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Abstract— We present a simple geometric analysis of wire-
less connectivity in vehicle networks. We introduce a localized
notion of connectedness, and construct a function that mea-
sures the robustness of this local connectedness to variations
in position. Under a mild feasibility hypothesis, this function
provides a sufficient condition for global connectedness of
the network. Further, it is distributed, in the sense that
both the function and its gradients can be calculated using
only neighbor-to-neighbor communications. It can thus form
the basis for distributed motion-control algorithms which
respect connectivity constraints. We conclude with two simple
examples of target applications.

I. INTRODUCTION

Networked vehicles have become a prominent research
theme in the control literature. They have opened several
challenging problems in distributed motion control, and
illustrated the need for algorithms that can be implemented
across networks with little message passing. However, while
much work has been done on “networkable” motion-control
algorithms, relatively little attention has been paid to the
motion-control problems posed by the network itself.

In particular, it is common in the literature to assume
continuous availability of an underlying connected network.
Clearly, motion of the vehicles comprising the network will
have a significant impact on whether the network remains
connected. However, we do not as yet have useful tools for
understanding the relationship between motion control and
preservation of network connectivity.

This paper takes a first step toward understanding the
connectedness problem in a formalism amenable to standard
(nonlinear) control techniques. Our main contribution is the
construction of a quantity we call the geometric connec-
tivity robustness. We believe that this function provides a
relatively intuitive framework in which to consider motion
constraints imposed by connectivity requirements.

We wish to make clear that we present this work as a
proxy for a realistic (and necessarily more complicated) net-
work model; it is intended to be complementary to mobile
networking research, but does not aim to answer the same
kinds of questions. In particular, we will say nothing about
networking algorithms, routing, channel characteristics, or
any of the other usual issues that arise in the wireless
networking community. Instead, we hope that our simple

model captures enough of the connectivity characteristics
of most networks to be useful in control design.

II. OUTLINE OF PAPER

The next section provides some background discussion
on related work in networking and control of vehicle
formations.

Sections IV and V discuss the three central aspects of
our analysis: the communication network, the information
flow, and the geometric connectivity robustness.

Section VI demonstrates some properties of the robust-
ness function, and its relationship to overall connectedness
of the communication network.

Section VII shows how to construct sparse information
flow graphs with a cheap on-line distributed algorithm, a
trick that will enable us to create adaptable information
topologies in response to vehicle reconfiguration.

Finally, Section VIII discusses two target applications
with connectivity constraints: broadcast-range optimization,
and maximal sensor coverage.

III. BACKGROUND

The recent literature on multi-vehicle systems has grown
rapidly and so has general interest in development of control
systems implemented across networks.

The main application of current interest in multi-vehicle
systems is formation control, and several papers have
appeared in recent years treating this problem from a
distributed (networked) perspective. While they do not ex-
plicitly address networking concerns, the approaches taken
by Leonard and Fiorelli [10] and Olfati-Saber and Murray
[13] are distributed, and would require message passing on
some wireless network in order to be implementable.

The motion control work most relevant to our own
is Fax [6] and Fax and Murray [7], which address the
dependence of control performance on network features,
particularly delay time. It is this work that motivated the
sparse information flow algorithm presented in Section VII,
as well as our overall concern for wireless networking issues
in multi-vehicle systems.

Wireless networking itself is a major research effort,
and we only mention a few recent developments that have
informed our work. Power-control is a blossoming field due
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to the energy limitations inherent to wireless networking ap-
plications, especially sensor networks. Recent developments
in power-control include the work of Rodoplu and Meng
[15] and that of Li and Halpern [9], which use the notion of
a relay region. This approach is similar in motivation to our
notion of connectivity robustness. Both constitute an attempt
at geometrizing the routing issue, which is particularly
relevant to multi-vehicle systems because of the intrinsically
geometrical nature of motion control.

Another research effort which is very closely related
to our work, both in spirit and in method, is that of
Ramanathan and Rosales-Hain [14]. This work presents a
constrained optimization problem for the construction of a
connected network. Our work differs in two important ways.
First, our constraint is the local guarantee of feasibility
of a given information flow, rather than (bi-)connectivity.
Second, we use a continuous-variable approach (rather than
a combinatorial one), which lends itself to different types
of optimization problems (see Section VIII for examples).

IV. BASIC SETUP AND NOTATION

We begin with a set V of n vehicles in the plane, and
associate with each vehicle a position vector qi ∈ R2. We
suppose that each vehicle can communicate in some circular
domain with radius ri ∈ R. We suppose that the ranges are
subject to a constraint ri ≤ rmax, which is a simple model
for bounded transmission power. We will occasionally use
the stacked vector of positions q ∈ R2n and the vector
of radii r ∈ Rn. We will also use the quantities dij =
‖qi − qj‖, the Euclidean distances between the vehicles.

The entire discussion will center around two (undirected)
graphs. The first graph is the communication network, C,
in which an edge exists between i and j if and only
if bidirectional communication between the vehicles is
possible. Under our assumption above, this means that

ij ∈ C iff min{ri, rj} − dij ≥ 0. (1)

Under this definition of the graph, the graph-theoretic
neighborhood of a vehicle i is given by

NC(i) = {j ∈ V |min{ri, rj} − dij ≥ 0} (2)

which we will call the communication neighborhood of i.
We employ this terminology in distinction to the (to be
defined) information neighborhood.

The second graph we will use is the information flow
graph, I , which indicates which vehicles need to share
information for their control calculations. We assume that
this relationship is symmetric, i.e. that if i requires data from
j, then j requires data from i. We denote the graph-theoretic
neighborhood of node i in the information flow graph by
NI(i), and will refer to it as the information neighborhood.

For the moment we suppose the information flow is given,
which amounts to a choice of a motion control algorithm.
We will later discuss how to construct sparse connected
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Fig. 1. A schematic showing the communication network (solid lines)
and an information flow edge (dashed line) which can be implemented by
the communication network in two hops.

information flows (and why one would want to do such a
thing).

However we obtain it, we will view the information flow
as a design requirement on the communication network. In
particular, a connected information flow will be a de facto
requirement that the communication network be connected.

The schematic in Figure 1 illustrates the setup we have
described.

V. GEOMETRIC CONNECTIVITY ROBUSTNESS:
DEFINITION

We will now study the robustness of network connectivity
under perturbations in position. We will ultimately obtain
an inequality relationship reminiscent of (1) that will char-
acterize connectedness of the network in terms of relative
positions and broadcast ranges.

We begin with a trivial observation about (1): if node
i is displaced by a distance δ, then node i and j will
remain connected if δ < min{ri, rj} − dij . We call this
the robustness of the edge ij. Applying this idea to a two-
edge path from i to j through k, then we see that the path
robustness1 is given by:

P (i, j, k) = min {min{ri, rj} − dij , min{rj , rk} − djk}
This quantity can be computed locally at node j, and hence
i and k can know it using communication to node j. If this
quantity is positive, then both i and k will be connected to
j, and so this communication will be possible.

Now we will discuss notions of robustness for an in-
formation flow, I . Recall that a vehicle i requires access
to data from all members of NI(i). This access will be

1Clearly, similar definitions can be made for longer length paths, but
full generality with respect to path length makes the notation quite
cumbersome. Thus, we will restrict ourselves to two-edge paths, and trust
that the reader will be able to duplicate the upcoming analysis for paths
of other lengths.
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Fig. 2. Calculating the robustness for a simple network. Solid lines
indicate edges in the communication network. The information flow I
(not shown) is a complete graph (all vehicles connect to each other).

possible if a path exists between i and j in the graph C.
However, this will depend on global properties of C, and
this does not suit our desire for distributed characterizations
of connectedness.

We will say that a vehicle i is locally connected to j if
there exists a path in C between i and j of length at most
two. Again, we could easily have defined local connected-
ness in terms of any other number of edges, but allowing
for full generality creates an additional notational burden.
Furthermore, we can calculate all two-edge quantities using
only information from communication neighbors.

We now define the geometric connectivity robustness of
node i (relative to the information flow I):

RI(i) = min
j∈NI(i)∪NC(i)

[
1
2

max
k∈NC(i)

P (i, j, k)
]

. (3)

The maximum over the communication neighbors repre-
sents the fact that vehicle i remains locally connected to
vehicle j as long as at least one two-edge path through
a mutual (communication) neighbor is available. The min-
imum over the communication and information neighbors
reflects the fact that the motion control algorithm modeled
by the graph I can be implemented using local connectivity
as long as vehicle i is locally connected to all of its
information neighbors. We again remark that this quantity
can be computed at node i using only communication to its
neighbors in C.

Figure 2 illustrates the above quantities in a simple
network.

VI. GEOMETRIC CONNECTIVITY ROBUSTNESS:
PROPERTIES

We start this section with a simple proposition that
illustrates the utility of the robustness function as a localized
measure of connectedness.

Proposition 1: If RI(i) > 0 for all i, C is connected.
Proof: Since the graph I is connected by hypothesis,

there is a path in I from each vehicle i to any other vehicle
j. Each edge in this path, say kl, links two information
neighbors, and since the connectivity robustness of each
vehicle is positive, there exists a path of at most two edges
in C that links k to l. Through the concatenation of such
paths, we can obtain a path in C which links i to j.

We thus have a locally computable function which gives
a sufficient condition for connectedness of the network.
The reader may feel that we have skirted the issue, in that
we have pushed the difficulty of assessing connectedness
to having a connected information flow graph. This does
not pose a practical problem, as the information flow
is frequently specified in advance by the motion control
algorithm. For cases where an information flow is not pre-
specified, we will later show a distributed algorithm for
creating a sparse information flow which is “as connected
as physically possible”.

The next proposition addresses the question of robustness
of the communication network to perturbations in vehicle
positions.

Proposition 2: If RI(i) > 0 for all i, then each vehicle
can be displaced arbitrarily by a distance RI(i) while
maintaining the connectedness of C.

Proof: Each vehicle’s robustness is determined by a
single least-robust edge in the information flow graph. This
edge corresponds to a path in the communication graph with
P (i, j, k) = 2RI(i). No vehicle on the path (i, j, k) can
have robustness greater than RI(i), and so if no vehicle
in this path moves more than this distance, the pair-wise
distances dij , djk change at most by 2RI(i). But, the path
robustness was precisely 2RI(i). Thus, the path robustness
will remain positive, and all information flow edges will
remain implementable as two-edge paths in C. From above,
this implies that C is connected.

Thus, the robustness function quantifies (perhaps conser-
vatively) the freedom of each vehicle to move relative to
other vehicles. We will see a simple application of this result
in Section VIII.

We now characterize the continuity and differential prop-
erties of the robustness function. In order to do so, we will
introduce some additional terminology. Here, and in the
remainder of the paper, we will make the assumption that all
distance and robustness quantities are distinct. This amounts
to ignoring a set of zero measure, and greatly simplifies the
upcoming discussion 2.

2All results presented can be recovered without this assumption, but
require some tedious bookkeeping.



We observe that the connectivity robustness of a partic-
ular vehicle is determined by a maximally robust path to a
minimally robust neighbor. The robustness of this path, in
turn, is determined by a minimally robust edge. Thus, for
each vehicle i, there exist j and k such that

RI(i) = min{rj , rk} − djk. (4)

We will use the notation Li for the set {j, k} (the limiting
set), and the notation li for the member of Li with smallest
broadcast range (the limiting transmitter).

Now, note from the definition (3) that the robustness
function is piece-wise continuous (it is obtained through
minimum and maximum operations over families of con-
tinuous functions). In fact, it is a discontinuous function,
due to the fact that the sets NC(i) depend on the positions
and ranges. This may seem to detract from its utility as a
connectivity measure, but the following proposition shows
that it is in fact continuous whenever the network is locally
connected.

Proposition 3: RI(i) is continuous (as a function of q
and r) wherever it is positive.

Proof: From Proposition 2, we see that the robustness
function is Lipschitz, and hence continuous, whenever it is
positive.

Proposition 4: Wherever they exists, the partial deriva-
tives of the robustness function are given by

∂RI(i)
∂rj

=
{

1 iff j = li
0 else

(5)

∇qj RI(i) =
{ ∇qj djk iff j, k ∈ Li

0 else.
(6)

Proof: The function is differentiable whenever the
distances and robustness quantities are distinct (as we have
assumed) 3. The formulae above follow directly from (4).

The advantage of these formulae is that they can be
computed locally at each vehicle, using only data from
communication neighbors.

VII. CONSTRUCTING SPARSE CONNECTED

INFORMATION FLOWS

Many of the emerging control algorithms proposed for
vehicle networks do not rely on any particular information
flow, but rather on its connectedness. It is frequently not
essential to specify which vehicles share variables, provided
that the resulting information flow is connected. Interest-
ingly, the number of connections in the information flow has
been shown to have significant stability and performance
implications for some control algorithms, and one would
like to have an on-line distributed procedure for constructing
an information flow which is “sparse”.

We will exhibit one such scheme here, which provably
provides a connected information flow with bounded degree.

3This quantity is a generalized gradient, in the sense of [4], when the
function is not smooth.

The degree bound provides a bound on the largest eigen-
value of the Laplacian matrix, which frequently appears in
distributed motion control algorithms. This matrix is defined
in terms of the adjacency matrix A, and the diagonal degree
matrix D, as follows:

Aij(G) = 1 iff ij ∈ G, 0 else,

Dii(G) =
∑

j

Aij ,

L(G) = D − A.

The work of Fax and Murray in [7] explores the relevance
of the eigenvalues of the Laplacian to stability and perfor-
mance issues in multi-vehicle systems.

The information flow we propose is a subgraph of
the maximally connected graph, CM , in which all nodes
broadcast at their maximum broadcast range rmax. The
information flow we propose, IS , is as follows: an edge
ij is in IS if and only if it is the maximally robust path (in
CM ) from i to j.

Proposition 5: Let IS be as described above. Then, the
maximal degree in IS is at most five.

Proof: Let i be any node in V . The broadcast radius
rmax defines a circle centered at qi. Consider any sixty-
degree sector of this circle. We will first show that there is
at most one neighbor of i in this sector.

Let j be the node in the aforementioned sector which
is closest to i. Let k be any other node in the sector.
By construction, the angle between qj − qi and qk − qi

is bounded by π
3 . Applying the law of cosines, we find that

dik > djk. Thus, the path (i, j, k) is more robust than the
edge ik. Hence, i is not connected to k.

We can cover the entire circle with six such sectors, and
hence bound the degree of i by six. However, one can
readily see that the only way to achieve this bound is for
all the neighbors to lie exactly sixty degrees apart and lie
on vertices of equilateral triangles. This is impossible under
our assumption that all the distances are distinct. Thus, the
degree of i is at most 5.

We can now obtain a simple bound on the eigenvalues
of the Laplacian matrix.

Proposition 6: The maximum eigenvalue of the Lapla-
cian matrix associated with the information flow IS is at
most 10.

Proof: This follows immediately from Gershgorin’s
theorem, Proposition 5 (which guarantees Lii ≤ 5), and the
construction of L, which implies

∑
j �=i |Lij | = Lii.

Finally, we show that this algorithm will construct a con-
nected information flow, assuming that the communication
network at maximum broadcast range is connected (i.e. if
connectedness is feasible).

Proposition 7: If CM is connected, then so is IS .
Proof: Consider a path between any two nodes i and

j in CM , and let kl be an edge in this path which is not
in IS . By construction of IS , there is a path in Cmax from
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Fig. 3. An application of the distributed sparse information flow
algorithm. Note that the degree bound of five is not achieved in this
network.

k to l beginning with an edge which is also in IS , say kh.
Reapplying the previous argument on the new path (from h
to l), we can construct a path in CM from i to j beginning
with two edges in IS , and so on. Since the graphs are finite,
this process will yield a path in IS from k to l.

VIII. SOME PRELIMINARY APPLICATIONS WITH

CONNECTIVITY CONSTRAINTS

Here we examine two simple problems with connectivity
constraints that are amenable to the analysis we have
presented.

A. Broadcast-Power Optimization

We suppose that each vehicle has some convex cost func-
tion ci(ri) associated with its broadcast range, and we wish
to minimize the aggregate (additive) cost in the network
subject to an information flow constraint. In particular, we
would like to solve the following problem for a given
information flow I and vehicle configuration q:

minimize
∑

ci(ri)
subject to RI(i)(q, r) ≥ b for all i.

Here b is some positive scalar (known to all vehicles) quan-
tifying how much robustness is required of the network (for
example, depending on how much inter-vehicle distances
vary during typical operation). It can be shown that the
feasible set is compact and connected, and so the problem
has a global optimum which is accessible from any initial
point. Unfortunately, the set is not convex, and so in general
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Fig. 4. A sample run of the power-optimization algorithm. The cost
functions were ci = r2

i , the required robustness was b = 0.05, the barrier
parameter was 0.01 and the stepsize was 0.001. The “chattering” behavior
is a consequence of non-smoothness. This topology has been shown, by
enumeration of all possible topologies, to be the global optimum.

local optima are not global optima 4.
We solve this problem using a logarithmic barrier and a

gradient algorithm (see [2] and [3] for details). In partic-
ular, each vehicle implements the following (synchronous)
update algorithm for its broadcast range:

ri ← ri − γ


dci

dri
− µ

∑
j∈NC(i)

∂RI(j)
∂ri


 . (7)

Here µ parametrizes the strength of the logarithmic
barrier (a measure of how conservative the solution will
be), and γ is a stepsize parameter. Under suitable conditions
[2], this algorithm will converge to a neighborhood of a
local optimum (the size of the neighborhood depends on
the barrier parameter).

Note that, as per our previous comments, the above
algorithm can be implemented using only local information
(i.e. data from communication neighbors).

B. Maximal Sensor Coverage

This is a simplified version of coverage problems studied
in [12]. We assume that the vehicles are each capable of
sensing a square5 domain centered on themselves, Si =
{p ∈ R2 | ‖qi − p‖∞ < w}. We suppose that there is
a function f(x, y) which quantifies the “significance” of a
particular point in the plane, and that the vehicles wish to
maximize the integral of this function over the union of
their sensing domains.

4The gradient algorithm we use is only guaranteed to converge to a local
optimum. However, our numerical simulations suggest that convergence
to a global optimum can be achieved if the network is initialized at CM .
Unfortunately, we have found no way to make a formal statement about
global convergence.

5We make this choice only for calculational convenience. In principle,
other domains can be handled equally well.
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maximize g(q) =
∫
∪Si

f(x, y) (8)

The motion of the vehicles will be driven by a gradient
algorithm. The gradient of the objective function can be
shown to be:

∇qig =
∫

∂Si∩∪j �=iSj

f(x, y)ni(x, y) (9)

Here, ni(x, y) is the outward normal to the set Si.
In addition to the coverage objective, we will require that

the vehicles preserve an information flow, and we will do so
by controlling positions rather than broadcast ranges. This
will be accomplished with barrier terms as in the previous
section. The resulting algorithm is:

q̇i = ∇qig − µ
∑

j∈NC(i)

∇qiRI(j). (10)

Again, this algorithm is implementable using only local
communication. Figure 5 shows a sample run of this algo-
rithm.

IX. CONCLUSION AND FUTURE WORK

We have presented a simple geometric analysis of con-
nectivity in vehicle networks under a distance-based radio
communication model. Using our notion of connectivity
robustness, we were able to obtain a locally computable
function which provided a sufficient condition for con-
nectedness of the network. We have also used robustness
as a tool for constructing sparse information flow graphs
with a cheap distributed algorithm. Two simple applications
were discussed, and demonstrated that a meaningful and
mathematically tractable connectivity constraint could be

appended to standard problems arising in vehicle and sensor
networks. In principle, this connectivity constraint can be
appended to any nonlinear motion control problem.

Our plans for future work center on answering a fun-
damental motion control question: what classes of motion
control algorithms will accomplish their objective in the
presence of the network connectivity constraint we have
formulated in this paper? Our sensor coverage application is
a simple instance in which the connectivity constraint only
impeded the transient behavior of the algorithm, but not the
ultimate objective of optimal placement. However, it is easy
to construct motion control algorithms (for example, group-
splitting maneuvers) that will not accomplish their objective
under this constraint.

Finally, we hope to find useful extensions of our ro-
bustness notion that will include more realistic connectivity
phenomena. This may include intermittent link failures, as
well as dynamic behaviors such as link acquisition and
termination in mobile networks.
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