Q

AP + PAT + BBT ≤ 0 AT Q + QA + CT C ≤ 0

P = diag{PN , P1, . . . , Pq} Q = diag{QN , Q1, . . . , Qq}.

(22)

Copyright c© 2007 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2007; 00:1–1

Prepared using ocaauth.cls



MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 19

The convex optimization problem (22) can be solved using standard linear matrix inequality

solvers such as [18]. If there is a solution then P ≥ 0 and Q ≥ 0, since A is a Hurwitz matrix.

The following definition is made.

Definition 4. The structured realization of the interconnected system Fl(N,G) has

structured Gramians if there are generalized Gramians

P = diag{PN , P1, . . . , Pq}, Q = diag{QN , Q1, . . . , Qq}, (23)

that satisfy (22).

There is no simple result that states when an interconnected system has structured Gramians.

It is simpler to state necessary conditions for the existence of structured Gramians, however:

The diagonal blocks of A corresponding to the subsystems generally need to be stable.

Observation 3. Suppose [A,B,C,D] is a minimal realization of the stable interconnected

system Fl(N,G), and that Fl(N,G) has structured Gramians. Denote the i-th diagonal block

of A, corresponding to Pi, Qi, by Ai. Then Ai, i = N, 1, . . . , q, have no unstable modes.

Proof. Since [A,B,C,D] is a minimal stable realization, it holds that P > 0 and Q > 0.

The proof then follows by contradiction. Assume that there is an unstable mode in Ai with

eigenvalue λ, Re λ > 0, and eigenvector v, Aiv = λv. By (22) and the minimality assumption

it holds that

AT
i Qi + QiAi + CT

i Ci ≤ 0, Qi > 0,

where Ci is the i-th block of C. If we multiply from the left with v′ (complex conjugate

transpose of v) and from the right with v, we obtain

(2Re λ)v′Qiv + v′CT
i Civ ≤ 0, v′Qiv > 0, v′CT

i Civ ≥ 0,
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20 H. SANDBERG AND R. M. MURRAY

which is a contradiction when Re λ > 0.

The practical consequence of Observation 3 is that there can be no unstable (open loop) modes

in the subsystems in Fl(N,G). Such system can be called ”super stable”.

Remark 5. It seems restrictive to require structured Gramians and that only few systems will

have such Gramians. However, Method 2 is the foundation for the continued work reported

in [6], where it is shown that meaningful intermediate models that always have structured

Gramians can be constructed.

Structured projections can be constructed just as in Method 1, but using the structured

generalized Gramains instead of the regular Gramians. Then the following a priori bound

holds.

Theorem 3. Assume that the interconnected system Fl(N,G) has a structured realization

[A,B,C,D] and has structured Gramians (23). Then it holds that

‖Fl(N,G) − Fl(N, Ĝ)‖∞ ≤ 2
q∑

k=1

nk∑

i=rk+1

σk,i,

where σk,i =
√

λi(PkQk) are the structured Hankel singular values, and Fl(N, Ĝ) =

[ST
LASR, ST

LB,CSR, D] as in Observation 2, and the structured coordinate transformation T

in ST
L and SR is subsystem balancing as in Theorem 1.

Proof. The calculations leading to the error bound in Theorem 2 also hold for generalized

Gramians, just as in [16]. Notice that for each truncated state, p = 0 and ρ = 0, since the

Gramians are structured. The result then follows by iteratively applying the bound for each

truncated state, and using the triangle inequality.

Remark 6. An argument for choosing to minimize the trace of the generalized Gramians
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MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 21

in (22) is that
∑q

k=1

∑nk

i=1 σk,i ≤ (trace P )(trace Q) (use Proposition 1 in [19]). Thus these

criteria tend to make the error bound small. See also discussion in Section 4.3.

3.3.1. Choosing Approximation Orders rk. For the selection of approximation orders rk for

the subsystems in Method 2, we suggest the same principle as in Method 1, see Section 3.2.1.

In fact, that principle minimizes the a priori error bound in Theorem 3, for fixed total

approximation order r = nN + r1 + . . . + rq.

4. EXAMPLE REVISITED

Let us consider Example 1 again. The models of the elastic masses are chosen as 8-th and

10-th order transfer function matrices G1(s) and G2(s), respectively. Their Bode magnitude

plots are shown in Figure 2. Indeed, these are not very high-order subsystems, but they are

complex enough to illustrate the points of the paper. The interconnected system Fl(N,G) has

a force disturbance w acting as input, and the positions of two of the edges of the masses, z1,

and z2, acting as outputs. The system is studied as the spring constant k of the spring that

interconnects the subsystems is 0.1 or 10.

Three different model reduction techniques are applied to the example: regular balanced

truncation [2, 3], and Method 1 and Method 2 from the previous section. The block diagram

structure of the models coming in and out of the different techniques are illustrated in

Figure 4. Regular balanced truncation does not preserve structure and the reduced model

Ĝ(s) is just a black box model approximating the input-output behavior w )→ z. In addition

to approximating the input-output behavior w )→ z, Method 1 and 2 also preserve the

interconnection structure.
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Figure 3. Bode magnitude plots of the transfer function matrices of the mass models G1(s) and G2(s)

in Example 1.

(A) (B) (C)

G1

G2

Ĝ1

Ĝ2

Ĝ

w

ww z1

z2

ẑ1

ẑ1

ẑ2

ẑ2

Figure 4. Block diagrams of the different models in Example 1. (A) is the structure of the original

model. (B) is the structure of the model generated by Method 1 and Method 2. (C) is the structure

of the model generated by regular balanced truncation.

4.1. Comparing Method 1 with Regular Balanced Truncation

Here regular balanced truncation is compared to Method 1 when the spring constant is k = 10.

Note that regular balanced truncation generally does not preserve the interconnection structure

in the reduced model Ĝ(s), see Figure 4 (C). Hence, it will generally not be possible to extract

reduced models of the individual masses, Ĝ1(s) and Ĝ2(s), from Ĝ(s). The reason for using

regular balanced truncation here is to see how good approximations can be done without the
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Figure 5. (Left) The structured Hankel singular values of Method 1 for the 18-th order interconnected

model Fl(N, G) when k = 10. ’◦’ belong to G1(s), {σ1,k}8
k=1, and ’×’ belong to G2(s), {σ2,k}10

k=1.

(Right) The regular Hankel singular values for the same model. The structured Hankel singular values

can be associated with different subsystems, whereas the regular singular values are associated with

the entire interconnected system.

structure constraint. Thus it is expected that Method 1 gives a larger approximation error.

In Figure 5, the regular and structured Hankel singular values are plotted. The structured

singular values from G1(s) and G2(s) are plotted together to show the relative importance of

states in G1(s) and G2(s) with respect to the mapping w )→ z. There is a significant drop after

10 singular values in both plots. This indicates that around 10 states are needed to approximate

the model (choose r ≈ 10). In Table I and II in the appendix, the approximation errors of

regular balanced truncation and Method 1 are shown for various approximation orders r, r1,

and r2. The orders r, r1, and r2 are reduced in steps of two, since this reduces the number of

cases to tabulate.

In Table I, it is seen that the principle in Section 3.2.1 actually picks out the best choices

of r1 and r2 when the total approximation order r = r1 + r2 is fixed and larger or equal to 8.

(This is also true if r1 and r2 are allowed to be odd numbers.) Remember that the principle
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24 H. SANDBERG AND R. M. MURRAY

simply means that states corresponding to the smallest structured singular values in Figure 5

are truncated. For r = r1 + r2 smaller than 8, the approximation error is as least as large as

the system norm itself for all choices r1 and r2, and Method 1 does not work. It is also noted

that Method 1 gives unstable approximations for r1 = 2. In Table II, the approximation errors

of Method 1 and regular balanced truncation are compared. As expected, Method 1 always

yields a larger approximation error, but around r = 10, the error is only a factor 1− 3 larger.

In summary, Method 1 works well for the example down to approximation order r = 8. This

corresponds to a reduction of 10 states. The principle in Section 3.2.1 gives the right selection

of r1 and r2 in these cases. It should be noted that regular balanced truncation yields a relative

error of 60% for r = 8, and unstructured model reduction also does a relatively bad job for

r ≤ 8.

4.2. Comparing Method 1 with Method 2

Here Method 1 is compared to Method 2. There must exist structured Gramians for Method 2

to work. This is the case when the spring constant k is less than 0.4. We choose k = 0.1 since this

is a factor 100 smaller than in Section 4.1. The structured singular values are shown in Figure 6.

The first thing to notice is that when k decreases from 10 to 0.1 the relative importance of the

model G2(s) in the mapping w )→ z decreases. This can be seen by comparing the relative size

of the structured singular values {σ2,k}10
k=1 and {σ1,k}8

k=1. {σ2,k}10
k=1 are smaller in Figure 6

(left) than in Figure 5 (left). This is natural since the interaction between the models has been

decreased.

In Table III and IV, the approximation errors are shown for various approximation orders

r1 and r2. Notice that the errors of Method 1 and Method 2 are almost identical for all r1
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Figure 6. Comparison of structured Hankel singular values for Method 1 and Method 2 when k = 0.1.

’◦’ are structured Hankel singular values belonging to G1(s), and ’×’ are values belonging to G2(s).

and r2. The structured Hankel singular values are slightly different, however, as can be seen

in Figure 6. In particular, if the principles in Section 3.2.1 and 3.3.1 are applied, the choices

of r1 and r2 are different when r1 + r2 = 10 and 6. It is seen that the principle works better

for Method 1: The principle then gives the best choices of r1 and r2 for all cases except when

r = 8. The advantage with Method 2 compared to Method 1 is the existence of the a priori

error bound in Theorem 3. The bound is studied in the next section.

In summary, Method 1 and Method 2 give roughly the same approximation errors, but

the order selection principle works better for Method 1. Both Method 1 and Method 2 work

(relative error less than 100%) for all choices of r1 and r2. Method 2 is theoretically better

motivated, but it is only applicable when (k ≤ 0.4).

4.3. Comparing the Error Bounds of Regular Balanced Truncation and Method 2

Here the error bounds in Theorem 3 and [2, 3] are compared. In Table V, the approximation

errors and bounds are given for various r, when k = 0.1. The models for Method 2 are the
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same as in Section 4.2.

For regular balanced truncation, the error bound is uniformly a factor 2−5 too conservative.

For Method 2, the conservatism depends heavily on the approximation order r. For large r, the

bounds are very conservative. An explanation is that the structured Gramians are obtained

by minimization of their trace. The trace criterium tends to emphasize the size of the largest

eigenvalues of the Gramians. Hence, this criterium does not value an absolute decrease in

the small eigenvalues as much. More elaborate criteria could be considered to fix this, at the

expense of higher computational complexity. Since the actual approximation errors become

quite small using the trace criterium, we do not consider such fixes here. For r around 8 (which

is a reasonable order for the approximation) the conservatism of the bound for Method 2 is a

factor 3 − 9, which is not far worse than the bound for regular balanced truncation.

4.4. Summary of Example

Method 1 performs well in both cases k = 0.1 and k = 10, even though the dynamics is very

different. Method 1 is also relatively computationally cheap to use, compared to Method 2, since

no convex optimization is needed. The drawback with Method 1 is that there are only weak

guarantees on its performance (Theorem 2), and it can even generate unstable approximations,

see r1 = 2 when k = 10. It is seen that the principle in Section 3.2.1 generally works well. This

is helpful since we then do not need to try all possible combinations of r1 and r2. Finally, the

error bound Theorem 3 performs reasonably well when the approximation order is not large.

Copyright c© 2007 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2007; 00:1–1

Prepared using ocaauth.cls



MODEL REDUCTION OF INTERCONNECTED LINEAR SYSTEMS 27

5. CONCLUSIONS

In this paper, two methods for structure-preserving model reduction of interconnected linear

systems have been presented. Both methods are based on ideas from classical balanced

truncation. The methods differ from the method in [8, 9] by that they use a more general

linear fractional transformation framework, and the second method also uses linear matrix

inequalities. Approximation error bounds were derived for the methods. When structured

(block-diagonal) Gramians are available, the error bound is an a priori bound. When the

Gramians are unstructured, the error bound is only an a posteriori bound. A model of a

mechanical device was also presented and the methods were successfully applied to it. In

particular, it was shown how the methods pick out relevant modes in the subsystems, based

on a global approximation criteria. Both approximation methods are valuable by themselves,

but they also form the foundation for the more advanced method presented in [6].

An interesting problem for future work is how to deal with uncertain network models N(s).

Other interesting problems are structured approximation in gap metrics, and to provide lower

error bounds on the approximation error.
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APPENDIX

A. Approximation Errors in Example

Table I. The approximation error ‖Fl(N, G)−Fl(N, Ĝ)‖∞, where Ĝ is computed with Method 1, and

k = 10. The orders of Ĝ1 and Ĝ2 are r1 and r2, respectively. The boxed values represent the choices

of r1 and r2 using the policy in Section 3.2.1. The norm of the system is ‖Fl(N, G)‖∞ = 0.4016.

r2 \ r1 8 6 4 2 0

10 0.00 3.58 · 10−2 2.40 · 10−1 ∞ 4.02 · 10−1

8 1.23 · 10−5 3.58 · 10−2 2.40 · 10−1 ∞ 4.02 · 10−1

6 7.63 · 10−3 3.58 · 10−2 2.40 · 10−1 ∞ 4.02 · 10−1

4 2.08 · 10−1 2.07 · 10−1 3.28 · 10−1 ∞ 4.02 · 10−1

2 3.99 · 10−1 3.98 · 10−1 4.20 · 10−1 ∞ 4.02 · 10−1

0 4.84 · 10−1 4.82 · 10−1 4.40 · 10−1 ∞ 4.02 · 10−1
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Table II. The approximation error ‖Fl(N, G) − Ĝ‖∞, where Ĝ is an unstructured approximation

computed with regular balanced truncation with order r, when k = 10. The boxed values from Table I

are also shown for comparison, together with the ratio of the actual errors.

r Reg. error Method 1 error Ratio

18 0.00 0.00 -

16 6.75 · 10−7 1.23 · 10−5 1.81 · 101

14 1.12 · 10−3 7.63 · 10−3 6.80

12 3.58 · 10−2 3.58 · 10−2 1.00

10 7.00 · 10−2 2.07 · 10−1 2.95

8 2.42 · 10−1 3.28 · 10−1 1.36

6 2.57 · 10−1 4.20 · 10−1 1.63

4 2.65 · 10−1 ∞ ∞

2 3.48 · 10−1 ∞ ∞

0 4.02 · 10−1 4.02 · 10−1 1.00
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Table III. The approximation error ‖Fl(N, G)−Fl(N, Ĝ)‖∞, where Ĝ is computed with Method 1, and

k = 0.1. The orders of Ĝ1 and Ĝ2 are r1 and r2, respectively. The boxed values represent the choices

of r1 and r2 using the policy in Section 3.2.1. The norm of the system is ‖Fl(N, G)‖∞ = 0.5663.

r2 \ r1 8 6 4 2 0

10 0.00 3.18 · 10−2 1.94 · 10−1 4.56 · 10−1 5.66 · 10−1

8 2.71 · 10−8 3.18 · 10−2 1.94 · 10−1 4.56 · 10−1 5.66 · 10−1

6 1.02 · 10−5 3.18 · 10−2 1.94 · 10−1 4.56 · 10−1 5.66 · 10−1

4 3.50 · 10−4 3.18 · 10−2 1.94 · 10−1 4.56 · 10−1 5.66 · 10−1

2 3.41 · 10−3 3.18 · 10−2 1.94 · 10−1 4.56 · 10−1 5.66 · 10−1

0 2.59 · 10−2 3.18 · 10−2 1.94 · 10−1 4.56 · 10−1 5.66 · 10−1

Table IV. The approximation error ‖Fl(N, G)−Fl(N, Ĝ)‖∞, where Ĝ is computed with Method 2, and

k = 0.1. The orders of Ĝ1 and Ĝ2 are r1 and r2, respectively. The boxed values represent the choices

of r1 and r2 using the policy in Section 3.3.1. The norm of the system is ‖Fl(N, G)‖∞ = 0.5663.

r2 \ r1 8 6 4 2 0

10 0.00 3.18 · 10−2 1.94 · 10−1 4.57 · 10−1 5.66 · 10−1

8 6.19 · 10−8 3.18 · 10−2 1.94 · 10−1 4.57 · 10−1 5.66 · 10−1

6 1.00 · 10−5 3.18 · 10−2 1.94 · 10−1 4.57 · 10−1 5.66 · 10−1

4 3.50 · 10−4 3.18 · 10−2 1.94 · 10−1 4.57 · 10−1 5.66 · 10−1

2 3.41 · 10−3 3.18 · 10−2 1.94 · 10−1 4.57 · 10−1 5.66 · 10−1

0 2.59 · 10−2 3.18 · 10−2 1.94 · 10−1 4.57 · 10−1 5.66 · 10−1
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Table V. The approximation errors for regular balanced truncation and Method 2, when k = 0.1. In

parenthesis, the error bound in [2, 3] and in Theorem 3 are given. The conservatism is indicated by

the ratio of the bound and the actual error.

r Reg. error (Bound) Reg. cons. Method 2 error (Bound) Method 2 cons.

18 0.00 (0.00) - 0.00 (0.00) -

16 5.30 · 10−9 (1.06 · 10−8) 2.00 6.19 · 10−8 (3.08 · 10−5) 4.97 · 102

14 6.89 · 10−6 (1.38 · 10−5) 2.00 1.00 · 10−5 (3.43 · 10−3) 3.42 · 102

12 3.48 · 10−4 (7.10 · 10−4) 2.04 3.50 · 10−4 (4.75 · 10−2) 1.36 · 102

10 3.37 · 10−3 (7.45 · 10−3) 2.21 3.18 · 10−2 (1.15 · 10−1) 3.61

8 2.44 · 10−2 (5.59 · 10−2) 2.29 3.18 · 10−2 (3.03 · 10−1) 9.51

6 3.18 · 10−2 (1.20 · 10−1) 3.76 1.94 · 10−1 (7.15 · 10−1) 3.69

4 1.94 · 10−1 (5.07 · 10−1) 2.62 1.94 · 10−1 (1.34) 6.94

2 4.56 · 10−1 (1.42) 3.12 4.57 · 10−1 (2.35) 5.13

0 5.66 · 10−1 (2.56) 4.52 5.66 · 10−1 (3.72) 6.57
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