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Abstract

This paper presents an optimization framework for broadcast power-control, specifically ad-
dressed at wireless networking issues arising in implementing information flows for multi-vehicle
systems. We formulate an optimization problem for the minimization of an aggregate cost sub-
ject to a constraint on a quantity we call the geometric connection robustness, which is a locally
computable numerical assessment of the robustness of the an information flow to perturbations
in position. Our main result is a location-aided distributed power-control algorithm based on
a gradient-like optimization scheme. We also use geometric connection robustness to develop a
cheap distributed heuristic for the construction of sparse connected information flow.

1 Introduction

The analysis and design of distributed systems has been a prominent theme in much of the
recent literature on automation and control systems. Indeed, decentralization is a prominent
area of current research in several diverse fields, ranging from computer science to numerical
analysis. Computer networking research in particular has had to face this problem since its
inception, as the very notion of a distributed system is moot without an underlying mechanism
to implement interconnections or otherwise mediate interactions.

The networking problem of present interest is that of a wireless ad hoc network implemented
among several vehicles carrying out some kind of distributed motion-control scheme. These kinds
of multi-vehicle applications typically require the continuous exchange of position and velocity
data according to a graph defining an information flow. We deliberately distinguish between the
information flow and the communication network. In particular, we are interested in generating
ad hoc networks which implement a given information flow while achieving a suitable level of
network performance (as measured by an aggregate cost functional and maximum hop-count).

We pursue the construction of ad hoc wireless networks by formulating the problem as a
constrained optimization. We take a continuous rather than combinatorial approach by using
a geometric formulation based on the exchange of position information. Network connectivity
is assessed (locally) in terms of a quantity we call the geometric connection robustness. Within
the wireless networking community, this approach falls under the category of location-aided
protocols. While this is a relatively small portion of the wireless networking work, it is ideally
suited to multi-vehicle applications, since position sensors and exchange of position information
are inherent to distributed motion-control algorithms.
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Figure 1: A schematic illustration of the interplay between networking, information flow, and
control in a multi-vehicle system. Solid arrows indicate wireless communication links, and the
dotted line indicates an information flow between two vehicles.
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Wireless networks among multi-vehicle systems present unique challenges to communica-
tions protocol designers, not the least of which being the problem of determining the network
topology. Whereas a wired network has a fixed and known topology, dictated by which stations
are physically connected to each other, a wireless network has no intrinsic topology except in-
sofar as each station has only finite transmission power (and hence finite transmission range).
This is the primary motivation behind ad hoc networking protocols, in which nodes make local
decisions about establishing links with other stations. As a consequence of the unpredictability
of wireless channels and the mobility of the nodes, the links comprising the network topology
are intrinsically dynamic, switching on and off as deemed necessary by the networking protocol.

The recent literature on multi-vehicle systems has grown rapidly and so has general interest
in development of control systems implemented across networks. For discussion of current
hardware implementations in the academic community, see the work of Cremean et al. [6],
D’Andrea and Murray [7, 8], and Stubbs and Dullerud [27]. These references describe the
physical devices used to implement networked multi-vehicle systems, and identify several of the
networking performance issues we presented in the introduction.

The main application of current interest in multi-vehicle systems is formation control, and
several papers have appeared in recent years treating this problem from a distributed perspective.
While they do not explicitly address networking concerns, the approaches taken by Leonard and
Fiorelli [16] and Olfati-Saber and Murray [21] are distributed, and would require message passing
on some wireless network in order to be implementable. Work on flocking such as Olfati-Saber
[22] is also particularly relevant, as artificial flocking will definitely necessitate ad hoc networks.

The work most relevant to our own is Fax [10] and Fax and Murray [11], which addresses the
dependence of control performance on network performance, particularly delay time. It is this
work that motivated the sparse information flow heuristic presented in Section 2.2.1, as well as
our overall concern for wireless networking issues in multi-vehicle systems.

Power-control is a blossoming field due to the energy limitations inherent to wireless net-
working applications, especially sensor webs. Recent developments in power-control include the
work of Rodoplu and Meng [24] and Li and Halpern [14], which uses the notion of a relay region.
This approach is similar in motivation to our notion of routing robustness which we present later.
Both constitute an attempt at geometrizing the routing issue, which is particularly relevant to
multi-vehicle systems because of the intrinsically geometrical nature of motion-control.

Other related work in power-control and energy-optimization includes Monks, Bharghavan,
and Hwu, [18], ElBatt and Ephremides [9], Toh [29] and Agarwal, Katz, Krishnamurthy, and
Dao [1]. One paper which is very closely related to our work, both in spirit and in method, is
that of Ramanathan and Rosales-Hain [23], which presents a constrained optimization problem
for the construction of a connected network. Our work differs in two important ways. First,
our constraint is the local guarantee of feasibility of a given information flow, rather than
(bi)connectivity. Second, our continuous optimization naturally lends itself to distributed on-
line solution.

Topology control is also a closely related area of research, and there is a significant body of
research relevant to our own. We refer mainly to the work of Wattenhofer, Li, Bahl, and Wang et
al. [31], and Salonidis, Bhaghwat, and Tassiulas [25] which both present distributed algorithms
for constructing connected networks. The latter is potentially quite relevant to our own, as we
envision Bluetooth-like technologies playing a significant role in multi-vehicle systems. We also
refer to Gupta and Kumar [12] which, although not strictly addressed at topology control, gives
an analytical treatment of the broadcast power required to achieve asymptotic connectedness
in a wireless network.

Finally, we discuss location-aware and mobility-aware networking. Two high-level discussions
which introduce these areas are Tseng, Wu, Liao, and Chao [30] and Lee, Su, and Gerla [15].
Most of this work is based on using position data (perhaps from GPS) to assist the mobile-
networking protocol. For an early and representative development in this area, see Navas and
Imielinski [19]. Other work of particular relevance to multi-vehicle systems includes Ko and
Vaidya [13] and Saverese, Rabaey, and Beutel [26], which both address location-aided networking
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issues in the absence of a centralized positioning system.

2 Main Results

The main body of the paper presents the notion of geometric connection robustness, and shows
how a certain local connectedness criterion can be defined in terms of this quantity. We then
formulate an optimization problem subject to local connectedness constraints, and observe that
a standard barrier-type formulation of the optimization problem lends itself to solution by
a distributed steepest-descent algorithm. We also present a simple distributed heuristic for
constructing sparse connected information flows using the geometric position robustness data.

2.1 Notation and Assumptions

We begin with a set V of n nodes arranged in the plane. To each node i we associate a position
vector qi ∈ R2, and we denote the distance between two nodes i and j, ‖qi − qj‖, by dij . We
will occasionally make reference to the stacked vector of positions q ∈ R2n.

We suppose that each node is equipped with an omnidirectional radio antenna, and that
the transmitter can control the broadcast range subject to a maximum-range constraint, ri ≤
rmax for all i ∈ V . Again, we will denote the stacked vector of broadcast ranges by r ∈ Rn.

We assume that two nodes form a connection if and only if each node is within broadcast
range of the other. Thus, a bidirectional link (we only consider bidirectional links) exists between
nodes i and j if and only if min{ri, rj} ≥ dij . Under this assumption, a choice of the positions
qi and a choice of the broadcast ranges ri induces a graph Gq,r = (V,Eq,r), which we call the
communication network. We again draw attention to the fact that this graph is distinct from
the information flow.

For the purposes of optimization, we suppose that each node also has a cost function asso-
ciated with its broadcast range, ci : [0, rmax] → R+. We assume these functions to be strictly
convex, increasing, and twice differentiable. One physically relevant choice for these functions
is the power required to broadcast packets to that range at a particular level of received power,
which would motivate a function like ri

α. Typical choices of the parameter α in the wireless
networking research range between two and four, but we do not devote any additional attention
to the choice of cost function.

One final assumption we make is that, if a link exists between two nodes, each node can
know the other’s broadcast range. This can be inferred physically by measuring the received
power and knowing the radio capabilities of the sender, or by attaching a small header to all
packets indicating their intended broadcast range. Relative to the continuous data-exchange
overhead associated with multi-vehicle control algorithms, we feel this should be a negligible
addition to the required throughput.

2.2 Geometric Connection Robustness

The notion of robustness is inherent to any engineering design. We would like any wireless
network that we construct for a multi-vehicle system to be robust to the kinds of variability
that could potentially disconnect or otherwise impair the network. Wireless networks are known
to suffer from many such sources of variability, including uncertainty of the wireless channel,
obstacles, and interference.

Here we concentrate on the difficulty imposed intrinsically by the fact that the network is
operating over a collection of moving vehicles, i.e., the fact that the transmitters move relative
to each other. We thus call our notions of robustness geometric to emphasize that we do
not consider robustness to electromagnetic, information-theoretic, or computational sources of
variability. However, for brevity, we will suppress the explicit use of the word geometric, and
simply refer to the robustness of the network or link.
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As a first stab at quantifying the robustness of network links, we consider a single link between
two nodes. We are interested in the minimal perturbation, either to the relative positions of
the nodes, or their respective broadcast ranges, which will result in destruction of the link. We
refer to this as the pair-wise connection robustness, and denote it by

RPW
ij (q, r) ≡ min {ri − dij(q, r), rj − dij(q, r)}.

Here we explicitly indicate the dependence on q and r, but we suppress it in subsequent formulae
in order to lighten the already cumbersome notation.

Note that, under the aforementioned assumptions, this quantity can be computed locally by
each node whenever it is positive, i.e., whenever the two nodes are connected. We also observe
the following trivial (and equivalent) facts about the graph Gq,r:

RPW
ij ≥ 0 ⇔ ij ∈ Eq,r

N
Gq,r

i = {j ∈ V |RPW
ij ≥ 0}.

Here N
Gq,r

i denotes the graph-theoretic neighborhood of node i relative to the graph Gq,r. We
will also come to discuss neighbors of node i relative to the information flow, and we thus
require this additional specificity. Where there is no danger of confusion, we will suppress the
superscript.

Having defined the robustness of a single link, we are naturally inclined to ask about the
robustness of a path. For intuitive reasons, the robustness of a path must be the robustness of
its least robust link. This in fact coincides exactly with the minimal perturbation required to
destroy a particular path. For the case of a two-link path with node k acting as a router for
nodes i and j, we define the one-hop path-wise connection robustness,

RP,1
ikj ≡ min{RPW

ik , RPW
kj }.

Robustness definitions for longer paths, RP,2
iklj , and so on, follow suit, but we do not use them

in this paper. Note that the above quantity is non-negative whenever it is possible for node i and
j to exchange messages through node k, and negative otherwise. Further, since both pair-wise
robustness quantities are available to the router, k, nodes i and j can have local knowledge of
this quantity by polling their mutual neighbor.

Clearly, node i may have more than one routing option for sending messages to j, including
the option of not using a router at all. We wish to quantify the smallest perturbation that
will destroy all of i’s messaging options to j. We thus define the one-hop routing connection
robustness,

RR,1
ij ≡ max

k∈Ni∪{i}
RP,1

ikj .

We include i in the set over which the maximum is taken because it is possible that direct
messaging from i to j is the most robust option available, and we naturally want the one-hop
routing robustness to be at least as large as the pair-wise (or zero-hop) robustness.

Again, we see a trivial, but useful graph-theoretic property:

RR,1
ij ≥ 0 ⇔ Ni ∩Nj 6= ∅. (1)

We also see that, since each term RP,1
ikj can be known locally, RR,1

ij can also be found locally.
Finally, we mention that we can recursively define higher hop-count robustness quantities

by

RR,m
ij ≡ max

k∈Ni

min{RPW
ik , RR,m−1

kj }.
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Each additional hop allowed in the routing will require additional message passing in order to be
calculated locally. We expect there to be a strong tradeoff between reducing energy expenditure
(suggesting small ranges and large hop-count) and minimizing messaging complexity (suggesting
large ranges small hop-count), but we do not attempt to quantify it.

Finally, we wish to discuss the robustness of a particular information flow under a choice of
q and r. We recall that, by an information flow, we mean a graph F = (V,E) where each edge
represents the exchange of data between two nodes for the purposes of some distributed algo-
rithm. We would like to know the size of the minimal perturbation such that each information
flow edge can no longer be implemented by at most a m-hop data path in the communication
network. We thus define the m-hop information flow robustness of i relative to F,

RF,m
i ≡ min

j∈NF
i

RR,m
ij .

Here we have again used the notation NF
i to denote the neighborhood of i in the graph F .

We also observe that, as before, this quantity can be computed locally, with no more message
passing than is required to construct each individual RR,m

ij term.
Having defined information flow robustness, we now define some additional notation which

will make analysis of this function easier and more intuitive.
We first define, for each node i, the set of m-hop F -limiting information-neighbors (this set

will typically be a singleton, but we formulate it as a set for completeness),

NF,m
i,L ≡ {j ∈ NF

i |RF,m
ij = RF,m

i }.
Here the additional subscript L signifies the fact that these are the limiting information neigh-
bors. Thus, in order to increase the m-hop robustness of i relative to F , the routing robustness
to each member of NF,m

i,L must be increased. Conversely, decreasing RF,m
ij for any j ∈ NF,m

i,L will
decrease RF,m

i .
At this point we are faced with a notational dilemma: we must choose between formulating

the notion of limiting routers in full generality (with respect to hop-count), and incurring the
additional notational burden of hypergraphs, or restricting ourselves to a particular number of
hops and avoiding this complication. We choose to err on the side of comprehensibility, and
present the remaining definitions for 1-hop quantities. We feel that the forthcoming concepts
are sufficiently transparent that the reader will be able to construct the analogous higher-hop
quantities with little difficulty.

Now, we define the set of 1-hop F -limiting routing-neighbors of i,

NG,1
i,L ≡ {k ∈ NG

i |RP,1
ikj = RF,1

i for some j in NF
i }.

These are the neighbors which provide the maximally robust message-routing service for i to
one of its F -limiting information-neighbors. This set may include i, as direct messaging may be
the maximally robust route.

We now define the set of one-hop limiting edges of i in G relative to F . A limiting edge is
one that participates in a path from i to a member of NG,1

i,L through a limiting routing-neigbor.
We denote this set by EF,1

i,L .
Finally, we note that for any edge, the pair-wise robustness associated with that edge is

limited by the broadcast range of one or both of the participating transmitters. We denote the
set of such limiting transmitters by Ti, and observe the following useful property:

RF,1
i = rt − dtl,

where t and l are members of Ti and NF,1
i,L respectively. As a consequence of this equality, we

say that the variable rt is active for node i. We denote the set of nodes for which ri is active
by Ai, and note that each member of the active set of i is known to a neighbor of i, and hence
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Figure 2: An illustration of the various robustness quantities we have defined. For the information
flow F , we require all nodes to communicate with one another. In the communication network G,
only two links are available, so the information flow from 1 to 3 is routed through 2. Note that all
three nodes have the same information flow robustness relative to F because they are all limited
by the 0.05 robustness link between 1 and 2.
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can be constructed at i locally by polling neighbors. These active variables, and hence the sets
Ai will prove to characterize the differential properties of the robustness function quite nicely.

We now explore a few properties of information flow robustness, and discuss its differentia-
bility. Throughout this discussion we assume F is a connected information flow.

We first state the obvious limitation of the above robustness quantities: for m < n − 1,
positivity of RF,m

i for all i is not necessary for connectedness of Gq,r (unless m ≥ n− 1, where
the necessity is trivial). However, RF,m

i ≥ 0 for all i is sufficient for connectedness of Gq,r for
any m. We show this in the following simple proposition:

Proposition 1. Let F be a connected information flow. If RF,m
i > 0 for all i, then Gq,r is

connected.

Proof. Consider two nodes i and j. Since F is connected, there exists a sequence of edges {kl}t

in F linking i to j. Let kl be any edge in this sequence. Then, by definition, k ∈ NF
l . Now,

since each node has positive routing robustness to each of its neighbors in F , there exists a
sequence of at most m + 1 edges in Gq,r between k and l. Now, we can construct a sequence of
edges in Gq,r by substituting, for each kl in the sequence {kl}t, the m + 1-edge path in which
is guaranteed to exist by the information flow robustness. This path connects i to j.

The importance of this simple result is that we now have a distributed numerical assessment
of the connectedness of Gq,r. At this point, the reader may feel that we have slightly cheated,
since we have in essence pushed back the difficulty of assessing connectedness to that of having,
a priori, a connected information flow F . This is in part true, but it is also possible to cheaply
construct information flows which are “as connected as physically possible” by simply setting
F = Gq,rmax , which can be done on-line. We will also show a simple heuristic for constructing
sparse connected information flows using Gq,rmax and the robustness quantities above.

We now state another simple connectedness result:

Proposition 2. Let q be a given configuration, and F any connected information flow. Suppose
RF,m

i > 0 for all i. Now, let q̃ be any other configuration satisfying maxi ‖qi − q̃i‖ < R
2 . Then

Gq̃,r is connected.

Proof. Since RF,m
i > 0, Gq,r is connected, from the previous proposition. From the definition

of robustness, every edge in Gq,r, say ij persists under a perturbation in dij of size R. Since
the perturbation to each qi is less than R

2 , the perturbation to each dij is less than R by the
triangle inequality. Thus, each edge in Gq,r is also in Gq̃,r, and so the latter is connected.

This is really a very simple result which, unfortunately, is partly obscured by our notation.
The intuitive idea is that this gives something like a ‖ · ‖∞ neighborhood of q in which all
possible configurations result in a connected communication network.

We are now interested in discussing differential properties of information flow robustness.
We will first show that it is continuous wherever it is positive.

Proposition 3. Let q and r be given, and let F be such that RF,m
i (q, r) > 0. Then, RF,m

i is
continuous at (q, r).

Proof. By the construction of the robustness function, and the fact that the robustness is pos-
itive, a perturbation ∆ to (q, r) such that ‖∆‖∞ < δ induces a change in RF,m

i of less than
2δ (see proposition 2). This implies continuity in ‖ · ‖∞, and by equivalence of norms in finite-
dimensional vector spaces, continuity in all norms.

Corollary 1. RF,m
i is Lipschitz. In ‖ · ‖∞, its minimal Lipschitz constant is 2.

It may seem that we have not utilized the positivity of the robustness function, but we
have tacitly embedded it in the 2δ bound. Were the robustness negative, an arbitrarily small
perturbation could yield an additional neighbor with larger (negative) routing robustness. This
situation is eliminated in the positive robustness case because any neighbor acquired through
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an arbitrarily small perturbation will provide routing robustness arbitrarily close to zero (and
hence, smaller than the maximal routing robustness defining RF,m

i ). Conversely, any neighbor
lost with an arbitrarily small perturbation cannot provide positive routing robustness, and so
is not the limiting router.

Now, it is clear that RF,m
i is piecewise affine in r, as it is obtained through max and min

operations over families of affine functions (of the form r − d). It is thus differentiable almost
everywhere (i.e. anywhere except the interfaces between the piece-wise affine regions). We now
present a generalized gradient (with respect to r) for this function (which reduces to the gradient
where it exists).

Proposition 4. Wherever RF,m
i is differentiable, we have:

∂RF,m
i

∂rj
=

{
1 iff j ∈ Ti

0 else.

Proof. We again write RF,m
i = rt − dtl. If Ti is a singleton, this equation holds in an open set,

and hence the partial derivatives of RF,m
i must match those of rt − dtl. We have thus proved

the proposition in this case. We will now show that this is the only case where the function is
differentiable. Suppose there are at least two elements in Ti, t1 and t2. There are two cases:

I: t1 and t2 route to the same information-neighbor.
Then, increasing rt1 will (locally) increase RF,m

i linearly, since the latter is defined by the
maximally robust path. However, decreasing rt1 will have no effect on routing robustness
for the same reason. This implies that the partial derivative with respect to rt1 (or rt2)
does not exist.

II: t1 and t2 route to distinct information-neighbors.
Then, decreasing rt1 will (locally) decrease RF,m

i linearly, while increasing it will have
no effect, since it is determined by the maximally robust path to the minimally robust
information neighbor. This again implies that the associated partial derivative does not
exist.

Thus, whenever Ti is not a singleton, RF,m
i is not differentiable. This proves the proposition.

Corollary 2. The above formula defines a maximum-increase direction for RF,m
i .

2.2.1 Using Robustness to Construct Sparse Connected Information Flows

Here we address the issue of constructing connected information flows using robustness infor-
mation. We are particularly interested in constructing sparse information flows in order to limit
the maximal eigenvalues of a certain matrix associated with the graph, the Laplacian. This
matrix is defined in terms of the adjacency matrix A, and the diagonal degree matrix D, as
follows:

Aij(G) = 1 iff ij ∈ G, 0 else

Dii(G) =
∑

j

Aij

L(G) = D − a

. The work of Fax and Murray in [11] explores the relevance of the eigenvalues of the Laplacian
to stability and performance issues in multi-vehicle systems.

We suppose that the configuration q is a random variable, uniformly distributed on some
bounded domain. We will now present a simple application of robustness to produce, almost
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surely, an information flow with maximum degree 5. The proof is essentially a consequence of
basic plane trigonometry, but we include it for clarity.

Proposition 5. Let F1 = Gq,rmax
. Define Fm

2 = (V,Em
2 ) as follows:

Em
2 = {ij ∈ Eq,rmax

|RPW
ij = RF,m

ij }.
Then, almost surely, every node has at most 5 neighbors in Fm

2 .

Proof. Let i be any node in V . The broadcast radius rmax defines a circle centered at qi.
Consider any sixty-degree sector of this circle. We will first show that there is at most one
neighbor of i in this sector.

Let j be the node in the aforementioned sector which is closest to i (this is unique almost
surely). Let k be any other node in the sector. By construction, the angle between qj − qi and
qk − qi is bounded by π

3 . Applying the law of cosines, we find that dik > djk. Applying the
definition of RR,1

ijk , we see that RF,m
ik ≥ RR,1

ijk > RPW
ik . Thus, ik /∈ Em

2 . So, i is connected to at
most one neighbor in this sector.

We can cover the entire circle with six such sectors, and hence bound the degree of i in
Fm

2 by six. However, one can readily see that the only way to achieve this bound is for all the
neighbors to lie exactly sixty degrees apart, which will occur with zero probability. Thus, almost
surely, the degree of i is at most 5.

Corollary 3. The maximum eigenvalue of the Laplacian matrix associated with F2 is at most
10, almost surely.

Proof. This follows immediately from Gershgorin’s theorem, Proposition 5 (which guarantees
Lii ≤ 5 almost surely), and the construction of L, which implies

∑
j 6=i |Lij | = Lii.

This corollary provides a simple (albeit conservative) bound for analyzing stability and per-
formance issues of the resulting information flows. For more information on this issue, see
[11].

We now show that this information flow will also be connected, if physically possible.

Proposition 6. Suppose F1, as defined above, is connected. Then Fm
2 is also connected, almost

surely.

Proof. Consider a path between any two nodes i and j in F1, and let kl be an edge in this path
which is not in F2. By construction of F2, RF1,m

kl > RPW
kl . Thus, there is a path in F1 from k to

l beginning with an edge which is also in F2, say kh. Reapplying the previous argument on the
new path (from h to l), we can construct a path in F1 from i to j beginning with two edges in
F2, and so on (the new edge is distinct from the previous almost surely). The finiteness of the
graphs implies that this process will eventually yield a path in F2 from i to j.

We direct the reader to Section 2.4 for an example of a dense communication network
“pruned” into a very sparse information flow.

2.3 Optimization Problem

We are now in a position to formulate the optimization problem for a static arrangement of
nodes. Our aim is to minimize an aggregate cost function subject to local guarantees that a
connected information flow can be implemented with a (prescribed) bounded number of hops.
We view the latter constraint as a geometrical proxy for quality-of-service and delay-time issues
which are impossible to quantify within our simplistic radio model.

Upon formulating the problem and discussing pertinent optimization-theoretic issues, we
present a barrier formulation and an associated distributed algorithm for solving this problem
on-line. We deliberately refrain from calling the power-control algorithm a protocol, as both it
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and the underlying mathematical model lack certain features key to a practical implementation.
However, we note that most communications protocols operate in several phases (startup, link
formation, tuning, termination, restart, etc.), and we believe that this algorithm can form a
theoretical basis for the tuning/optimization phase of a realistic protocol.

2.3.1 Problem Formulation

We will attempt to minimize the aggregate cost incurred in the network, i.e.
∑

i∈V ci(ri). We
choose this as an objective function due to the widespread use of additively separable objectives
in distributed optimization. Despite this convenience, we must point out some caveats.

First, for non-physical choices of cost functions, there is no intrinsic interpretation to be
assigned to this aggregate cost, especially if the cost functions are not selected to be identical.
One may question the utility of distinct cost functions, but we envision the possibility of multi-
vehicle applications in which the communications capabilities of each vehicle differ. In particular,
if some members of the group play the role of “mobile routers”, i.e. they move so as to maintain
information flow feasibility in the formation, they would probably be designed with superior
radio equipment.

A second drawback of the aggregate cost is that, de facto, it does not penalize the exploitation
of a single transmitter for the benefit of the aggregate, except insofar as such a penalty is
provided by convexity of the individual cost functions. This can cause the power supply of the
“exploited” transmitter to be depleted much faster than that of others, and hence result in a
shorter network lifespan. This is, of course, an important consideration, but we expect that
using a battery-dependent cost function could potentially resolve this issue.

With these limitations in mind, we will consider the following optimization problem, which
we denote P (F,q,m):

P (F,q,m) : min
∑

ci(ri)

s.t. RF,m
i (q, r) ≥ b for all i.

Here, b is a non-negative scalar which defines the demanded information flow robustness for
the network. We do not discuss choices of b, except to refer the reader to the consequences of
position robustness in the previous section. We will also see in discussion of the barrier problem
that the algorithm will actually produce slightly larger robustness values than demanded, due
to the inherent conservativeness of barrier methods.

2.3.2 Characterizing the Optimization Problem

We now turn to characterizing the optimization problem P , essentially for the sake of showing
that the problem is well-posed despite the unusual constraint function. We begin by discussing
the feasible set.

Proposition 7. The feasible set of P is compact and connected.

Proof. It is clear that the feasible set is bounded, since it is a subset of [0, rmax]n. Since
demanded robustness b is positive, the constraint function is continuous in the feasible set, by
Proposition 3. Continuous inequality constraints define closed sets, and so the feasible set is a
closed and bounded subset of Rn, thus compact.

To prove connectedness, consider any r within the feasible region. Linear interpolation
between this r and rmax only increases the individual broadcast ranges. Thus, since r is feasible,
so is rmax. Hence, a continuous arc exists between any feasible point and rmax. By concatenating
the paths of these arcs, we can obtain a continuous arc between any two feasible points. Hence,
the feasible set is connected.
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Corollary 4. P has a global minimum, and there exists a feasible continuous arc linking this
global minimum to any other feasible point.

This set is not convex in general, owing to the possibility of different routing topologies. We
thus cannot assert any uniqueness properties for the global minimum, and in fact we can easily
construct examples with local minima in addition to the global minimum. We will now show
that all minima occur on the boundary.

Proposition 8. At any local minimum of P , all constraints are active.

Proof. We will use a contrapositive argument. Let r be any feasible point such that RF,m
i > k

for some i. Then, i must have at least this much robustness to each of its neighbors in Gq,r.
One can thus reduce ri by up to RF,m

i − b without reducing the robustness in the network below
b. Our assumptions on ci imply that this will strictly reduce the value of the objective function.
Thus, r cannot be locally optimal.

2.3.3 Barrier Formulation and Distributed Steepest-Descent Algorithm

We now present a modified optimization problem in which the constraints are appended to the
objective as barrier terms. Before doing so, we comment on the lack of useful alternatives for
distributed solution for constrained optimization.

The primary approach taken in distributed constrained optimization is that of duality, i.e. ex-
plicitly including Lagrange multipliers as optimization variables. This formulation often results
in algorithms which can be implemented in a decentralized fashion. Indeed, the dual problem
of our optimization demonstrates similar structure. However, we do not use dual methods be-
cause of the special physical significance of our constraint functions, i.e. connectedness of the
network. Allowing excursions into infeasible areas could cause disconnection of the network,
and suspension of connectivity services for higher-level functionalities such as motion planning.

We thus feel that barrier methods are quite appropriate, as they work strictly with feasible
points. The resulting (unconstrained) optimization problem is:

min
[0,rmax]n

∑

i

ci(ri) + µ
∑

i

log(Ri − b).

where µ > 0 is a barrier parameter, presumed small relative to the scale of the variables in
question (see [2] for details). For sufficiently small choices of µ, the optima of this barrier
problem will approach the optima of P arbitrarily closely. Further, for any non-zero choice of
the barrier parameter, the barrier objective function rises rapidly to infinity near the boundary
of the feasible region.

Now, we consider the gradient of this objective function with respect to the broadcast ranges
(for convenience, we denote the objective function f):

∂f

∂rj
=

dcj

drj
− µ

∑

l

1
(Rl − b)

∂Rl

∂rj
=

dcj

drj
− µ

∑

l∈Aj

1
(Rl − b)

.

The latter formula exhibits the desired distributed structure of the gradient. The derivative
of the individual cost function can certainly be computed locally, and the sum over the ac-
tive set can be accomplished by exchanging constraint-surplus information with communication
neighbors (as opposed to information neighbors).

We are thus motivated to use the following distributed steepest-descent algorithm (we de-
liberately say steepest-descent rather than gradient because of non-differentiability):

ri ← ri − γ

(
dci

dri
− µ

∑

l∈Ai

1
(Rl − b)

)
.

Here γ is a parameter defining the step-size. We discuss γ in the next section.
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This is thus a synchronous distributed algorithm for approximately finding a local minimum
of P . The intuitive structure of the algorithm is apparent: when the node’s variable is not active
for any other nodes, it uses a gradient algorithm to minimize its own cost function. When Ai

is not empty, the node modifies its own selfish action to prevent disconnection according to a
hyperbolic repulsion.

2.3.4 Convergence Issues

The convergence of the steepest-descent algorithm is tricky to characterize. The usual conver-
gence proof for these constant stepsize methods requires globally Lipschitz derivatives, which
we do not have in our case because of potential non-smoothness and because of the hyperbolic
terms. The problem of non-smoothness can be addressed using generalized gradient arguments
as in [4]. It is sufficient to use a generalized gradient which is a maximum-ascent direction
to recover the local behavior of a smooth gradient algorithm, and in this regard we have no
problem. Unfortunately, the hyperbolic terms will yield to no such easy answer.

It is a standard result that in regions where the derivatives are locally Lipschitz, there is a
non-zero γ such that the algorithm will reduce the objective function at each iteration, but it is
impossible to patch this result into something global because of the barrier terms. Indeed, by
choosing an initial point sufficiently close to the boundary of the feasible region, we can generate
an arbitrarily large initial step for any non-zero γ, and so cannot hope to find a stepsize for
which this algorithm will converge from arbitrary initial point.

We do not have an answer to this problem, except to say that barrier methods such as these
are used regularly in optimization with dynamic stepsize methods without explicit treatment
of convergence (see, for example, [20]). We conjecture that, for each initial point, there is a
sufficiently small γ such that the algorithm converges to a local minimum, but we have found
no way to prove this, nor have we found any related results in the optimization literature.

On the other hand, numerical simulations strongly suggest that initializing the algorithm
from rmax and using the the objective function of P to determine γ as in [2] will produce a
sequence converging to the global minimum.

2.3.5 The Problem of Asynchronous Implementation

While we do not claim this algorithm to be sufficiently practical for real-world implementation,
we do concern ourselves with the restrictive requirement of synchronous operation (i.e. that
all nodes update simultaneously). Synchronization, though possible, is costly in terms of delay,
and one would like to avoid this in practice.

We are again presented with a deeply unsatisfying situation because of the barrier terms: in
their absence, we would be able to directly apply a bounded-delay asynchronous convergence
result from [3] for distributed gradient algorithms.

The numerical results of the synchronous implementation suggest to us that the barrier
terms, though theoretically problematic, do not cause the kind of trouble that would arise from
a more general function lacking a global Lipschitz constant. This is, of course, difficult to
quantify, and we mention it only because we suspect that the kinds of asynchronous results
obtained in [3] could also be obtained using this algorithm. We leave this as a conjecture, and
emphasize that any practical implementation of such an algorithm will necessarily have to face
the problem of non-synchronization.

2.4 Simulations

In this section we first show an application of the distributed heuristic for constructing a sparse
information flow. Fifty nodes were distributed uniformly on the unit square, and their maximum
broadcast range was set to 0.5. Figure 3 shows the initial information flow F1 and the resulting
sparse information flow F 1

2 . We also show bar graphs of the node degrees of F1 and F 1
2 to verify

the degree bound presented in Section 2.2.1.
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Figure 3: An application of the distributed heuristic of Section 2.2.1. We indeed verify the bound
on node degree using this scheme. Although no node occurs with degree 5 in this example, it is
easy to construct examples which achieve the bound (and which occur with non-zero probability)

It is evident that the graph created is vastly sparser than the original graph, and maintains
connectedness.

We present a sample run from the optimization algorithm in Figure 4. The cost functions
were chosen to be r2

i , and the demanded robustness was set at 0.05. The step-size was 0.1 and
the barrier parameter was 0.01.

The “chattering” behavior is a consequence of the non-smoothness. In this run, it is clearly
not a source of major difficulty. We have found the chattering to become a problem only if the
step-size is set too large (approaching the bound based on P and [2], which in this case is 0.25).

3 Conclusions and Future Work

This paper has presented a continuous-variable constrained optimization problem for the allo-
cation of broadcast power in wireless networks, and a distributed steepest-descent algorithm for
the solution of this problem on-line. We have presented a notion of geometric robustness for
an information flow on a wireless network, and shown some simple properties of this robustness
function. We believe that this geometrical viewpoint, though simplistic as a radio commu-
nications model, can provide useful insight into combining wireless networking with dynamic
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Figure 4: A sample run of the optimization algorithm. Note the slight conservativeness of the solu-
tion, which is typical of barrier methods. This solution has been shown (by exhaustive enumeration
of the possible topologies) to be the global minimum.
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phenomena such as motion-control.
We have also presented a distributed heuristic for constructing sparse connected information

flows which are feasible for a given wireless network. We feel this may have applications in
flocking of automated agents, where the number of individuals makes manual construction of
the information flow impractical.

A natural extension of this work would be to formulate a dynamic optimization problem with
these constraint functions. Preliminary numerical results suggest that, for fast enough updates,
the algorithm we presented can handle mobile transmitters. However, we have not been able to
quantify this behavior, and believe that an intrinsically dynamic optimization framework would
provide the appropriate vehicle to do so.
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