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Abstract— This work discusses feasibility aspects of mo-
tion planning for groups of agents connected by a range-
constrained wireless network. Specifically, we address the
difficulties encountered when trajectories are required to
preserve the connectedness of the network. The analysis
utilizes a quantity called the connectivity robustness of the
network, which can be calculated in a distributed fashion,
and thus is applicable to distributed motion planning problems
arising in control of vehicle networks. Further, these results
show that network constraints posed as connectivity robustness
constraints have minimal impact on reachability, provided that
an appropriate topology control algorithm is implemented.
This contrasts with more naı́ve approaches to connectivity
maintenance, which can significantly reduce the reachable set.

I. INTRODUCTION

Current interest in automated vehicle groups has raised
several research questions regarding the mobile networking
necessary to support this technology. Much recent work has
addressed aspects of control over unreliable communication
channels, as well as distributed mechanisms for motion
control, but there are many networking problems to be
resolved before mobile vehicle networks become a practical
reality. In this work, we present an approach to one issue
in this line of research: motion planning implications of a
range-constrained multi-hop wireless network.

The essence of a mobile wireless network is that it
provides connectivity among all the members of the vehicle
group. For truly autonomous applications, this will be
the primary (and perhaps only) communication mechanism
available to the vehicles, and so it is essential that care be
taken to prevent separation of this network into multiple
components. While many factors will affect the availability
of links between vehicles, and hence the connectedness
of the overall network, we focus in this article on purely
geometric aspects of the problem. That is, we ignore any
of the usual problems discussed in the mobile networking
research such as fading, cross-talk, and delay.

Connectedness of a wireless network poses a unique
problem to motion planning research, and is characterized
by three main difficulties. The first difficulty lies in the
fact that connectedness of a graph is an intrinsically com-

binatorial notion, and is difficult to embed into geometric
and analytical models typically used in motion control.
Second, connectedness is a global aspect of the network, but
distributed motion planning must rely on locally available
information. Finally, it is not clear how to drive a group
of vehicles from one connected configuration to another
without disconnecting the network in the process. Indeed,
it is not even clear that this is always possible, especially
in the presence of obstacles that must be avoided.

This work approaches connectivity-constrained motion
planning using a locally computable quantity called the
geometric connectivity robustness, which quantifies the free-
dom of individual vehicles to undergo arbitrary motions
without disconnecting the network. This function, though
non-smooth, is “friendly” enough to be used in optimization
models. This is particularly important given the availability
of new receding-horizon path-planning methods. Indeed,
this latter fact is the primary motivation for studying
feasibility of connectivity-preserving motions, rather than
explicit construction of such motions.

II. OUTLINE

The following two Sections discuss the background for
motion planning with network constraints, the mathematical
formulation of the problem, and some results from previous
work that will be utilized in the remainder of the paper.

Sections V and VI present the main results of this
work, and show that network constraints posed as con-
nectivity robustness constraints only minimally reduce the
reachable set. Section VII briefly addresses the problem of
connectivity-constrained motion planning in the presence of
obstacles, and gives a preliminary result in this direction.

Finally, Section VIII summarizes the main contributions
of the paper, and discusses avenues for future research and
applications.

III. BACKGROUND AND MOTIVATION

This paper touches on three main research areas: mobile
wireless networking, path planning, and distributed motion
control. The first two in particular are extremely large fields,

2005 American Control Conference
http://www.cds.caltech.edu/~murray/papers/2005e_sm05-acc.html



and for the purposes of this work we take only a very limited
view of either subject.

Recently, a significant research effort has turned to-
ward geometric and optimization-oriented ideas for mobile
wireless networks, and this has formed the basis for our
treatment of the subject. We refer the reader to the work of
Rodoplu and Meng [6], as well as that of Li and Halpern
[4] for some recent geometric efforts in wireless routing.
The works of Ramanathan and Rosales-Hain [5], as well as
Wattenhofer et al. [9] are also particularly relevant regarding
optimization-based models and distributed topology control
algorithms for wireless networks. We also refer the reader
to Spanos and Murray [8] for an introduction to the notion
of geometric connectivity robustness, and some preliminary
applications in distributed motion and topology control.

Within the area of path-planning, we are primarily inter-
ested in modern optimization-based receding-horizon meth-
ods, e.g. the work of Schouwenaars, How, and Feron [7].
These methods forgo analytical construction of controls (as
is common in, e.g., potential-based methods), and instead
rely on algorithmic search to produce optimal controls
subject to obstacle-avoidance constraints. This approach to
motion control, although computationally intensive, allows
for very general constraints. Thus, this is ideally suited for
the constraint-based connectivity maintenance discussed in
this work.

Finally, we briefly review a few approaches to distributed
motion control. The work of Leonard and Fiorelli [3] ap-
proaches the problem of formation control using a potential-
based virtual-leader architecture. For a graph-theoretic ap-
proach to formation control, we refer the reader to Fax
and Murray [2]. This work develops distributed (classical)
feedback controls for formation maintenance based on in-
formation available on a wireless network. For a distributed
receding-horizon approach, which is most relevant to our
constraint-based formalism, we direct the reader the recent
work of Dunbar and Murray [1].

To understand the motivation for this work, consider the
situations depicted in Figures 1 and 2. Here a network of ve-
hicles begins in a densely connected configuration, but must
undergo some maneuver either to reconfigure the formation,
or to negotiate some obstacle. Both of these situations
require that links be given up during the maneuver, due
to broadcast range constraints. However, allowing complete
freedom to give up links introduces the risk of disconnecting
the network during the transient motion. On the other hand,
requiring that all links be preserved greatly reduces the set
of reachable configurations. This work attempts to strike a
balance between these two undesirable extremes.

IV. SETUP AND NOTATION

We consider a set V of N vehicles, labeled i =
1, 2, . . . , N . These vehicles are modeled as point particles
in the plane, and each has an associated position vector
qi ∈ R2. We will make use of the Euclidean distances

Fig. 1. A maneuver in which a vehicle network surrounds an impenetrable
obstacle. The interconnections indicate wireless links between vehicles.
Note that due to range constraints the topology of the network in the final
state is very different from that of the initial state.

Fig. 2. A reconfiguration maneuver. Connectivity robustness provides a
mechanism to constrain the vehicles’ motion so that the network is not
disconnected during such a maneuver, while simultaneously ensuring that
all connected configurations are reachable from one another.

between the vehicles, denoted dij = ‖qi − qj‖. We will
use the symbol Q to denote the N -tuple (q1,q2, . . . ,qN ).

Our target application lies in control of vehicle groups,
which are second-order systems, but for the sake of sim-
plicity we will assume first-order dynamics of the form

q̇i = ui, ui ∈ R2.

This approximation amounts to a local controllability as-
sumption on a sufficiently large length-scale. This assump-
tion is reasonable given that the broadcast range for most
wireless networks is at least one order of magnitude larger
than the length of a vehicle. Further, many applications
involving robots instead of autonomous vehicles will truly
be kinematic.

Each of the vehicles has an associated (fixed) broadcast
range ri ∈ R, and can thus communicate with other
vehicles within a circle of radius ri centered at qi. We
will only consider bidirectional communication, and so a
communication link exists between vehicles i and j if and
only if they are each within the other’s communication



range. This induces a graph C = (V,EC), in which

(i, j) ∈ Ec ⇔ min{ri, rj} − dij ≥ 0.

The graph C will be called the communication network.
Note that C in fact depends on the qi variables, and so each
configuration of the vehicles in R2 induces an associated
communication network. We denote the set of vehicles to
which vehicle i is connected NC(i), the communication
neighborhood.

We will also make use of another undirected graph I =
(V,EI), which we call the information flow. This graph
represents an abstract design requirement for the network,
and indicates some minimum connectivity. It could, for
example, specify which vehicles must communicate in order
to implement some formation control algorithm as in, e.g.,
Fax and Murray [2].

The notation NI(i) is used to denote the set of vehicles
to which i is connected in the information flow, and we will
call this set the information neighborhood. For the moment,
we will assume that the graph I is given in advance by a
designer, but we will also discuss the case where I need
only be connected, and can be adapted on-line to better
facilitate motion of the network.

We say that a communication network C is I-connected
if and only if any two vehicles connected by an edge in
I are also connected by a path of at most two edges in
C. Thus, every connection in the information flow must
be implementable in the communication network with at
most two hops. This path-length limitation serves as a crude
proxy for a delay-time restriction, which is essential for
good control performance.1

In order to discuss the connectivity robustness of the
network, we must first quantify the robustness of two-hop
paths to arbitrary displacements of the vehicles. To do so we
will make use of the following quantity, the path robustness
of the path (i, k, j):

P (i, j, k) .= min {min{ri, rk} − dik,min{rj , rk} − djk} .

We now define the geometric connectivity robustness asso-
ciated with vehicle i, relative to the information flow I:

RI(i)
.= min

k∈NI(i)∪NC(i)

[
1
2

max
j∈NC(i)

P (i, j, k)
]

Note that this quantity depends on the configuration vari-
ables qi; when we wish to show this dependence we will
write RI(i;Q). Below, we recall some results from Spanos
and Murray [8] pertaining to the connectivity robustness
function and its relationship to I-connectedness.

Proposition 1: Let the information flow I be given, and
suppose RI(i) ≥ 0 for all i ∈ V . Then, the communication
network C is I-connected.

1The restriction to two hops is, in part, arbitrary and can be modified
without much consequence in the upcoming analysis. We restrict our
attention to the two-hop case because it makes the upcoming robustness
calculations truly distributed, in the sense that each vehicle needs only to
exchange information within its communication neighborhood.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
1
 = .35  r

2
 = .45  r

3
 = .55

d
12

 = .3  d
23

 = .4  d
13

 = .5

R
I
(1) = .025  R

I
(2) = .025  R

I
(3) = .025

1 2

3

Fig. 3. A simple network and the connectivity robustness quantities (the
information flow I requires all vehicles to connect to each other). Nodes 1
and 3 use 2 as an intermediary to implement a two-hop (1, 3) connection.

Corollary 1: If RI(i) ≥ 0 for all i ∈ V , and the graph
I is connected, then the communication network C is also
connected.

Proposition 2: Suppose RI(i) ≥ 0 for all i ∈ V , and I
is connected, and consider an arbitrary set of displacements
qi → qi + ∆i, with ‖∆i‖ < RI(i). Then, the communica-
tion network C, in the displaced configuration, is connected.

The set specified by a constraint of the form RI(i) ≥ 0 is
typically non-convex, but it is always a star-convex polygon,
and can easily be included in mixed-integer optimization
models such as those used in [7].

V. CONNECTED MOTION WITH FIXED INFORMATION

FLOW

We now address the problem of maintaining I-
connectedness of a network while undergoing some re-
configuration maneuver. Our main result in this section
shows that all I-connected configurations are reachable
from one another, using only trajectories that preserve I-
connectedness.

First, it is useful to note that just preventing the loss of
communication links is not an efficient way to approach this
problem. This can remove even very simple reconfigurations
from the reachable set. To see this, consider the two config-
urations depicted in Figure 4, which are both I-connected
for any information flow I . It is impossible to drive the
vehicles between these two configurations without losing
some of the links, and so any such requirement will unduly
constrain the motion of the vehicle group. We will now
show that a connectivity robustness constraint eliminates
this difficulty.

A motion γ between two configurations Q =
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Fig. 4. Both of these configurations are I-connected for any I , but
neither is reachable from the other without loss of a link. Adding
a connectivity robustness constraint disallows motions that violate the
connectivity requirement, and still allows transition between any two I-
connected configurations.

(q1,q2, . . . ,qN ) and Q̃ = (q̃1, q̃2, . . . , q̃N ) is a curve

γ : t ∈ [0, 1] → Q(t) ∈ R2N

γ(0) = Q

γ(1) = Q̃

which is continuous in each of the qi slots. One can
compose two motions γ1 and γ2 in the usual way, provided
that γ1(1) = γ2(0). The composite motion is given by

(γ1 ◦ γ2) (t) .=
{

γ1(2t) 0 ≤ t ≤ 1
2

γ2(2t − 1) 1
2 < t ≤ 1 .

We will also use the inverse of a motion, denoted γ−1, and
which is given by

γ−1(t) .= γ(1 − t).

A motion γ is said to be an I-connected motion if and
only if

RI(i, γ(t)) ≥ 0 for all t ∈ [0, 1].

With this definition, we can now state the main result of
this section.

Proposition 3: Let I be given, and let Q and Q̃ be any
two I-connected configurations. Then, there exists an I-
connected motion γ such that γ(0) = Q and γ(1) = Q̃.

Proof: Consider the “centroid” of the configuration
Q, i.e. qc = 1

N

∑
i∈V qi; we will use this point to exploit

the star-convexity of the set of I-connected configurations.
Recall that a star-convex set S has at least one “center”
point sc, and that any convex combination of sc and any
other point in S is also in S.

Now, consider the following two motions, one taking Q
to Qc = (qc,qc, . . . ,qc), and one taking Q̃ to Qc:

γ1(t) = ((1 − t)q1 + tqc, . . . , (1 − t)qN + tqc)
γ2(t) = ((1 − t)q̃1 + tqc, . . . , (1 − t)q̃N + tqc) .

Observe that both of these motions are non-expansive. That
is,

‖qi(t2) − qj(t2)‖ ≤ ‖qi(t1) − qj(t1)‖ for all t2 ≥ t1

holds for either γ1 or γ2. Now, the robustness function
RI(i, γ(t)) increases monotonically with decreasing dis-
tance, for each dij term. Since all the dij terms are non-
increasing, we have that the robustness is non-decreasing.
By hypothesis, the two configurations Q and Q̃ are I-
connected, and so we have

RI(i, γ1(t)) ≥ 0 for all t ∈ [0, 1],
RI(i, γ2(t)) ≥ 0 for all t ∈ [0, 1].

From Proposition 1, this implies that the network remains
I-connected throughout the course of these two motions.

To complete the proof, consider the composite motion
γc = γ1 ◦ γ−1

2 , which is a motion from Q to Q̃. From the
previous argument, this is an I-connected motion, and the
desired result follows.
The construction for γc used in this proof is useful for
theoretical purposes, but is practically very conservative
in that it requires all the vehicles to coalesce at a point
before expanding to the final configuration. However, this
motion is a very useful starting point for optimization
solvers, because it is analytically constructible and a priori
feasible. The centroid position can also be computed using
distributed methods (see e.g. [2]), and so this is also useful
for distributed applications. Further, although the set of all
I-connected motions between two configurations Q1 and
Q2 is not a vector space, it is a convex set under the usual
addition and scalar multiplication operations. Thus, having
an a priori distributed online construction of an element of
this set will be useful for receding-horizon path-planning
applications.

Figure 5 shows a simple demonstration of this result
with a piece-wise linear reconfiguration maneuver. Vehicle
2 stays close enough to 3 until vehicle 1 can act as an inter-
mediary to 4. Naı́ve linear interpolation between the initial
and final configuration fails to preserve I-connectedness in
the transient motion, because vehicle 2 loses access to 4
through the two-hop path (2, 3, 4) before the path (2, 1, 4)
becomes available.

VI. CONNECTED MOTION WITH VARIABLE

INFORMATION FLOW

The previous section discussed the feasibility of I-
connected motion where the graph I was given in advance
and was fixed throughout the course of the motion. This
is significantly more flexible than requiring all links to be
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Fig. 5. A piece-wise linear reconfiguration trajectory that guarantees I-
connectedness throughout the motion. The broadcast ranges were all set
to ri = 0.4. The required information was the complete graph, and so all
the robustness quantities are equal (depicted in the bottom right).
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Fig. 6. For a complete graph I , the lower right configuration is I-
connected, but the upper left is not. The use of an adaptable information
flow algorithm allows provably connected transitions between any two
connected configurations using a robustness constraint.

preserved, but it still elimminates some reconfigurations
from the reachable set. Specifically, there is no reason to
expect that, given two different information flows I1 and I2,
an I2-connected configuration Q̃ will be reachable from an
I1-connected configuration Q. To see an instance of this
problem, see Figure 6.

In this section, we relax the fixed information flow, and
use a feedback mechanism to update the graph I based on
the connectivity robustness of the network. This additional
flexibility will allow us to use a constraint of the form

RI(i,Q) ≥ 0,

I = f(Q)

to ensure connectedness of the network. Note that our goal
now is not to preserve I-connectedness, but rather the gen-
eral graph-theoretical notion of connectedness, and so this
allows for much more general reconfiguration maneuvers.
In fact, we will show that all connected configurations are

reachable from one another under motions which satisfy the
above constraint.

We will make use of a robustness-based algorithm for
constructing a sparse information flow presented in [8].
Specifically, consider the graph Is(Q) = (V,Es), with the
edge set Es defined as follows:

(i, j) ∈ Es(Q) ⇔ min{ri, rj} − dij = RC(i,Q).

Note that this function is defined in terms of the robust-
ness of the communcation network itself, rather than some
superimposed information flow.

It was shown in [8] that the graph Is(Q) is connected if
and only if C(Q) is connected, so a constraint that preserves
the connectedness of Is also preserves the connectedness of
C. This graph is also typically much sparser than C, and
so motion constraints based on this graph are much less
conservative than those based directly on C. Furthermore,
the fact that Is adapts to changes in Q and C makes
constraints based on this graph much more flexible than
those based on any fixed information flow I .

We will say that a motion γ is a connected motion if
the communication network C(γ(t)) is connected for all t.
From the previous comments regarding Is, γ is a connected
motion if and only if Is(γ(t)) is connected.

We now state the main result of the paper, which shows
that any connected configuration is reachable from any
other configuration using a connected motion that respects
a robustness constraint based on Is, regardless of the
connectivity structure of the initial and final configurations
(i.e. without an assumption about I-connectedness).

Proposition 4: Let Q and Q̃ be two configurations, and
suppose C(Q) and C(Q̃) are both connected. Let Rm be
the minimum robustness of these two configurations. Then,
there exists a motion γ(t) from Q to Q̃ satisfying

RIs(i, γ(t)) ≥ Rm for all i ∈ V, t ∈ [0, 1].
Proof: We will again exploit the centroid, qc =

1
N

∑
i qi. As in the previous proof, consider the following

two motions, linking Q and Q̃ to Qc, the configuration in
which all vehicles are at the centroid position qc:

γ1(t) = ((1 − t)q1 + tqc, . . . , (1 − t)qN + tqc)
γ2(t) = ((1 − t)q̃1 + tqc, . . . , (1 − t)q̃N + tqc) .

Recall that these are non-expansive motions, and so each dij

term decreases as the vehicles approach Qc. This implies
that

RC(γ1(t2))(i, C(γ1(t2)) ≥ RC(γ1(t1))(i, C(γ1(t1))
RC(γ2(t2))(i, C(γ2(t2)) ≥ RC(γ2(t1))(i, C(γ2(t1))

for all i ∈ V and t2 ≥ t1. Now, Is is a sub-graph of C and
so its robustness is bounded below by the robustness of C
itself. Since we always have RC(i) ≥ Rm, we now know
that

RIs
(i, γk(t)) ≥ Rm for all i ∈ V, t ∈ [0, 1]
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Fig. 7. A motion between two connected configurations, and snapshots
of the communication network (solid) and the graph Is (dashed) at three
different times. As the network reconfigures, the graph adapts Is and
allows the (1, 5) link to be broken.

along both motions γ1 and γ2. Again consider the composite
motion, γc = γ1 ◦ γ−1

2 . This is a motion from Q to Q̃,
satisfying the robustness constraint on Is, which was the
desired result.
This proposition shows that it is in fact possible to use
connectivity robustness as a constraint on very general
motions between any two connected configurations. Figure
7 shows an example of a motion designed using this
approach.

VII. DIFFICULTIES WITH OBSTACLES

Here we very briefly address the problem of obstacles.
By an obstacle, we mean a closed region F ⊂ R2 which
is forbidden to the vehicles, so qi /∈ F for all i ∈ V .
An interesting asymmetry arises for reachability in this
situation.

We will call a configuration Q unobstructed if and
only if there exists a contractive motion respecting the
obstacle constraints which takes all vehicles to the centroid
configuration, Qc. Any other configuration will be called
obstructed. Proposition 4 fails to hold for obstructed con-
figurations, but we can obtain the following result, which
we present without proof due to length limitations.

Proposition 5: Let Q be an unobstructed connected con-
figuration, and let Q̃ be any other connected configuration.
Then, there exists a connected motion γ taking Q to Q̃,
avoiding the forbidden region F and satisfying

RIs(i, γ(t)) ≥ 0 for all i ∈ V, t ∈ [0, 1].

VIII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

We have explored applications of the connectivity ro-
bustness function in motion planning with wireless network
connectivity constraints. This article has focused on proving
that both I-connectedness and general graph-theoretical

Possible with
present method

Requires global
decision−making

Fig. 8. Any connected configuration is reachable from an unobstructed
configuration, but the local methods presented in this paper cannot yet
handle obstructed configurations.

connectedness can be preserved by enforcing connectivity-
robustness constraints, without significantly reducing the
reachable set. Future work will focus on resolving problems
arising in the presence of obstacles.

Although we have devoted our efforts here to analysis and
proof of feasibility, the main contribution of this work is that
it provides a tractable mathematical framework for ensuring
connectivity based on motion constraints. Combined with a
receding-horizon control approach, connectivity robustness
allows one to rely on algorithmic procedures to provably
preserve connectivity of the network.
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