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Abstract—In this paper, we study the classical problem
of stabilizing a Linear Time Invariant (LTI) system in a
packet-based network setting. We assume that the LTI system
is unstable but both controllable and observable. The state
information is transmitted to the controller over a packet-
based network. We also assume that there is a perfect link
from the controller to the plant. We give a set of sufficient
conditions under which the system can be stabilized for a
given data rate C. In particular, these conditions can yield an
upper bound on the minimum C for which the system can
be stabilized. A recursive encoding-decoding scheme and an
associated control law are proposed to achieve stability for
rate exceeding this bound. An optimal bit allocation problem
is investigated in which we ask about how to allocate the
bits in a single packet for a subsystem of a general LTI
system such that a minimum upper bound on the data rate is
achieved. We then formulate the optimal bit allocation problem
as a Linear Matrix Inequality (LMI) optimization problem
which can be solved efficiently using standard Semi-definite
Programming (SDP) solvers. Examples and simulations are
given to demonstrate the results.

I. INTRODUCTION

Classical information theory has become a hot area of
current cutting-edge research ever since Shannon published
his seminal paper [14] in 1948. At the same time, control
technology has become so important and popular that we
can see its applications everywhere in our daily lives, such
as military applications, aircraft control, chemical process
control, manufacturing control and so on. While classical
control problems have been widely studied by the control
community (see [6], [15], [2] for some typical applications),
until recently, little attention has been paid to the “infor-
mation” aspect of them. This is largely because classical
information theory has several fundamental assumptions
incompatible with control problems, such as in classical
information theory, proofs often assume infinite delays
which is inappropriate for the realtime setting where the
delayed information might in fact be useless. Classical
information theory also does not often admit a sense of
the “quality” or the “importance” of information.

Consequently, information theoretical issues are tradition-
ally decoupled from decision and control problems. An
implicit assumption made by the control communities is
that information processing and data processing are done
with zero time delay and infinite precision and as a re-
sult, infinite communication bandwidth is usually assumed.

Division of Engineering and Applied Science, California Insti-
tute of Technology, Pasadena, CA 91125, USA. corresponding
author: shiling@cds.caltech.edu.

Work supported in part by NSF ITR grant CCR-0326554.

However, as new applications keep emerging, the standard
assumptions may need to be revisited. As an example, in
the context of networked control, the sensed data is sent
to the controller through a data network which has finite
bandwidth or finite data rate and as a consequence, zero
time delay in the information processing is not guaranteed.
These new application domains can be clustered together
as control under finite communication constraints or control
with partial information.

Many researchers have already seen the limitations of
traditional information theory and progress towards a more
real-time and interactive version of information theory is
underway. In recent years there has been much attention
and interest in the problem of control under communication
or information constraints. Delchamps [3] investigated the
issue of stabilizing a discrete time linear system with
quantized state feedback. In his work, he proposed feedback
control strategies that can bring the closed loop trajectories
arbitrarily close to origin with arbitrarily long time. Schul-
man in [11], [12] proposed a coding theorem for interactive
computation that is analogous to Shannon’s work in one-
way communication. The problem of state estimation and
stabilization of a LIT system with a finite bandwidth digital
communication channel capacity was introduced by Wong
and Brockett [17], [18] and further pursued by [9], [4], [16],
[5]. Mitter in [8] described the need for a unified approach
to control, communication, and computation. His recently
Ph D students, Tatikonda [16] and Sahai [10] have also
presented some interesting resutls in the area of control
under communication constraints. The issue of determining
the minimum bit-rate to achieve stability has been studied
in [4], [16] but in a different setting than what we study
here. They consider a discrete communication channel in
the feedback control loop while we consider a packet-
based network in the feedback control loop. Nair and Evans
[4] also considered stability problem of noiseless discrete-
time linear systems with communication constraints but
setting the initial condition as a scalar random variable.
Xiao [7] et al considered the problem of jointly optimizing
the communication rate and linear systems with bit rate
constraints.

As an extension of these and other similar works, we
take initial steps towards developing a packet-based control
theory. In the current work, we concentrate on the stability
problem of an unstable but both controllable and observable
LTI system. We assume that between the observer and the
controller, there is a encoder-decoder pair and a packet-
based network which has a finite fixed data rate C bits/s (see
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Figure 1 for a system block diagram). A simple example of
this kind would be to remotely control an inverted pendulum
through the Internet. If C = 0, then the system is in the
open loop, hence by our assumption, it is unstable. On the
other extreme, if C = ∞ and assume that there are no
other delays caused by the network, such as propagational
delay or queueing delay, we return to the case of classical
control problem and it is stabilizable by assumptions. The
natural question to ask here is that what is the minimum
C (Cinf ) required to stabilize the unstable system? Given
such a C > Cinf , what is the corresponding control law
that stabilizes the system ?

x’
Controller

u x y
Observer       Plant Encoder

Decoder

y’

Packet Network

Fig. 1. System Block Diagram

The paper is organized as follows. In section 2, we
present the mathematical model of the closed loop system
and state our assumptions. In section 3, we consider the
special case of a linear scalar system and give a set of
sufficient conditions on the Cinf described above. We then
consider the general LTI system in section 4. We propose
some particular control laws that lead to upper bounds
on Cinf . In particular, we formulate the optimal control
algorithm as an LMI optimization problem. We conclude
the current work and propose some future work directions
in section 5.

II. MODELLING AND PROBLEM SETTING

For simplicity, the systems that we are interested are
assumed to be controllable and observable but are nom-
inally unstable (see [2] for definitions of controllability
and observability of LTI systems). The system dynamics
is represented by

ẋ(t) = Ax(t) + Bu(t), (1)

y(t) = Hx(t). (2)

where x ∈ IRn is the state of the system, and u ∈ IRm

is the control input. The initial condition x(0) ∈ IRn is
assumed to be bounded. The matrix A is assumed to be
unstable, that is, A has at least one eigenvalue λ such that
Real(λ) > 0. We ignore the cases where λ = 0 can also
cause the system to be unstable. We also assume that the
pair (A,B) is controllable and (A, H) is observable.
We assume that the packet network has a finite data rate C

bits/s and for now we ignore other possible effects of the
network such as packet loss or reordering. For simplicity, we
assume that each packet that the encoder transmits is l bits
long. Thus the transmission delay is δ = l/C. Assume the
total delay induced by the network besides the transmission
delay is D at every time step.

We first discuss the case of a linear scalar systems and
then consider the general LTI systems. In each case, a
set of sufficient conditions is given on Cinf such that if
C > Cinf , there is a encoding-decoding scheme and an
associated control law such that the system (1) can be made
exponentially stable through the packet-based network.

III. LINEAR SCALAR SYSTEMS

In this section we consider a simple linear scalar system

ẋ(t) = ax(t) + u(t), x, u ∈ IR, a > 0, (3)

y(t) = x(t). (4)

Since a > 0, the system is unstable but controllable and
observable. Following the notation in section 2, let δ + D
be the sampling time for the continuous process (i.e., the
controller is updating whenever it receives a packet hence
the system is equivalent to a sampled system with zero order
hold), thus the system is represented in discrete time form
as

x(k + 1) = τx(k) + u(k), (5)

y(k) = x(k), (6)

where τk = ea(δ+D). Without loss of generality, assume
that x(0) > 0 and

x(0) =
M∑

i=−∞
αi2i (7)

be the binary expansion of x(0), where αi = 0 or 1. Clearly
x(0) < 2M+1. We assume that the controller knows the
system parameter a, then we have the following result.
Lemma 1: If a is known to the controller, then a suffi-

cient condition for the overall system to be exponentially
stabilizable is that

C > Cinf =
al log e

l − 1 − aD log e
,

where C is the network data rate, l is the packet length, D
is the total delay induced by the network and log is assumed
to the base 2.
Proof: Using the notation in equation (7), let the first

packet contain l bits consisting of αM−l+1 through αM .
Let

x̄(0) =
M∑

i=M−l+1

αi2i

be the first l bits truncated version of x(0), and let ε(0) =
x(0) − x̄(0) be the remainder. Then one can easily obtain

ε(0) =
M−l∑

i=−∞
αi2i < 2M−l+1. (8)



After the first round of communication,

x(1) = ea(δ+D)(x̄(0) + ε(0)) + u(0).

As the controller knows x̄(0) and a, u(0) can be set as
−ea(δ+D)x̄(0), hence, by equation (8), we obtain

x(1) = ea(δ+D)ε(0) < ea(δ+D)2M−l+1.

Let ea(δ+D)2M−l+1 < 2M , or ea(δ+D) < 2l−1, which can
be rewritten as

C >
al log e

l − 1 − aD log e
. (9)

Now, repeat the same process, by making x(1) the new
initial condition. Note that this time, x(1) < 2M , i.e., the
upper bound of x(1) is half the size of the upper bound of
x(0).

After the second round of communication,

x(2) = ea(δ+D)(x̄(1) + ε(1)) + u(1),

where ε(1) < 2M−l. By setting u(1) = −ea(δ+D)(x̄(1))
and if inequality (9) is satisfied, we have x(2) < 2M−1,
and continuing this way, we get x(k) < 2M+1−k, hence
the closed loop system is exponentially stabilizable.

QED

IV. GENERAL LTI SYSTEM

In this section we consider the same problem for a general
LTI system described in equation (1), i.e.,

ẋ(t) = Ax(t) + Bu(t),
y(t) = Hx(t).

For simplicity, we assume that from now on, the controller
knows A. Also assume H = I , so y(t) = x(t). Again let
δ+D be the sampling time for the continuous process, then
the system in discrete time looks like:

x(k + 1) = τx(k) + Bu(k), (10)

y(k) = x(k), (11)

where τ = eA(δ+D).
We first give a general result on the network data rate

C, packet length l and the system parameter A such that
the closed loop system is exponentially stable. The equal
bit allocation scheme (see the proof of lemma 2 for an
explanation) is used to derive the result. We then discuss
different types of bit allocation schemes which provide
lower Cinf .

A. Equal Bit Allocation

We allocate the packet in such a way that l/n bits are
used for the ith component of y(k) ∀ k.
Lemma 2: With the assumptions above, a sufficient con-

dition for the closed loop to be exponentially stabilizable is
that:

C >
l log(||eA||)

l
n − 1 − D log(||eA||)

where C, l, D, the log function are the same as in Lemma
1, and ||eA|| is the induced L2 norm or the largest singular
value of the matrix exponential eA.
Proof: The proof is similar as in Lemma 1.

Remark 3: The result above includes the linear scalar
case, i.e., when n = 1, we have the same result, as in
this case ||eA|| = ea.

In the above control scheme, we equally divide the packet
length into n parts. Is this the optimal scheme to do? Are
there any other bit allocation schemes so that we can get
a lower value of Cinf? We explore this problem in the
next two subsections. Assume from now on that A = diag
{λ1, · · · , λn}, where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. This is
the easiest A to begin with and we will consider general
A in the future work. Further assume that xi(0) > 0 ∀ i
and B = I , x and u are of the same dimension, i.e.,
the controller needs to control n independent subsystems
together. Then the lemma 2 shows that

Cinf =
lλ1 log e

l
n − 1 − Dλ1 log e

,

as in this case ||eA|| = eλ1 .
We study another bit allocation scheme in the second

subsection and the optimal bit allocation scheme in the last
subsection.

B. Proportional Bit Allocation

A naturally proposed different bit allocation scheme is
that λi

λ l bits are used for the ith subsystem, where λ =∑n
i=1 λi. So the bit allocation is proportional to the size of

the eigenvalues. Proceeding the same proof as in the above,
the sufficient conditions need to hold here are (see equation
(??))

eλi(δ+D) < 2
λi
λ l−1 ∀ i,

which turn out to be

C > max
i

lλλi log e

λil − λ − λλiD log e
.

Note that in this case,

Cinf = max
i

lλλi log e

λil − λ − λλiD log e

= max
i

lλ log e

l − λD log e − λ
λi

=
lλ log e

l − λD log e − λ
λn

.

Hence if the following condition

lλ1 log e
l
n − 1 − λ1D log e

>
lλ log e

l − λD log e − λ
λn

,

is satisfied, which can be equivalently written as

l >
( λ1

λn
− 1)λ

λ1 − λ
n

, (12)



then the proportional allocation scheme can give a lower
value of Cinf that the equal allocation scheme produces
(see example 4 for a comparison).

In the proportional bit allocation scheme,

Cinf =
lλ log e

l − λD log e − λ
λn

,

i.e., the smallest eigenvalue determines the largest C
needed? which is counter-intuitive. Ideally we wish that the
largest eigenvalue determine the largest C. Then a natural
question to ask is that is the proportional bit allocation
scheme the optimal scheme ? If not, how can we find the
optimal one? We consider these problems in the following
subsection.

C. Optimal Bit Allocation

In this subsection, we consider the optimal bit allocation
scheme . We start with variable portions of the bits need
to be allocated to each individual subsystems, and then
perform an optimization on those variables. Suppose that
we use βil bits for the ith subsystem, where

∑n
i=1 βi =

1, βi > 0. Similar to proportional allocation scheme, we
have

eλi(δ+D) < 2βil−1 ∀ i,

which turns out to be

Cinf = max
λi

{ λil log e

βil − 1 − λiD log e
}.

Denote β = [β1 · · ·βn], we form an optimization problem
as follows:

min
β

Cinf

subjected to
n∑

i=1

βi = 1, βi > 0 ∀ i,

βil > 1 + λiD log e ∀ i.

where
λ1 ≥ λ2 ≥ · · · ≥ λn > 0

are given.

By introducing a dummy variable t, we write the above
problem as follows.

min
β

t

subjected to

λil log e

βil − 1 − λiD log e
≤ t ∀ i.

n∑
i=1

βi = 1, βi > 0 ∀ i.

βil > 1 + λiD log e ∀ i.

Equivalently, it can be written as:

min
β

t

subjected to[
t

√
λi log e√

λi log e βi − 1
l − λiD log e

l

]
≥ 0 ∀ i.

n∑
i=1

βi = 1, βi > 0 ∀ i.

βil > 1 + λiD log e ∀ i.

This is a standard LMI with variables t and β (see
[1] for an introduction to convex optimization and LMI
problems) which can be solved efficiently using standard
SDP solvers. For example, using the SDP solver SeDuMi
[13] and the Matlab interface Yalmip [19], the above
problem can be solved very efficiently.
We now consider an example to illustrate the differences
between the three bit allocation schemes we have discussed
so far.

Example 4: Consider a simple LTI system with dimen-
sion 10 and λi = 3i for i = 1, 2, · · · , 10. Figure 2 and
Figure 3 show the minimum channel data rate as a function
of the channel maximum delay for different allocation
schemes. In Figure 2, l = 200 and inequality (12) is
satisfied, hence the proportional scheme is better than the
equal scheme. In Figure 3, l = 100 and inequality (12) is not
satisfied, therefore the equal scheme turns out to be better
than the proportional scheme. Figure 4 shows the different
β values corresponding to the three different bit allocation
schemes where we set D = 0 and l = 200. In any cases,
the optimal scheme is always the best. Figure 5 gives a plot
of the minimum data rate produced by the three schemes as
a function of the packet length, where we assume D = 0.
It is clear from the result that if l is small, the proportional
scheme is the worst of all. However, as l gets big enough,
the proportional scheme in fact converges to the optimal
scheme. The intersection point of the proportional scheme
and the equal scheme is determined by inequality (12) and
in this case, the value is l = 110. We give detailed analysis
in below.

Remark 5: The optimal scheme tries to give more weight
to the most unstable eigenvalue and less weight to the least
unstable eigenvalue which intuitively makes sense. Also
notice that if λ′

is are all equal, the three bit allocation
schemes then give the same result and βi = 1/n in this
case.

If l � n is true, then simulation result (Figure 6) shows
that

Cinf equal

Cinf optimal
≈ nλ1∑n

i=1 λi
.

In the case l � n, we obtain

Cinf equal ≈ nλ1 log e,
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hence

Cinf optimal ≈
n∑

i=1

λi log e.

We can even show this result analytically for some special
cases. For example, by assuming D = 0, and letting l go
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to ∞, we obtain the following optimization problem

min
β

t

subjected to
n∑

i=1

βi = 1, βi > 0 ∀ i.

t ≥ λi log e

βi
∀ i.

For this problem, we can actually derive a closed form
solution for t which is

t =
n∑

i=1

λi log e.

In this case, the optimal bit allocation scheme turns out to
coincide with the proportional bit allocation scheme which
also explains the result from Figure 5. Notice that by the
proportional scheme, i.e., by letting

βi =
λi∑n

k=1 λk
,



we have
λi log e

βi
=

n∑
k=1

λk log e ∀ i.

Hence

t ≥
n∑

k=1

λk log e.

We argue that for any other β, there exists at least one i
such that the following is true

λi log e

βi
≥

n∑
k=1

λk log e.

Otherwise, assume that

λi log e

βi
<

n∑
k=1

λk log e ∀ i.

Or equivalently,

λi log e < βi

n∑
k=1

λk log e ∀ i.

Add the n inequalities together, we obtain
n∑

i=1

λi <
n∑

k=1

λk

which is clearly a contradiction. Hence

tinf =
n∑

i=1

λi log e.

In the case where l < ∞ and D 
= 0, the proportional
scheme will then not return the optimal value, but we can
solve the corresponding LMI optimization problem.

V. CONCLUSIONS AND FUTURE WORK

As an initial step towards a complete theory of packet-
based control, we have considered the classical stability
issue of LTI system over a packet-based network. A set
of sufficient conditions are given on the minimum network
data rate (Cinf ) such that the overall closed loop system
is exponentially stable. An encoding-decoding pair and an
associated control law are proposed to make the system
stable once the network data rate C is greater than Cinf .

The lower bound we obtained on Cinf is quite conserva-
tive, therefore it does not mean that if C ≤ Cinf , the whole
system is not stabilizable. Cinf can be further pushed down
by other proper choices of control laws.

For this ground work of research, we have dealt with
noiseless LTI systems. In real implementation, we always
have to face all kinds of noises. Therefore a natural exten-
sion of this work will be to analyze the noise in the control
loop. For example, we can consider the case where the
observer can not obtain the perfect information of the state
information, i.e., y(t) = Hx(t) + w(t) where w(t) is an
independent sensor noise process. Intuitively, we might need
to change our definition of stability to be just within certain

neighborhood of the origin as we cannot drive the state back
to the origin precisely. If we adopt the new definition, there
is a hope that the same analysis can be generalized in this
case.

As we pointed out earlier in section 2 that for simplicity,
we have not considered the case where packet loss or
reorder cannot be ignored. We can extend this work by
incorporating those issues into account and ask similar
questions like as in the above. We can also ask the question
that what is the maximum packet loss rate that the closed
loop system can handle given C > Cinf?

In section 4, part B and C, we studied the cases where
A is diagonal and it will be interesting to study the general
case for arbitrary unstable A.

Those problems are of immediate interest and will be
pursued in the near future.
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