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Abstract— In this paper, we approximate models of intercon-
nected systems that are to be used for decentralized control
design. The suggested approach is based on approximation of
so-called subnetwork models. A subnetwork model is a model
of the interconnected system, as seen from one specific position
in the network. The simplification is done by using weighted
model reduction, and several approximation criteria are given.
A new method for weighted model reduction is used. The
method is based on a combination of known techniques that
use semidefinite programming and frequency-data samples of
transfer functions. The method is guaranteed to preserve sta-
bility and does not depend strongly on the order of the original
model. This is particularly important for large interconnected
systems. Two examples are given to illustrate the technique.

I. INTRODUCTION

Control of interconnected systems has become a large
research area in the last couple of years. Applications for
this research are, for example, automated highway systems,
vehicle formation control, power systems, sensor/actuator
networks, and cross-directional control in paper machines. In
an interconnected system, there are many systems and they
are influenced both by neighboring systems and by external
signals. In Fig. 1, a small interconnected system is shown
with three subsystems P, P (1), P (2). In this small-scale case,
standard control techniques can be used to control various
properties of the systems.

If we let the number of interconnected systems grow, the
standard control-design techniques become computationally
infeasible. The reason is that these techniques often are
centralized. A good way to beat the complexity is often to
decentralize the control structure. A decentralized controller
is often easier to implement, less complex, and more robust
to model/sensor faults. Distributed H∞-control has been
considered in, for example, [1], [2], and distributed receding
horizon control in, for example, [3], [4].

Before designing a controller for a high-order system,
it is often a good idea to simplify the plant dynamics as
much as possible, while retaining its important features.
Again, if the interconnected system is of small scale, as in
Fig. 1, the problem is easily solved by using standard model
reduction techniques, such as Hankel-norm approximation or
balanced truncation, see, for example [5], [6]. But typically
the computational complexity of these methods grows as
O(n3), where n is the total number of states in the model.
This makes them hard to use for systems with more than a
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few hundred states. Furthermore, these methods were not de-
signed to preserve the special structure of an interconnected
system. It is, however, possible to enforce structure by some
modifications, see, for example, [7] and [8].

Just as for control design, it has been suggested to decen-
tralize system approximation to deal with the computational
complexity, and to maintain the interconnection structure.
In [9], subnetwork models were simplified for studies of
fault sequences in large power systems. In [10], subsystems
were simplified separately in an iterative fashion. In both [9]
and [10], time-domain data from simulations of nonlinear
models were used together with principal orthogonal decom-
position (POD) type of simplification, see [11]. A similar
philosophy is used in the work in this paper, but we instead
use frequency-domain data and only linear models. Another
difference is the focus on modeling for control design here.

The first contribution of this paper is to derive a framework
for simplification of subnetwork models for control design.
A subnetwork model is a model of the network, as seen
from one specific position in the network. To simplify
the overall network, one can repeatedly simplify subnet-
works, in a fashion similar to [10]. The details of such
a scheme are not studied here, though. The simplification
boils down to weighted model reduction problems, where
the weights depend on the structure of the decentralized
controller. The second contribution of this paper is to solve
the weighted model reduction problem for multi-input–multi-
output (MIMO) models using a novel approximation method
that combines the ideas of [12] and [13]. In particular, the
method preserves stability and does not suffer from the
O(n3) complexity mentioned above.
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Fig. 1. An interconnected system. The three systems P, P (1), P (2) have
interconnected dynamics. To each system there are local external inputs and
outputs.
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II. PROBLEM FORMULATION

We shall focus on one (arbitrary) subsystem in an inter-
connected structure, and denote it by P . The rest of the
network, P (1) and P (2) in Fig. 1, is called the subnetwork
and is denoted by N . The subsystem P is modeled by two
(continuous time) transfer function matrices (P1, P2) and the
dynamics is described by

y = P1u + P2w (1)
w = −Ny + l. (2)

The output y(t) ∈ R
p is available for feedback control of P

and may influence the subnetwork. The local control signal
is u(t) ∈ R

m. The signal w(t) ∈ R
o represents the influence

from the subnetwork, and l(t) ∈ R
o is an additional external

disturbance. The subnetwork is assumed to be stable and is
modeled by the (continuous time) transfer function matrix
N ∈ H∞. It influences P through the feedback (2). We
assume throughout that the feedback connection of P2 and
N is internally stable, and hence (I + P2N)−1 ∈ H∞. The
interconnected system is assumed to be large, and N may be
a transfer function of high McMillan degree. In the method
described in Section III, knowledge of frequency samples of
the subnetwork,

Nk = N(jωk), k = 1 . . . K, (3)

is assumed. This is an assumption that works to our advan-
tage because it may be hard to compute an exact model of
N . Next, we give two examples of interconnected systems,
and how they fit into the framework.

Example 1 (Power systems): Power systems are an exam-
ple of interconnected systems that can be modeled with
P1 = P2 =: P , when the so-called swing equations are
used, see [9]. The output y is the phase angle at the bus
under consideration. We have

y =
1

ms2 + ds
(u + w) = P (u + w), (4)

where u is the local power input, m is the local “mass”, and
d the local “damping”. w represents the power exchange with
the subnetwork. It depends on the phase differences and can
be modeled by

w =
∑

j

kj sin(y − δj) ≈
∑

j

kj(y − δj),

for small phase differences (constant bus voltages are as-
sumed). The index j runs over all buses in the subnetwork
that are connected to P , and δj is the phase angle at bus j.
Since the dynamics for each phase angle δj is in the form (4),
we can solve for N , given that we know the local masses,
local damping, and interconnection constants kj .

Example 2 (Vehicle formations): An interconnected sys-
tem is not necessarily physically connected. An example
is vehicle formations, see [4]. Consider two vehicles in
formation. They may be modeled as

y =

[

x1

x2

]

=

[

P
0

]

u +

[

0
I

]

w = P1u + P2w,

where x1, x2 are positions and velocities of vehicles 1 and
2. P is the dynamics of vehicle 1, and for control it may
use the position and velocity of vehicle 2, that is w =
x2. The subnetwork model N here models how vehicle 2
reacts to changes in x1, x2. This reaction depends on the
possible controller in vehicle 2. The disturbance could here
be modeled as l = Pu2, if the vehicles have identical
dynamics and u2 is the input to vehicle 2.

The internal model principle suggests that a good de-
centralized feedback controller should contain a model of
the controlled process. Here that means P1, P2, and N . It
is unrealistic (and unnecessary) to have an exact model of
the large subnetwork N in the feedback controller, and we
will discuss how simplified subnetwork models N̂ can be
obtained and included in the feedback. The approach we
use has many similarities to controller reduction, see, for
example, [14]. The criteria we use for the simplification of
N are:
(A) How is the robust stability of the interconnected system

influenced by the choice of N̂?
(B) How is the performance of the subsystem influenced by

the choice of N̂?
(C) How does the choice of N̂ influence how the subsystem

is seen from the subnetwork?
Before discussing these criteria in detail, we introduce the
approximation method that is used.

III. WEIGHTED MIMO TRANSFER FUNCTION
APPROXIMATION

The problems we end up solving are weighted model
reduction problems. There are many methods available for
solving such problems, see [5], [14], [15]. Typically they
require a state-space model of N , does not always preserve
stability, and need O(n3) operations. For models given by
frequency samples (3), we could potentially use techniques
for robust system identification, see, for example the survey
[16]. But instead we use a novel method utilizing semidefi-
nite programming, based on ideas from [12], [13], [17], [18].

A. Approximation problem
The approximation method consists of two steps. The first

step is inspired by [12], and the second step by [13]. The
poles of N̂ are determined in the first step, and the zeros are
determined in the second step. The problem we would like
to solve can be formulated as

minimize ‖Wo(N − N̂)Wi‖∞ (5)
subject to deg N̂ ≤ r, N̂ ∈ H∞, (6)

where N ∈ H∞ is given together with frequency-dependent
weights Wi,Wo ∈ L∞ and r ∈ Z+. Here ‖ · ‖∞ denotes
the L∞-norm and deg the McMillan degree. To the best
knowledge of the authors, no polynomial time algorithm
is available to solve (5)–(6), and the suboptimal methods
mentioned above are frequently used. We will relax the
problem (5)–(6) and obtain thereby a convex optimization
problem.



B. Step 1: Fix pole locations
The first step is to replace N̂ in (5) with a polynomial

fraction description

Ñ(s) =
1

ã(s)
B̃(s), ã(−s) = ã(s), ã(jω) > 0 ∀ω,

(7)
where B̃(s) is a polynomial matrix of degree 2r and with
dimension o×p, and ã(s) is a scalar polynomial of degree 2r
with no odd monomials. Notice in particular that Ñ 6∈ H∞.
The problem is now to fix the coefficients of ã and B̃. This
is done by solving a sampled version of (5):

minimize γ

subject to σ(Wo,k(Nk − Ñk)Wi,k) < γ, k = 1 . . . K,

where subscript k means evaluation of the corresponding
transfer function at jωk, and σ is the largest singular value.
This problem can equivalently be formulated as

minimize γ

subject to





γãkI Wo,k(Nkãk − B̃k)Wi,k

∗ γãkI



 > 0, (8)

k = 1 . . . K,

ã(jω) > 0, ∀ω, (9)

using Schur complements, and ∗ denoting the complex con-
jugate transpose of the upper right entry. Feasible coefficients
of ã, B̃ can be found for fixed γ if they exist because (8)–
(9) can be turned into a semidefinite program. Since ã, B̃ are
linear in their unknown coefficients, (8) are simply K linear
matrix inequalities (LMIs). Inequality (9) can also be turned
into LMIs using, for example, the Kalman-Yakubovich-
Popov lemma, see [17], [18]. The minimization of γ is then
achieved via bisection over γ (the problem is quasiconvex).

Once a solution Ñ is found, we make a stable-antistable
decomposition

Ñ(s) =
1

â(s)
R1(s) +

1

â(−s)
R2(s) (10)

where â(s) is a Hurwitz polynomial of degree r such
that â(s)â(−s) = ã(s). We obtain â(s) from a spectral
factorization of ã. Because of (9), such a factorization always
exists. The polynomial â contains the poles of N̂ .

Remark 1: It may seem odd to approximate N ∈ H∞

with an unstable Ñ in L∞-norm and then only retain the
stable part. However, this is also done in optimal Hankel-
norm approximation, see [6]. Here we look for poles that lie
symmetrically around the origin. This idea was introduced in
[12] (in the discrete-time single-input–single-output (SISO)
case) and worked very well there.

C. Step 2: Fix zero locations
From Step 1, the stable poles {pi}

r
i=1 of N̂ are fixed from

the roots of â. The problem is now to find the zeros of N̂ ,
such that the McMillan degree of N̂ is as small as possible

while the weighted error σ(Wo,k(Nk − N̂k)Wi,k) is small.
Assuming that pi are distinct1, we use the parametrization

N̂(s) = N̂0 +
r

∑

i=1

1

s − pi

N̂i, (11)

and shall fix N̂i ∈ C
o×p, where N̂ i = N̂j when p̄i = pj .

The McMillan degree of (11) is given by

deg N̂ =

r
∑

i=1

rank N̂i.

Minimization of the rank of a matrix subject to LMIs is
known as a difficult and nonconvex problem. However, there
exist simple and effective heuristics, such as the one in [13].
There the trace-class norm of N̂i,

‖N̂i‖1 =

min{o,p}
∑

k=1

σk(N̂i),

where σi are the singular values, is minimized instead of the
rank. The minimization problem we solve is the following:
Fix a desired approximation accuracy γ > 0. Then solve

minimize
r

∑

i=1

‖N̂i‖1

subject to σ(Wo,k(Nk − N̂k)Wi,k) < γ, k = 1 . . . K,
(12)

where N̂ is given by (11). How to solve this problem by
means of LMIs is shown in [13]. What typically happens
is that as γ is decreased to obtain a better approximation,
the McMillan degree of N̂ increases until there no longer
is a feasible solution to (12). There is a trade off between
approximation accuracy and complexity. Notice that an upper
bound on deg N̂ is r · min{o, p}.

Remark 2 (Implementation): We are currently solving the
LMIs in Step 1 and Step 2 with SeDuMi [19] and YALMIP
[20].

IV. CONTROL STRUCTURE 1: P1 = P2

In this section, we study the problem of finding subnet-
work models N̂ based on the criteria (A)–(C) when P1 =
P2 =: P . That is, the influence from the subnetwork, w, and
from the control signal, u, enter the process in the same way.
One example where this is the case is in power systems, see
Example 1.

We will make the analysis based on the simple feedback

u = K(yref − y) + N̂y, (13)

where K is a transfer function matrix, yref a reference
signal, and N̂ a subnetwork model. The controlled system
is shown in Fig. 2. The idea behind the control law is easily
understood by looking at the closed-loop transfer function

y = (I + P (K + ∆))−1P (Kyref + l + (N̂ − K)n),

1Generically pi are distinct. If not, we have to modify the parametrization
in (11) slightly.
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Fig. 2. The closed-loop system when P1 = P2 = P and the feedback
(13) is used.

where ∆ = N − N̂ is the subnetwork model error. If ∆ =
0, then the response of the loop to references, yref , and
to disturbances, l, is the same as when P is not connected
to the subnetwork N . Notice, however, that the response to
measurement noise, n, depends on N̂ .

A simple control design methodology can then be as
follows: First, design K for P using standard methods so
that the local performance is good, assuming that N = 0.
Second, find an approximation N̂ and add to the feedback
(13) to compensate for the subnetwork. This is discussed
next. Notice that N̂ and K may need to be modified to
attenuate the measurement noise n.

Robustness (A): Assuming that the closed-loop system in
Fig. 2 is stable when ∆ = 0, we have that (I + PK)−1P ∈
H∞. According to the small-gain theorem [15], applied to
this loop, a sufficient condition for the loop to be stable is

‖(I + PK)−1P (N − N̂)‖∞ < 1.

Hence, from robustness concerns, it makes sense to choose
Wo = (I + PK)−1P and Wi = I in the weighted model
reduction problem. Here, Wo is chosen as the load sensitivity
function. A fine approximation is thus recommended at
frequencies where the sensitivity is high to load disturbances
l. For other frequencies, a good model of the subnetwork N
is not necessary.

Performance (B): Another rationale for choosing N̂ is to
match closed-loop transfer functions from yref to y. Since
∆ appears in the inverse, we make a Taylor expansions to
obtain a problem in the form (5). We have

(I + PK)−1PK − (I + PK + P∆)−1PK

≈ (I + PK)−1P∆(I + PK)−1PK

for small P∆. Hence we choose Wo = (I + PK)−1P and
Wi = (I + PK)−1PK.

Subnetwork view (C): An important issue is how the
choice of controller affects the subnetwork. Assuming that
controllers already have been designed for the other subsys-
tems P (i), we do not want (K, N̂) to change the conditions
too much. Here we model this by looking at the transfer
function from disturbances in the subnetwork, l, to the signal
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Fig. 3. The upper plot shows magnitude data from the subnetwork
N (solid), a fourth-order approximation N̂ (dashed), and a sixth-order
approximation N̂ (dash-dotted) from Example 3. The lower plot shows the
weight P 2/(1+PK)2 (from criteria (C)) used in the approximation. There
is good agreement between the models for the relevant frequencies.

y that goes back into the subnetwork. If K has been chosen
to fulfill requirements from the subnetwork, we then should
choose N̂ so that the error

(I + PK)−1P − (I + PK + P∆)−1P

≈ (I + PK)−1P∆(I + PK)−1P

is small. This leads to Wo = Wi = (I + PK)−1P .
In all of the cases (A)–(C), it is seen that frequencies

for which (I + PK)−1P is large, it is essential that N̂ is
accurate.

Example 3: In this example, we assume that the subsys-
tem is given by P (s) = 1/(s + 1)4 and we choose K as a
PID-controller

K(s) = 2

(

1 +
1

2.5s
+

s

1 + 0.05s

)

.

A Bode diagram of the subnetwork N is shown in Fig. 3. It
is seen to be a highly resonant system with many poles and
zeros close to the imaginary axis. One could think of N as
a lightly damped power system, see Example 1. We choose
criteria (C), and use Wi = Wo = (1 + PK)−1P , which is
also shown in Fig. 3. Furthermore, we assume knowledge of
frequency samples on a grid {ωk} = {0.2, 0.21, . . . , 1.2}. To
obtain N̂ , we use the method in Section III with r = 4 and
r = 6. In Step 2 we use γ = 0.04, in both cases. The result is
shown in Fig. 3. Notice, that since this example is SISO, the
McMillan degree of N̂ is equal to r. A load step response
test is shown in Fig. 4, with and without the subnetwork
model N̂ in (13). As can be seen, adding just a low-order
model N̂ almost brings the behavior back to nominal, even
though N is very complex.

V. CONTROL STRUCTURE 2: IMC
When P1 6= P2, it is no longer a good idea to apply the

feedback (13), and a more general structure is needed. We
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Fig. 4. The load step response test in Example 3. In the upper plot, P is
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resonant subnetwork N introduces oscillations in the system. In the lower
plot, fourth- and sixth-order models N̂ (dashed and solid, respectively) are
added to the feedback (13), and are seen to almost bring the performance
back to nominal.

choose to use an internal model controller (IMC), see, for
example [21]. The IMC structure is seen in Fig. 5. To use
IMC we need to assume that G = (I + P2N)−1P1 ∈ H∞.
Under ideal conditions, when the internal model Ĝ is exact,
G = Ĝ, it is well know that the closed loop in Fig. 5 is
internally stable if and only if the controller parameter Q ∈
H∞, see [21]. But ideal models are not a realistic assumption
here, since the subnetwork N is of high order. If we have a
simplified subnetwork model N̂ , we can use

Ĝ = (I + P2N̂)−1P1, (14)

in the IMC. Generally it makes more sense to directly match
Ĝ to G, however. This will be the approach taken here. Next,
we discuss the criteria (A)–(C) from Section II.
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Robustness (A): To study robust in the presence of model
uncertainty, we again use the small gain theorem. We have
robust stability in the closed loop if

‖(G − Ĝ)Q‖∞ < 1.

It is clear that the necessary approximation accuracy de-
pends on the choice of controller parameter Q. A common
recommendation is to choose Q ≈ G−1, at least for low
frequencies. Hence, we suggest the approximation problem

minimize ‖(G − Ĝ)G−1‖∞. (15)

Because P1 and P2 are known by assumption, we can
compute G(jωk), k = 1 . . . K, and estimate Ĝ using the
method in Section III with Wo = I and Wi = G−1. If N̂
is of direct interest, it may be estimated using the Taylor
expansion

(G − Ĝ)G−1 ≈ (I + P2N)−1P2(N − N̂)

which is valid for small P2(N − N̂).
Performance (B): Here we would like to preserve the

response to reference signals. By comparing the nominal
(G = Ĝ) system to the perturbed system, we obtain the
transfer function

GQ − GQ(I + (G − Ĝ)Q)−1 ≈ GQ(G − Ĝ)Q.

Hence we have Wo = GQ and Wi = Q. Notice that if
the recommendation Q = G−1 is followed, we again obtain
(15).

Subnetwork view (C): Here we would like to preserve the
view from the subnetwork, i.e., the map l 7→ y. This gives
the transfer function

(I − GQ)P2 − (I − ĜQ)(I + (G − Ĝ)Q)−1P2

≈ −GQ(G − Ĝ)QP2,

and we get Wo = GQ and Wi = QP2.
Example 4: In this example, we consider a 2 × 2 MIMO

subsystem P , that is connected to a complex subnetwork.
The transfer function G = (I + P2N)−1P1 has McMillan
degree 208 and is shown in Fig. 6. We assume knowledge
of G(jω) on a 75-point frequency grid in the interval
[0.1, 3] rad/s. We choose to use criterion (A) and thus we
solve (15) using the method in Section III.

Step 1 of the approximation procedure turns out to be
numerically sensitive in the current implementation in the
MIMO case, and a good fit is not obtained in this example.
On the other hand, in the weighted SISO case, Step 1 works
much more reliably. Hence, to find the poles of Ĝ, we make
a relative fit to each entry of G separately:

minimize ‖(Gij − G̃ij)/Gij‖∞, i, j = 1, 2,

using r = 2 or r = 4 depending on the entry. This gives us
a set of 10 stable poles {pi}

10
i=1 to be used in Step 2.

In Step 2, we have a trade off between accuracy and order
of Ĝ. In Table I, this trade off is shown. We choose γ =
0.34, which gives a 13th-order approximation. Ĝ is plotted
together with G in Fig. 6, and there is seen to be a reasonable
fit over the interval [0.1, 3] rad/s.

For the control design, we choose Q ≈ Ĝ−1, up to about
1 rad/s. Since there are unstable zeros in Ĝ, the inverse
cannot be computed directly (Q must be stable). Therefore,
we again use Step 1 and Step 2 to obtain a stable approximate
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Fig. 6. The 208th-order model G (solid) and the 13th-order approximation
Ĝ (dashed) from Example 4. The relative approximation criteria (15) has
been used.

TABLE I
ACCURACY γ AND CORRESPONDING MCMILLAN DEGREE OF Ĝ.

γ Degree
0.24 17
0.29 17
0.34 13
0.39 10

inverse. In Fig. 7, the sensitivity functions for G connected
to the resulting IMC are shown. The closed loop is seen to
behave well, with a bandwidth of about 0.6 rad/s. Again, a
relatively low-order model of the interconnected system is
enough to control the subsystem.
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Fig. 7. Sensitivity functions from Example 4.

VI. CONCLUSION AND FUTURE WORK

We have formulated a framework for simplification of
subnetwork models using weighted model reduction. The
method was illustrated by two examples that showed that
a decentralized controller can do very well with only a
low-order model of the network, given it is accurate for
the important frequencies. The important frequencies are
characterized by the weights. We used a two-step method for
weighted model reduction of MIMO systems. Step 1 turned

out to be numerically sensitive in the MIMO case, but with
the slight modifications outlined in Example 4, the method
worked well.

Here we have assumed that the subnetwork is given and
that it already has working controllers. This assumption
is fine if we are connecting a new subsystem to a large
working system like the power grid. However, future work
should include development of schemes for the simultaneous
design of controllers in different parts of the network. The
method used here should then be a valuable tool. Also it
would be interesting to explore the possibilities of incorpo-
rating additional knowledge about the subnetwork, such as
topological information and node dynamics. Regarding the
proposed model reduction method, one can consider other
parameterizations of the MIMO transfer function Ñ .
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