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Abstract—Following the first part [16] of stabilizing a
Linear Time Invariant (LTI) system in a packet-based net-
work, this paper further studies various rate issues associated
with networked control systems. Specifically, networks with
finite bandwidth and packet drops and systems with finite
control inputs are studied in details. Similar to what we
did in [16], we assume that the LTI system is unstable but
both controllable and observable. The state information is
transmitted to the controller over a packet-based network. We
also assume that there is a perfect link from the controller
to the plant. However, we change the notion of the system
being asymptotically stable to almost sure stable which is in a
probabilistic framework. This is because packet drops by the
network introduce unavoidable randomness. With the notion
of almost sure stability, various rate results under different
settings are given. Examples and simulations are provided to
demonstrate the results.

I. INTRODUCTION

Networked control systems have attracted considerable
amount of interest to both control community and network
and communication community in the past decade. As
shown in the introduction of our first paper [16], the rich
results from both the classical control theory and classical
information theory are not enough to deal with the emerg-
ing applications exploring networked control structure. For
details of classical information theory, readers are referred
to [14], [4], [6] and for details of classical control theory,
readers are referred to [10], [17], [3].
Networked control systems have lots of advantages when

compared with classical feedback control systems. For
example, they can reduce the system wiring, make the
system easy to operate and maintain and later diagnose in
case of malfunctioning, and increase system agility [21].
In spite of the great advantages that the networked control
architecture brings, inserting a network in between the plant
and the controller introduces many problems as well. Ran-
domness that is inherent with the network breaks the many
assumptions made by the control community. For instance,
zero-delayed sensing and actuation, perfect information and
synchronization are no longer guaranteed in the new system
architecture. Those must be revisited and analyzed before
any practical networked control systems are built. Several
important issues that are pertained to networked control
systems have been identified in [21]. Those mainly include
that the transmission time is time varying and has different
statistics depending on the underlying network models;
network induced delays are unavoidable because of the
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scheduling schemes; packet drops sometime occur because
of network congestions; unlimited data rate is not possible
because of finite bandwidth available.
In the past decade, many researchers have spent effort

to those issues and a number of significant results were
obtained and many are in progress. Many of the aforemen-
tioned issues are studied separately assuming other issues do
not exist. Estimating the state and stabilization of the closed
loop system over a digital communication channel which
has a finite bandwidth was firstly introduced by Wong and
Brockett [19], [20] and further pursued by [12], [7], [18],
[8]. Following their spirit, Mitter in [11] described the need
for a unified approach to control, communication, and com-
putation. His former PhD students, Tatikonda [18] and Sahai
[13] have presented some interesting resutls in the area
of control under communication constraints. Specifically,
Tatikonda in his PhD thesis gave a necessary and sufficient
condition on the channel data rate such that a noiseless
LTI system in the closed loop is asymptotically stable. He
also gave rate results for stabilizing a noisy LTI system
over the digital channel. Sahai in his thesis proposed the
notion of anytime capacity to deal with real time estimation
and control for a networked control system. The issue of
determining the minimum bit-rate to achieve stability has
also been studied by Nair [7] where he also considered
a discrete communication channel in the feedback control
loop.
As an extension of these works, we take initial steps

towards developing a packet-based control theory. In our
first paper [16], we concentrated on the stability problem of
an unstable but both controllable and observable LTI system
over a packet-based network. We assumed that between the
observer and the controller, there was a encoder-decoder
pair and a packet-based network which had a finite fixed
data rate R bits/s (we change the rate symbol in this paper
from [16] which should be clear from context). We also
assumed that there was a perfect link from the controller to
the plant (see Figure 1 for a system block diagram). We then
gave a set of sufficient conditions under which the system
can be stabilized for a given data rate R. In particular,
these conditions yielded an upper bound on the minimum
R for which the system can be stabilized. A recursive
encoding-decoding scheme and an associated control law
were proposed to achieve asymptotical stability for data rate
exceeding this bound. An optimal bit allocation problem
was investigated in which we asked about how to allocate
the bits in a single packet for a subsystem such that the
minimum upper bound on the data rate can be achieved.
We finally formulated the optimal bit allocation problem
as a Linear Matrix Inequality (LMI) optimization problem
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which can be solved efficiently using standard Semi-definite
Programming (SDP) solvers.
In this paper, we consider the same rate issue but under

different settings. Firstly, in our first paper, we assume
there is no packet drops in the network. Here we do not
assume this and we give corresponding rate result with
a packet-dropping network. Secondly, systems with finite
control inputs are considered. Then we combine the analysis
together to link the rate issues, packet drops and finite
control inputs into a single framework. We also changed the
definition of stability from asymptotically stable in the sense
of Lyapunov to almost sure stable. The definition of stability
in the sense of Lyapunov can be found in [17] which is
generally used for deterministic dynamical systems. The
definition of stability in a probabilistic setting is not new. It
is usually considered when there is inherent randomness in
the system, for example, in the jump linear systems [5] or in
stochastic hybrid systems [1]. In [5], the authors have given
the most frequently seen definitions of stochastic stability.
We use almost sure stability in our problem formulation
which is rigorously defined in section III.
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Fig. 1. Networked Control System Diagram

The paper is organized as follows. In section 2, we
present the mathematical model of the closed loop system
and state our assumptions. In section 3, we state the
rate results under various circumstances. In particular, we
consider the rate issues when packet drops from the network
occur and only finite control inputs are available to the plant.
Simulations are given in the end of this section. Following
the main results on rate issues, conclusions and future work
are given in the last section.

II. SYSTEM MODELING AND PROBLEM SETTING

The plant in Figure 1 that we are interested in has the
following dynamics

xk+1 = Axk + Buk, (1)

yk = Cxk. (2)

In the above equations, xk ∈ IRn is the state of the
system, uk ∈ IRm is the control input and yk ∈ IRp is the
output of the system. We also assume the initial condition
xk ∈ IRn is bounded. The matrix A is assumed to be
unstable to make the problem interesting, i.e., A has at
least one eigenvalue λ such that Re(λ) > 0. We ignore
the cases where λ = 0 can also cause the system to be
unstable. Furthermore, we assume that the pair (A, B) is
controllable and (C, A) is observable to make the problem
tractable (see [3] for definitions of controllability and
observability of LTI systems). The network in Figure 1 has
finite data rate R, i.e., the network can deliver R bits of
information per discrete time step.

III. RATE RESULTS FOR CLOSED LOOP STABILITY

In this section, we first give the definition of almost sure
stability. After a brief review on the known results when
there are no packet drops and arbitrary control input is
allowed, we state the main rate results with packet drops
and finite controls.
Definition 1: System (1) is called almost sure stable if

P{ lim
k→∞

||xk(x0, ω)|| = 0} = 1,

where ω is the underlying randomness for the closed loop
system.
Asymptotical stability in the sense of Lyapunov requires

that for any ε > 0, there exists a time T , such that for all
k ≥ T , |xk| ≤ ε. For almost sure stability, however, it is
allowed that xk > ε for any k > 0 and for any ε > 0.

A. Arbitrary Control without Packet Drops

In Tatikonda’s thesis work [18], various rate results
were given for noiseless or noisy LTI systems over digital
communication channels. We briefly state his main result
that our results are based on in the theorem below.
Theorem 2: (Tatikonda [18]) Consider the discrete time

system (1) in Figure 1 where the network is a digital
communication channel with data rate R. Then a sufficient
and necessary condition for the overall closed loop system
to be asymptotically stable is that the minimum data rate
of the digital channel R satisfies

R > Rmin =
∑

i

log λi(A),

where λi(A) are the unstable eigenvalues of A and log has
base 2.
Proof: See [18] for details.

QED

In his theorem, as Tatikonda was considering a digital
channel in between the plant and the controller, there was
no room for him to consider the delay or packet drop issues
that are induced by a packet-based network. Our first paper
[16] extended his result to a packet-based network which
had various delay sources. Those include the transmission



delay because of the finite data rate, other maximum delay
D, which could be the propagational delay, the queuing
delay and so on. One of the theorems in [16] was provided
below which used the equal bit allocation scheme.
Lemma 3: (Shi and Murray [16]) Consider the continu-

ous version of system (1) in Figure 1 where the network is
packet-based which has data rate R bits per second. Then
a sufficient condition for the overall closed loop system to
be asymptotically stable is that the minimum data rate R
of the network satisfies

R > Rmin =
l log(|eA|)

l
n − 1 − D log(|eA|) ,

where l is a single packet length, D is the other delays
introduced by the network, |eA| is the induced matrix norm
of the matrix exponential eA and log has base 2.
Proof: See [16] for details.

QED

In [16], we did not touch the issue of packet drops which
are inherent with a packet-based network due to the network
congestions. Furthermore, similar to what Tatikonda did, we
assumed that arbitrary control inputs were available. The
last assumption is in general not true as typical physical
systems have limited power constraints and hence only finite
control inputs are allowed. In the rest of the paper, we give
new rate results which properly take the new issues into
account.

B. Arbitrary Control with Packet Drops

In this section, we consider the problem of packet drops
that are introduced by the network. The corresponding rate
condition to guarantee almost sure stability is summarized
in the following lemma. We consider the almost sure stabil-
ity here because packet drops occur randomly which causes
the classical notion of asymptotical stability not adequate.
Lemma 4: Assume packet arrivals are independently and

identically distributed (i.i.d) with arrival rate γ, i.e., a packet
is received with probability γ. Consider the system (1) in the
networked control setting (Figure 1). Then a necessary and
sufficient condition on the network data rate R to guarantee
almost sure stabibility for the closed loop system is that

R > Rmin =
∑

i log λi(A)
γ

,

where λi(A)’s are the unstable eigenvalues of A and log
has base 2..
Proof: We give two proofs for the scalar case. One is

from an information-theoretic point of view and the other
one is a constructive approach where specific encoder and
decoder are given. It is easy to prove the general case using
an information-theoretic argument similar to the scalar case.
The first proof runs as follows. Let N to be the total

number of time steps that the system has run, within which,

let n be the number of times that packets are received. Then
for any given ε > 0, from the weak law of large numbers,

P{ lim
N→∞

| n

N
− γ| < ε} = 1,

or in other words, n = Nγ is true with arbitrarily high
probability. As a consequence, NγR bits of information
are received with arbitrarily high probability. During the
N steps, the information loss is N log a bits due to the
initial uncertainty expanded by the system dynamics. On
the other hand, the information gain is NγR bits. Therefore
the critical value of R follows the equation below

NγR = N log a,

which gives Rmin = log a
γ . This makes sure that the system

uncertainty is not growing almost surely. Any extra amount
of additional information, i.e., as long as R − Rmin > 0,
it can be used to reduce the system uncertainty and hence
make the state to converge to the origin. This completes
the sufficiency part. The necessary part easily follows from
Theorem 2, as Rmin = log a is necessary to make system
(1) asymptotically stable. To prove the general case, by
Theorem 2, the information loss is now N

∑
i log λi(A)

instead of N log a, hence the cirtical value of R follows
from

NγR = N log λi(A),

which gives

Rmin =
∑

i log λi(A)
γ

.

Now we give a specific encoder and decoder which is
similar to our preceding paper [16]. Let x0 ≤ 2M . At time
1, the encoder encodes the most R significant bits of x0 and
denote this R bits of information by x̄0. Hence we have

ε0 = x0 − x̄0 ≤ 2M−R.

If the decoder receives the packet, it can properly set the
control to kill the known part x̄0, and hence make

x1 ≤ aε0 = a2M−R.

Otherwise, it does nothing and leaves

x1 ≤ ax0 = a2M .

Following this control scheme, after N time steps, if n
packets are received,

xN ≤ aN2M−nR.

In order that xN is not growing, it is required at least that

aN = 2−nR,

or equivalently we write it as

R =
N log a

n
.

From law of large numbers, n
N = γ is true with arbitrary

high probability when N is sufficiently large. In other



words, R = log a
γ guarantees that the state will not grow

almost surely. Then similar to the first proof, any additional
amount of information will bring down the state to the
origin. Therefore, Rmin = log a

γ .

QED

Corollary 5: From Lemma 4, the arrival rate γ such that
the closed loop system in Figure 1 needs to have in order
to achieve almost sure stability satisfies

γ > γmin =
∑

i log λi(A)
R

,

provided that the network data rate is R. Or equivalently,
the maximum packet drop rate τ such that the closed loop
system can tolerate satisfies

τ < τmax = 1 −
∑

i log λi(A)
R

.

Remark 6: If γ = 1, Rmin is the same as in the Theorem
2 and the corresponding notion of almost sure stability
is changed to asymptotical stability as the randomness is
removed without packet drops. If γ tends to 0, Rmin tends
to ∞ which is as expected.
Remark 7: We assume here the packet arrivals are i.i.d

which is in fact not strictly necessary. As long as we have
a stable distribution of the arrival rate, the result still holds.
This is similar to what we did in paper [15], where the
packet arrivals form a markov process which has steady
state distribution.

C. Bounded Control without Packet Drops

To obtain all the above results, we assume the pair (A, B)
is controllable. We implicitly assume the fact that arbitrary
control inputs are allowed, i.e., uk could be unbounded.
However, in real world applications, due to the limited
power constraints, arbitrary control inputs are not possible.
There are always constraints on the maximum size of the
control inputs. Inspired by this fact, we study the rate issues
with finite controls. The first lemma deals with system (1)
alone with finite controls. The second lemma deals with
finite control together with finite rate for the network. In
both lemmas, packet drops are not considered. All the three
factors are considered together in the next subsection.
Lemma 8: Consider the system (1) alone. Assume |uk| ≤

Ū for all k and |x0| ≤ M . Then the system is asymptotically
stabilizable if the following holds

M < Mmax =
|B|

|A| − 1
Ū ,

where |A| and |B| are the induced matrix norm on A and
B. Furthermore, this is also a necessary condition for scalar
systems.
Proof: Let’s consider a scalar system

xk+1 = axk + buk,

where |uk| ≤ Ū and a > 1. Without loss of generality,
assume x0 = M and b > 0. Clearly if aM ≤ bŪ , or

M ≤ bŪ

a
,

the system can always be stabilized as we can just set u0 =
−a

b x0. Otherwise, if aM > bŪ , we set u0 = −Ū , hence
x1 = aM − bŪ . Then if a(aM − bŪ) ≤ bŪ , or

M ≤ bŪ

a
(1 +

1
a
),

the system can also be stabilized as we can set u1 = −a
b x1.

Continuing this way, it is not hard to show that

Mmax =
bŪ

a − 1
.

Now consider a general LTI system

xk+1 = Axk + Buk,

where the pair (A, B) is controllable and |uk| ≤ Ū . We can
proceed as follows.

|xk+1| = |Axk + Buk|
≤ |Axk| + |Buk|
≤ |A||xk| + |B||uk|,

where |A| and |B| are the induced matrix norm of A and
B. Now treat the above system as a scalar system, from the
scalar analysis, a sufficient condition is then

Mmax =
|B|

|A| − 1
Ū .

Note that A is unstable leads to the fact that |A| > 1.

QED

Lemma 9: Consider the system (1) in the networked
setting as shown in Figure 1. Assume |uk| ≤ Ū for all
k, |x0| ≤ M and the network has data rate R. Then as long
as

M < Mmax =
|B|

|A| − 1
Ū

and
R > Rmin =

∑

i

log λi(A),

the system is asymptotically stabilizable. In other words, the
rate condition is independent of the bounds on the control
input.
Proof: For simplicity, we give the proof here for the scalar
system

xk+1 = axk + buk.

The proof can be easily extended to general LTI system.
We use the same encoding and decoding scheme as we did
in [16] as well as in the proof of Lemma 4. Assume x0 > 0
and b > 0 without loss of generality. Every time step, the
encoder encodes the most R significant bits of the state
information. Let x̄k denotes this R bits version of the state



xk. Whenever ax̄k ≤ bŪ , uk can be set to be −a
b x̄k. In this

case, the rate condition on R, i.e., R > log a, guarantees
that xk+1 < xk. Hence all the later known states can be
killed which leads to the asymptotical convergence of the
state. Otherwise, if ax̄k > bŪ , uk = −Ū . Compare this
with the control scheme in Lemma 8, we see that every
time step the maximum input needed is just Ū . That is
to say, we apply maximum all the time until at some time
k < ∞, after which we start to apply less control and cause
the state to converge asymptotically by the aforementioned
analysis. Lemma 8 assures that such k < ∞ exists.

QED

D. Bounded Control with Packet Drops

In this session, we put the three factors together, namely,
the finite rate and packet drops from the network and finite
control inputs from the plant. It turns out that we have a
negative result, i.e., the closed loop system is no longer
almost sure stable if all the three factors exist. The following
lemma precisely captures this .
Lemma 10: Consider the system (1) in the networked

setting as shown in Figure 1. Assume |uk| ≤ Ū for all
k and |x0| ≤ M . If the packet arrival rate γ < 1, then no
matter how large Ū and R are, the closed loop system is not
almost sure stable unless arbitrary control input is allowed.
Proof: Again, we prove here for the scalar system

xk+1 = axk + buk.

The proof can be easily extended to general cases. Assume
x0 > 0 without loss of generality. For any Ū < ∞, from
Lemma 8, M must be bounded as well in order to achieve
asymptotical stability, not mentioning almost sure stability.
Hence there exists an N < ∞ such that aNx0 > M as a >
1. As the probability of getting N consecutive packet drops
is (1 − γ)N > 0, i.e., there is a positive probability such
that the state can leave the stability region characterized by
M , the system is then not almost sure stable.

QED

This completes all the main theorems and lemmas in
this paper. In the following session, we provide some
simulations to demonstrate the theoretical results.

E. Simulations

The following simulation results are all for the scalar
system with dynamics

xk+1 = 2xk + uk.

The first two are examples for Lemma 4.
In Figure 2, the packet arrival rate γ = 0.7. According

to Lemma 4, Rmin = log a
γ = 1.4286. The actual network

data rate R = 2, which satisfies R > Rmin, hence the closed
loop system is almost sure stable which can been seen from
the plot.
In Figure 3, the packet arrival rate γ = 0.5. According to

Lemma 4, Rmin = log a
γ = 2. R is still 2, however this time,
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Fig. 2. Any Control with Rate Condition Satisfied
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Fig. 3. Any Control with Rate Condition Not Satisfied

R > Rmin is not satisfied, hence the closed loop system is
not almost sure stable. The plot shows the system does not
converge.
Figure 4 is for Lemma 8. M = 60 and Ū = 59.9999.

The condition that M < 1
a−1 Ū is not satisfied, hence the

system is not stable, which is exactly captured in the plot.
The final Figure 5 is for Lemma 10. The packet arrival

rate γ = 0.5. According to Lemma 4, Rmin = log a
γ =

2. The actual network data rate R = 10 which is much
greater than Rmin. With arbitrary control inputs, the closed
loop system would be almost sure stable from Lemma 4.
However, we set M = 50 and Ū = 100. Though M and
Ū satisfies the relationship in Lemma 8, the closed loop
system is not stable from this plot.

IV. CONCLUSIONS AND FUTURE WORK

In this second paper on towards a packet-based control
theory, we have considered rate issues that are inherent
with a networked control system. In particular, we extend
the results we obtained from the first paper [16] and from
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Fig. 4. Finite Control with Bound Condition Not Satisfied
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Fig. 5. Finite Control with Packet Drops

previous literatures, for example [18]. A number of rate
results under different settings are given when there are
packet drops, when the network has only finite data rate,
and when the control inputs are upper bounded due to
the physical power constraints. Simulations are provided to
assist our theories.
As the next steps towards a more complete packet-based

control theory, we would like to investigate the following
topics. The first one is to extend all the rate results to the
setting where plant dynamics involves process noises and
observation noises. Noiseless systems are easy to analyze
but are certainly not of practical considerations.
The second topic we would like to consider is to construct

a unified framework which incorporates different issues
together. Previous works on networked control systems deal
with single issue at a time. For example, Nilsson in his PhD
thesis [9] only considered delays induced by the network.
Sinopoli and et.al in their work [2] on networked estimation
only considered packet drops introduced by the network.
It would also be interesting to extend the idea in this

paper to performance issues. For example, what is the
network condition which primarily includes data rate R,
packet drop rate γ, induced delays D and so on, such that
the nominal system performance is almost surely guaranteed
while maintaining the almost sure stability. Those problems
are of immediate interest and will be pursued in later papers
centered around this topic.
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