To appear, 2005 IFAC World Congress
http://www.cds.caltech.edu/~murray/papers/2005g_smO05-ifac.html

DISTRIBUTED SENSOR FUSION USING
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Abstract: This work is an extension to a companion paper describing consensus-
tracking for networked agents, and shows how those results can be applied to
obtain least-squares fused estimates based on spatially distributed measurements.
This mechanism is very robust to changes in the underlying network topology and
performance, making it an interesting candidate for sensor fusion on autonomous
mobile networks. We conclude with an example of a preliminary application
to distributed Kalman Filtering using the proposed technique, illustrating the
dependence of the performance on the structure of the underlying network.
Copyright (©2005 IFAC or Copym'ght© 2005 IFAC

Keywords: Agents, Decentralized control, Decentralized systems, Graph theoretic

models, Sensor Fusion

1. INTRODUCTION

Sensor networks are a prominent example of co-
operative automated and computing technology.
Their defining characteristic is the utilization of
connections among several low-cost devices in or-
der to obtain global performance vastly in excess
of the capabilities of any individual device. Thus,
they provide a natural venue for the development
of cooperative distributed algorithms. For a gen-
eral introduction to this area, see (Akyildiz et al.
2002).

This work presents a mnovel approach to dis-
tributed least-squares sensor fusion, and a prelim-
inary application to distributed Kalman Filtering.
While many results exist broadly within this area,
the word distributed is somewhat overused, and
for the purposes of this paper, it will mean the
following:

e The algorithm cannot rely on any particular
communication topology, and must be robust
to changes in the topology.

e The algorithm must provide every member of
the network with the optimal estimate, not

merely one distinguished coordinator or base
station.

e The algorithm must only utilize peer-to-peer
interactions, and should not involve global
dissemination or “flooding” of local measure-
ments or estimates.

The last two points on this list are significant, as
most work in sensor fusion relies on the availabil-
ity of a fast network for global sharing of local
variables. While such an assumption is justified
in some cases, it is certainly not justified for sit-
uations involving large numbers of sensors, high-
dimensional measurements, and an unpredictable
low-bandwidth ad-hoc network.

The proposed approach is unusual, in that the
fusion process is dynamical. The estimates of in-
dividual members of the network evolve accord-
ing to a linear dynamical system, the Laplacian
consensus dynamics, which represents a discrete
version of a diffusion process. This mechanism
is extremely robust to the various uncertainties
arising in mobile sensor networks, including time-
varying link availability, splitting and merging



of sub-networks, and unpredictable asynchronous
operation. This dynamical approach also allows
one to clearly understand the role of network per-
formance in the performance of the sensor fusion
algorithm.

The sensor-fusion algorithm presented hinges on
the ability to dynamically provide the following
two pieces of information to each member of the
network:

(1) The least-squares estimate of a vector, based
on the measurements of all the agents.

(2) The covariance of this fused least-squares
estimate.

Assuming that the measurement errors are inde-
pendent, and that all members of the network
have access to the process model to be used in
the Kalman filter, this information is sufficient
for each agent to reconstruct the optimal Kalman
filter estimate.

In order to provide the above information, two
multi-variable modifications of the Laplacian dy-
namics will be examined, which will allow tracking
of arbitrary multi-linear combinations of individ-
ual measurement signals, i.e. quantities of the
form:

zZ= Z M;(t)z;(t)

Zl(t) cR™
Mi(t) € R™ ™,

One approach will be based on a “naive” LTI
implementation, while the other will be an LPV
approach. The latter, though more difficult to
analyze, results in significant communication sav-
ings.

2. BACKGROUND

This work is primarily based on work arising in
distributed coordination problems, but our target
application is in sensor networks and decentralized
estimation. We refer the reader to the works of
(Estrin et al. 1999), (Ogren et al. 2004), (Heinzel-
man et al. 1999), and references therein for various
aspects of this problem. The reader is also directed
to related work in (Xiao et al. 2005).

Within the area of distributed coordination we
focus on consensus problems, i.e. situations in
which all members of some network are required
to achieve some common output value using only
local interactions and without access to a global
coordinator. There is a large literature on gen-
eral consensus problems in the Computer Science
community, e.g. (Lynch 1997). Recently, consen-
sus problems have also attracted interest in the

Control community; the works of (Jadbabaie et
al. 2002) and (Moreau 2003) are representative of
general coordination problems, and the work of
(Fax and Murray 2004) analyzes a specific coordi-
nation problem involving vehicle formations. Our
work closely mirrors the philosophy and analysis
techniques of the latter.

We are specifically interested in weighted-average
consensus, in which each member of the network
must converge to a specified weighted average of
the input values. The static scalar case was exam-
ined comprehensively in (Olfati-Saber and Murray
2004), and was accomplished using a distributed
dynamics utilizing the Laplacian matrix of the
communication network. The dynamics of each
agent takes the form

e 3 (g — ), (1)

w;
JEN;

where w; is a positive weight and N; is the neigh-
borhood of agent i, i.e. the set of agents with which
it can communicate. This is a stable linear dynam-
ical system and so converges exponentially (see
(Olfati-Saber 2005) for an extensive treatment
of convergence rate). It was shown that under a
fairly general model of switching topology, this
dynamics drives all agents’ states to the following
weighted average of the initial states:

z;i(t) — 2 wiri(0) foralli e V. (2)

Zi %

Note that the above weighted average has the
structure of a least-squares estimator for the mean
of a Gaussian random variable based on statis-
tically independent observations, assuming the
weights w; are interpreted as reciprocals of vari-
ances.

In this work we will also make use of a dynamic ex-
tension presented in a companion paper (Spanos
et al. 2005), whose simplest form is just

1 .

Wi
JEN;

It is shown in the companion paper that this
algorithm (and other similar designs) makes the
x; variables track the weighted average

> wizi(t)

S wn (3)

It was also shown that this mechanism can be
modified (preserving the distributed structure)
to handle two additional phenomena common on
mobile wireless networks: arbitrarily large non-
uniform time-delays, and splitting and merging



of sub-networks. All of the results in this paper
exploit the tracking result mentioned above.

Finally, we refer the reader to (Mehyar et al
2005), which discusses how to implement the
Laplacian consensus dynamics in a truly asyn-
chronous peer-to-peer environment. Specifically,
the results of this work show that exponential
convergence can be guaranteed even in the asyn-
chronous case, under a very general assumption
about the asynchronous timing.

3. NOTATION

Consider a set V of N interconnected agents, la-
beled by an index ¢ = 1,2,..., N. We model their
communication as a connected graph G = (V, E),
where an edge (i,7) is in E if and only if agents
i and j can communicate. We will only consider
bidirectional communication patterns, i.e. (i,5) €
E < (j,i) € E. The notation N; will denote
the neighborhood of node I, i.e. the set of nodes
to which ¢ is connected in the graph G. We will
assume that the number of nodes on the network,
N, is known to all agents; this can easily be accom-
plished using distributed methods (including the
methods from this paper), but we do not discuss
them in detail.

Each of the agents has a local measurement input
z;(t) € R™. The agents also each have an asso-
ciated positive-definite “weight” matrix, W;(t) €
R™*™ We wish the agents to track the quantity

-1
7= (Z Wi(t)> (Z Wi(t>zi(t)> (4)

If the z; terms are interpreted as independent
unbiased noisy observations of a physical variable
p(t) € R™ (each observation with multivariate
Gaussian distribution), and the W; terms are in-
terpreted as inverse covariance matrices, then this
quantity is just the instantaneous least-squares
estimate of p(t).

In order to accomplish the tracking, each agent
will maintain a local estimate variable x;, and
the dynamics of this variable will be linked to
the values of the x; within the neighborhood
N;. We will discuss two main approaches to this
problem, one which is two parallel LTI systems
(a useful approach for performance analysis), and
one which is a single LPV system (which requires
significantly less communication).

4. STATIC MULTI-VARIABLE CONSENSUS

First we address the static multi-variable weighted-
average problem, in which the weights W; are

constant in time. If the weights are diagonal, then
this is just m decoupled scalar dynamic consensus
problems, and the algorithm and proof found in
(Olfati-Saber and Murray 2004) apply. For non-
diagonal weights, i.e. situations in which consen-
sus in one dimension is coupled with consensus in
another dimension, we must make a small modi-
fication. The following two results are extremely
simple, but they form the basis for the remainder
of the analysis.

Proposition 1. Suppose the graph G is connected,
W; are positive definite elements of R™*™  and
consider the dynamics

=W Y (x5 —xi)
JEN;
XZ‘(O) =Z;.

Then, we have for all ¢ € V:

tlirgoxxt)—(ZWi) (ZW> Q

eV i€V

PROOF. [Sketch] It is straightforward to derive
the following conservation property:

(Z Wixi(t)> = (Z Wizi> for all t.

i€V i€V
Exploiting the connectedness of G, it can also be
shown that all equilibria of the dynamics satisfy

x;=x; foralli,jeV.

Finally, by using the positive-definiteness of the
weights W;, one can show that this dynamics is
stable, and so must converge to an equilibrium.
This, combined with the above two equations
implies the desired result.

O

This result can be applied to obtain a least-
squares estimate of a single set of spatially dis-
tributed measurements. In order to obtain the co-
variance of this least-squares estimate, we simply
need to carry out a consensus on the inverses of
the covariance matrices.

Corollary 2. Suppose the graph G is connected,
and consider the following dynamics, with states
V; € R™*™ and nonlinear outputs Y; € R™*™:

Vi= > (V;i=Vi)
JEN;
_ 1 -1
Yi=+Vi
Vi(0)=w; "



Then, we have for all i € V

lim Yi(t) = (Z Wﬂ) :

Thus the outputs Y; all converge to the harmonic
mean of the input matrices W;, divided by N.
Again, if we interpret the W; matrices as covari-
ance matrices, then this limiting value is just the
covariance of the least-squares estimate (see any
reference on Kalman filtering for details).

With the simple results of this section, we can
obtain the least-squares estimate based on a single
set of measurements, and also obtain the covari-
ance of this estimate in a distributed way. The fol-
lowing two sections show two methods to extend
this to the dynamic case, although the treatment
is necessarily cursory due to length limitations.

5. DYNAMICALLY WEIGHTED
MULTI-VARIABLE CONSENSUS: LTI

We now allow both the inputs z;(t) and the
weighting matrices W;(¢) to vary in time. Because
the “input” terms W;z; enter as a product, it is
difficult to cast this as a single LTI multi-variable
consensus problem. Instead, we will decompose
the problem into two sub-problems analyzable
using the methods from the companion paper:
average consensus on the weighted outputs, and
average consensus on the weighting matrices.

We will refer to the Laplace transforms of the
signals z;, denoted Z;(s), as well as of the weight-
ing matrices W;(t), denoted W;(s). We will also
append to each agent an additional matrix-valued
state, M; € R™*™,

Proposition 3. Suppose the graph G is connected,
and that the signals Z;(s) and W;(s) have all their
poles in the left-half plane, with at most one pole
at s = 0. Denote the steady-state values of these
signals z;(0c0) and W;(o0). Consider the following
dynamics (with nonlinear outputs y; € R™):

5(,' = Z (Xj — Xi) + WZZZ + V.V/L‘Zi7

JEN;
JEN;
Yi :Mi_lxi7

X; (0) = Wz (O)ZZ (0),
M;(0) = W;(0).

Then we have, for all i € V

-1

lim y;(t) = (Z Wi(00)> (Wi(o0)zi(o0)),

t—o0
eV

i.e. the outputs all track the weighted-average

consensus with zero steady-state error.

PROOF. [Sketch] The work in the companion
paper (Spanos et al. 2005), combined with Propo-
sition 1 (for the extension to the multi-variable
case) shows that, for all ¢, the x; and M, states
satisfy

. 1
tlirgc Xi = Z Wi(o0)zi(o0)
=%
1

This, combined with the output equation, implies
the desired result.

O

The “communication complexity” of this dynam-
ics is O(m?), in the sense that both the vectors
x; and the matrices M; must be shared across
links. Even if one exploits the symmetries of co-
variance matrices, the agents must still exchange
% (m2 + m) scalars across each link. If one also
wishes to obtain an estimate of the covariance
using the mechanism in the previous section, one
must share an additional i (m? —m) variables,

for a total of m?2.

6. DYNAMICALLY WEIGHTED
MULTI-VARIABLE CONSENSUS: LPV

We again consider the case of time-varying mea-
surement signals z;(t) and weighting matrices
W;(t), but will now present an LPV system that
does not require the appended matrix states M;,
or the nonlinear outputs y;. The price to be paid
is that the transient performance of the following
LPV system is difficult to analyze, and depends
on the properties of the evolution of the weighting
matrices W;(t). We present the following propo-
sition without proof, as it is a straightforward
application of ideas already discussed.

Proposition 4. Suppose the graph G is connected,
and that the signals Z;(s) and W, (s) have all their
poles in the left-half plane, with at most one pole
at s = 0. Denote the steady-state values of these
signals z;(00) and W;(oc0). Consider the following
dynamics:

Xi = Wﬁl (Xj — Xi) + ZZ + W;lwi (Zi — Xi)

(3



Then we have, for all i € V

-1
lim x;(t) = (Z Wi(oo)> (Wi(00)zi(00)) .

t—o0
eV

This LPV mechanism only requires that m vari-
ables be shared across each link, and so represents
a significant reduction in the amount of communi-
cation required to obtain asymptotic tracking. If
one also wishes to obtain the covariance, then the
methods from Section 4 must be applied, and so
the resulting design requires 1(m? +m) variables

2
to be exchanged across each link.

7. PRELIMINARY APPLICATION: A
DISTRIBUTED KALMAN FILTER

We now outline how to apply the least-squares
tracking algorithm to obtain a distributed Kalman
filter. We show only the synchronous discrete-time
LTT case for simplicity.

Suppose then, that a process p(t) € R™,t € N
evolves according to the discrete-time model

p(t+1) = Ap(t) + @

where @) is zero-mean Gaussian white noise of
known covariance Wg. The initial condition p(0)
is also assumed Gaussian with expectation p and
covariance W,

The agents each observe the process at every time-
step according to

zi(t) = p(t) + n(t)

where the n; are independent zero-mean Gaus-
sian random variables with covariance W;(t). The
agents will each maintain four variables to carry
out the estimation process: the vectors p;(¢) and
x;(t) in R™, and the matrices P;(t) and M;(t).
The two vectors will be the estimate states of the
Kalman filter and the consensus loop, respectively,
while the two matrices represent (approximations
to) the covariance of the Kalman filter estimate
and the covariance matrix of the globally fused
measurements.

The algorithm presented is parametrized by an
integer n > 0, which indicates how many consen-
sus updates are allowed per Kalman filter update.
Theis number represents some separation of time-
scales; the network should be faster than the phys-
ical dynamics if one expects to be able to use all
the information available in producing estimates.

The algorithm consists of two loops: an outer loop
for the Kalman filter, and an inner loop for the
consensus updating. Only the Kalman filter loop
is indexed, for notational clarity.

(1) Initialize p;(0) = p and P;(0) = W,

(2) Observe the measurements at ¢ = 0, and
initialize x;(0) = W;z;(0), M;(0) = W;(0),
and V;(0) = W; 1.

(3) Run n iterations of the weighted dynamic
consensus algorithm to obtain %;(0), W;(0).

(4) Use the output equations from Sections 4 and
5 to obtain y; and Y;.

(5) Treating the ¥; and Y; as observation and co-
variance, fuse with the prior estimate p;(0).

(6) Using the process model, propagate the least-
squares estimate and covariance forward in
time.

(7) Observe the new measurements z;(1) and the
error covariance W;(1), and apply the corre-
sponding inputs to the consensus dynamics.

(8) Repeat from Step 2.

Some comments are in order at this point. First,
for n = 0, this is just a local Kalman filter for each
agent, using only local measurements. Second, as
n — oo, the consensus loop drives the local x;
and M; variables to the global least-squares esti-
mate and covariance. For intermediate values of
n, the consensus estimate varies “smoothly” as
a function of n. Specifically, the convergence is
exponential in the product of n and the algebraic
connectivity of the network Ay (See (Olfati-Saber
and Murray 2004) for details). Thus, one can un-
derstand the performance of this approximation
algorithm both as a function of connection speed
(directly related to m), and connection density
(directly related to A2). This is presumably useful
in designing distributed feedback loops around the
distributed estimator, where a designer will want
some quantifiable measure of performance.

An example of this algorithm in action is depicted
in Figure 2, where nine agents attempt to track an
object moving a circular trajectory. The process
model is a discretization of & = w, and the covari-
ance of the measurements depends quadratically
on the distance between the sensor and the object.
The performance of this algorithm as a function
of the number of messages exchanged is shown in
Figure 3.

8. SUMMARY

We have shown how to utilize weighted-average
consensus as a tracking mechanism for distributed
least-squares estimation, and also as a tool for
distributed calculation of the associated covari-
ance. This performance is analyzable in terms of
the algebraic connectivity of the communication
network, and the speed of the consensus loop
(network dynamics) relative to the Kalman filter
loop (physical process dynamics). Our approach
also inherits various robustness properties of the
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Fig. 1. The structure of the distributed Kalman
filter; a dynamical algorithm is used to track
the optimal fusion of the spatially distributed
inputs, and this is then passed to local esti-
mators.

Laplacian consensus dynamics, including the abil-
ity to handle variable topologies, splitting and
merging, large delays, and asynchronous opera-
tion.
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