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Abstract— ‘Incoherent feedforward loops’ represent impor-
tant biomolecular circuit elements capable of a rich set of
dynamic behavior including adaptation and pulsed responses.
Temperature can modulate some of these properties through
its effect on the underlying reaction rate parameters. It is
generally unclear how to design a circuit where these properties
are robust to variations in temperature. Here, we address this
issue using a combination of tools from control and dynamical
systems theory as well as preliminary experimental measure-
ments towards such a design. Using a structured uncertainty
representation, we analyze a standard incoherent feedforward
loop circuit, noting mechanisms that intrinsically confer tem-
perature robustness to some of its properties. Further, we study
design variants that can enhance this robustness to temperature,
including different negative feedback configurations as well as
conditions for perfect temperature compensation. Finally, we
find that the response of an incoherent feedforward loop circuit
in cells can change with temperature. These results present
groundwork for the design of a temperature-robust incoherent
feedforward loop circuit.

I. INTRODUCTION
Living cells are subject to a wide variety of environmental

changes, for example, due to seasonal changes in variables
like temperature and humidity. Biomolecular circuits regu-
lating their behavior are likely to possess the property that
ensures robust functionality in face of such environmental
changes [1]. A similar property can be desirable for en-
gineered biomolecular circuit designs, whereby they also
function robustly in a range of environments, as well as
for allowing circuit modules designed to function in slightly
different environments to be reliably interconnected. In par-
ticular, temperature is an important environmental variable
that can modulate the functional output of biomolecular
circuit designs as a direct consequence of its effect on the
underlying reaction rate parameters. Indeed, for biomolecular
circuit designs, temperature has been identified as a key ele-
ment of the environmental context against which functional
robustness needs to be assessed [2].

Mathematical frameworks to investigate such robustness
issues include classical control theoretic notions such as ro-
bust tracking as well as generalization of these classical ideas
to account for the rich, complex behavior of biomolecular
systems. Examples are investigations of perturbation classes
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Fig. 1. Temperature can affect the output of an incoherent feedforward loop
through its effect on the underlying reactions. A standard representation of
such a circuit is sketched. In response to an input step, there can be a pulsed
output. Red arrows indicate the propagation of temperature dependence. The
use of the term ‘feedforward’ to describe such a circuit may have originated
to describe the direct link between input u and output y.

under which the transient response is invariant [3], [4] and
of structural attributes of the biomolecular reaction network
guaranteeing robustness of the steady-state response [5], [6].
Insofar as temperature robustness in biomolecular circuits
is concerned, the most studied systems have been limit
cycle oscillators, both natural [7] and synthetic [8]. In these
systems, temperature robustness manifests in the oscillation
period, which is approximately constant over a range of
temperatures. One way to characterize robustness has been
to define a temperature coefficient Q10(T ) of a temperature-
dependent rate/property k(T ), as the ratio k(T + 10)/k(T ).
A Q10 = 2 implies that k doubles for a 10

�C increase
in temperature. In contrast, a Q10 = 1 means that k does
not change with temperature. It is often found that Q10 of
the oscillation period is close to 1, indicating temperature
robustness, while the typical Q10 values for biomolecular
reaction rates range from 2–3 [9]. A recent example where
temperature robustness has also been studied is bacterial
chemotaxis [10]. In these examples, temperature-dependent
elementary reaction rates cancel the effects of each other
exactly such that the functional output is temperature-robust.
Temperature compensation has also been recently reported
for a designed biomolecular oscillator [11]. These stud-
ies provide important early work towards the design of
temperature-robust biomolecular circuit behavior.

Feedforward loop circuits represent an interesting class of
biomolecular circuits with at least three striking features [12].
First is their widespread occurrence in different biomolecular
contexts, underscored by their overrepresentation in tran-
scriptional networks [13]. Second is their systems level prop-
erties, for example, the incoherent feedforward loop (Fig. 1)
can exhibit both perfect adaptation [14], [15] and fold-change
detection [16], [17]. Third is the dynamical outputs that can

2014 Conference on Decision and Control (CDC)
http://www.cds.caltech.edu/~murray/papers/skm14-cdc.html

Shaunak Sen



be achieved, for example, the incoherent feedforward loop
can generate pulse dynamics, whose quantitative properties
such as the pulse height, adaptation value, rise time, and
decay time can be of functional importance in cells. How can
temperature affect these properties? Can modifications to the
circuit design enhance the temperature robustness? Indeed, it
is generally unclear how to design an incoherent feedforward
loop circuit where properties are temperature-robust.

Here, we ask the question of how to design a temperature-
robust incoherent feedforward loop circuit. To address this is-
sue, we use tools from control and dynamical systems theory.
We investigate a standard incoherent feedforward loop circuit
model using a structured uncertainty representation and note
inherent features that promote temperature robustness. Next,
we investigate design variants aimed at enhancing this robust-
ness including the use of negative transcriptional feedback
and conditions for perfect temperature compensation. Finally,
as a step towards a robust design, we present preliminary
experimental data illustrating how the dynamics of a circuit
realization can change with temperature. These results should
aid the design of a temperature-robust incoherent feedfor-
ward loop circuit.

II. RELEVANT THEORETICAL TOOLS

In order to understand how temperature affects functional
output in biomolecular circuits and how this effect may be
compensated for, we first adapt relevant tools from control in
this context. Consider a mathematical representation of the
dynamics of a biomolecular circuit obtained using standard
mass-action-based ordinary differential equations,

dx

dt

= f(x, µ). (1)

Here, x is a vector of concentration variables and µ is a
vector of reaction rate parameters. Because of the tempera-
ture dependence of reaction rate parameters µ = µ(T ), for
example, as characterized by a temperature coefficient Q

µ

10,
functional properties such as steady-state levels or transient
features can also be temperature dependent.
Uncertainty Representations. In fact, using this character-
ization, effect of temperature in Eqn. (1) can be analyzed
like a structured uncertainty in the reaction rate parameters.
For example, the range of Q10’s of the outputs under
consideration can be computed for a given set of Q10’s of
the reaction rate parameters. Alternatively, these parametric
uncertainties map to a range of values for each output under
consideration, which can be directly considered. In particular,
the temperature dependence of the steady-state values x0 can
be obtained directly from the algebraic equation f(x0, µ) =

0. Other potentially useful uncertainty representations can
also be obtained through linearization of Eqn. (1) around a
desired operating point x = x0.

For example, consider a simple model of protein
production-degradation,

dx

dt

= � � �x, (2)

where x is the concentration of a protein, produced at a
constant rate �, and degraded as a first-order process with
rate constant �. At steady state, x

ss

= �/�. The temperature
dependence in this model can be analyzed by considering the
parametric uncertainty in � and � due to temperature.
Internal Model Principle. One way to reduce the effect
of such uncertainty is through the use of a control strategy.
Indeed, different control strategies may minimize the effect
of the variation of temperature on the circuit performance
to different degrees. In order that perfect temperature com-
pensation be achieved, a natural question arises with regard
to the properties that such a controller must possess. In
fact, this question bears resemblance to the Internal Model
Principle [18], [19], [20], which requires that the system
possess a model of the external signal that it needs to adapt
against. For example, perfect adaptation to step inputs can
be implemented through the use of an integrator block in the
loop transfer function. If the input was a ramp, the presence
of a single integrator block would not suffice for perfect
adaptation and a double integrator would be required.

A similar guideline is likely to be relevant for perfect
temperature compensation, where it is desired for an output
to be invariant to temperature even though underlying circuit
parameters change with temperature. Consider an augmen-
tation to the simple model above with a control input u that
is assumed to be able to directly control the rate of change
of x,

dx

dt

= � � �x + u. (3)

We consider the steady state x

ss

as the output of this
system. Suppose both parameters change with temperature,
� = �(T ), � = �(T ) Perfect temperature compensation can
be achieved if these temperature dependencies are known.
A control input that achieves this is u = �

�
�(T ) �

�(T0)
�
�
�
�(T )� �(T0)

�
x, where T0 is a reference temper-

ature. Therefore, knowledge of temperature dependence and
possibility of such cancellation enables perfect temperature
compensation.

An adaption of these tools in the context of temperature
robustness illustrates ways to represent temperature depen-
dence and the ideal conditions for a system response to be
temperature independent. In the following, we focus on a
standard incoherent feedforward loop circuit model.

III. INHERENT TEMPERATURE ROBUSTNESS IN
AN INCOHERENT FEEDFORWARD LOOP MODEL

To characterize possible temperature dependence of the
properties of an incoherent feedforward loop, we consider a
mathematical model of it (adapted from [17]),

dx

dt

= ↵

x

u � �x, (4)

dy

dt

= ↵

y

u

K

x

x

� �y. (5)

Here, u is the input, x is the intermediate variable, and y is
the output. The parameters ↵

x

, ↵

y

, �, and K

x

represent the
production rate of x, of y, their dilution rates, and the binding



A B

0.5

1

2

3

y

eq

⌧

r

⌧

d

↵

x

↵

y

� y

mK

x

Q

1
0

Parameters Outputs

0 2 4 6 8 10

1

1.1

1.2

1.3

⌧

r

⌧

d

y

eq

2%

y

m

u

x

y

Time

O
ut

pu
t 

(y
)

Fig. 2. Propagation of temperature dependence in a model of an incoherent
feedforward loop circuit. A. Black line is a trajectory computed from the
model. Different properties are graphically illustrated on the trajectory. Inset
shows a schematic illustration of the circuit. B. Green dots illustrate the
range of temperature coefficient’s (Q10’s) of the indicated reaction rate
parameters and outputs. Horizontal spread is due to an arbitrary random
number added for illustration purposes. Solid black lines indicate key Q10
values.

constant of x to the promoter of y, respectively. The origin
of the term K

x

/x is as an approximation to a repression
function like K

x

/(K

x

+x). We assume that the default values
of the parameters are ↵

x

= ↵

y

= � = K

x

= u = 1.
Further, we assume that a step change in the input leads
to a change in the value of u from 1 to 2. This model
exhibits the adaptation property (Fig. 2): In response to a
step change in input u, both x and y first increase; As x

increases further, it represses y and y relaxes to its pre-step
value. Therefore, the y waveform exhibits a pulse in response
to a step change in input u (Fig. 2). This pulse shape can
be further characterized by the following four properties:
adaptation level (y

eq

), pulse amplitude (y
m

), rise time (⌧
r

),
and decay time (⌧

d

). These properties depend on temperature
dependent reaction rate parameters, and so can themselves
be temperature dependent. The above model can be used to
investigate the possible temperature dependencies.

We note that the adaptation property is solely dependent on
the mechanism and is robust to changes in parameters. As
such, it is also robust to parametric variations owing their
origin to a temperature effect. In contrast, properties such
as adaptation level, pulse amplitude, rise time, and decay
time can depend on temperature through their dependence
on circuit parameters. To investigate this dependence in
the model, we make the following assumptions. First, we
assume that the parameters take the default values specified
above. Second, we assume that their temperature coefficient
Q10 is in the range 2–3. Finally, based on this assumed
range of Q10’s of the parameters, we calculate the range
of temperature coefficient Q10 of each of the properties.

As an illustration of this approach, consider the equilib-
rium value of y

eq

= K

x

↵

y

/↵

x

obtained in the above model.
In particular, let us consider the ratio r = ↵

y

/↵

x

. Assuming
that the Q10’s of ↵

x

and ↵

y

are in the range 2–3, the Q10

of r has a minimum value of 2/3 ⇡ 0.66 and a maximum
value of 3/2 = 1.5. As the DNA binding constant K

x

arises
as a ratio of the off and on rates for the binding of x to
promoter of gene y, we assume that its Q10 is also in the
range 0.66–1.5 (assuming these off/on rates also have Q10

in range 2–3). Therefore, we estimate the Q10 of y

eq

to

be in the range 0.44–2.25. In fact, this illustration captures
a temperature compensation mechanism already inherent in
this model. The temperature coefficient of the equilibrium
level is different from those of the parameters because the
parameters combine as a ratio of terms. Whenever two terms
with similar temperature dependencies combine in a ratio,
the effective temperature dependence of the ratio can be
attenuated. Indeed, in this case, the production rates ↵

x

and
↵

y

are expected to have similar temperature dependencies,
even if they do not strictly fall in the range of Q10’s assumed
above. Therefore, this temperature compensation is expected
to persist in a general setting as well and is an instance of
the cancellation mentioned in the previous section.

Next, we apply this approach to other properties. As
obtaining their analytical expressions is not as straightfor-
ward as that for the equilibrium value, we use numerical
simulations. For this, we first choose Q10 of each of the
parameter as a different random number in the range 2–3.
Using this selection, we compute the Q10 for each of the
above-mentioned properties: Pulse amplitude is computed
as the maximum of the resulting waveform away from the
equilibrium value. The rise time is computed as the time
taken to reach the maximum pulse amplitude from when
the pulse is applied. Similarly, the decay time is computed
as the time it takes to go from when the pulse maximum
is reached to when the response first returns to within 2%

of its equilibrium value. The results of this computation
for N = 200 different random choices of Q10 sets are
shown in Fig. 2. As expected, we find that the Q10 of the
equilibrium value is in the range 0.44–2.25. Similarly, the
pulse amplitude is also in this range, indicating a similar
compensation effect to a change in temperature. In contrast,
the Q10’s of the rise time and decay time are in the range
0.33–0.5, consistent with timescale being determined by the
reciprocal of �, a parameter with Q10 in the range 2–3.
Therefore, this indicates that other than a conversion of a
100%–200% increase in parameters to a 50%–66% reduction
in the property, there is no other temperature robustness
effect for the timescale-related parameters.

In order to gain insight into the temperature dependence of
these properties, we considered a linearization of the Eqns.
(4)–(5) about the operating point u = u0, x = x

eq

=

↵

x

u0/�, and y = y

eq

,


�ẋ

�ẏ

�
=

"
�� 0

�↵

y

u0K

x

x

2
eq

��

# 
�x

�y

�
+

"
↵

x

↵

y

K

x

x

eq

#
�u, (6)

where �x = x � x

eq

, �y = y � y

eq

, and �u = u � u0.
Response of the output �y to a step change in the input �u

can be obtained by considering the transfer function,
�Y (s)

�U(s)

=

y

eq

u0

�s

(s + �)

2
. (7)

In response to a step input, the output waveform is �y(t) =

(y

eq

/u0)�t exp(��t). This response has a pulse-like shape
with peak amplitude y

eq

(as u0 = 1), rise time 1/�, and
decay timescale 1/�. As such, these analytical calculations
confirm the trend reported in the above simulations (Fig. 2).



Further, an implicit source of temperature robustness in the
model is the supposition that both x and y are effectively de-
graded via dilution identically. If their effective degradation
rates are dissimilar, say �

x

and �

y

for x and y respectively,
then a possible difference in how they change with tempera-
ture may add temperature sensitivity in the properties.For
example, the equilibrium value y

eq

= K

x

↵

y

�

x

/(↵

x

�

y

)

indicates that the temperature coefficient Q10 lies in the
range 0.3–3.4, which is an expanded version of the range
estimated above. Therefore, the modeling assumption that
x and y have the same degradation constant provides an
inherent cancellation of temperature dependencies.

Finally, we studied the relation between temperature ro-
bustness and the perturbation classes for which the transient
response can be invariant [4]. For Eqns. (4)–(5), it has been
shown that the output response y(t) to input u(t) is invariant
to the scale of the input u ! pu, where p is a scalar. A
temperature perturbation can perturb all reaction rate param-
eters. To gauge the extent to which the transient response
can attenuate this, we used the invariance characterization
method in [4] to search for parameters and their combinations
for which this input-output response is invariant. A notable
case of an invariance is when both production parameters
are identically scaled (↵

x

, ↵

y

) ! (p↵

x

, p↵

y

), with remain-
ing parameters unchanged. Basically, when (↵

x

, ↵

y

) !
(p↵

x

, p↵

y

) in Eqns. (4)–(5), (x, y) ! (x/p, y) recovers
the same equations showing that input-output response is
unchanged, assuming that perturbed system has equilibriated.
Therefore, these parameters combine to promote temperature
robustness of the transient response, reiterating their actions
with respect to robustness of steady-star discussed above.

To summarize, this model already has three inherent
features that can enhance the temperature robustness of the
pulse height and the equilibrium value. These three are,

1) Similar temperature dependencies of production rates.
2) Proportionality to DNA binding constant, itself a ratio

of two rates.
3) Same effective degradation terms acting on x and y.

IV. DESIGNS FOR TEMPERATURE ROBUSTNESS

With the aim of enhancing robustness of these properties
to temperature, we explore modifications to this circuit.
Motivated by the presence of negative feedback in numer-
ous robustness contexts, we explored the effect of adding
negative transcriptional feedback to the circuit.
1. Negative feedback of y on itself. Consider a model,
similar to above, where y negatively feeds back onto itself,

dx

dt

= ↵

x

u � �x, (8)

dy

dt

= ↵

y

u

K

x

x

K

y

y

� �y. (9)

We find that the adaptation property can persist in this
model (see Fig. 3A). In fact, the equilibrium value, y

eq

=p
K

x

K

y

↵

y

/↵

x

. In comparing this value with the one ob-
tained from the above model, we note the presence of a
square root. This square root can be significant from the
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Fig. 3. Effect of different negative feedback configurations on the
propagation of temperature dependence in an incoherent feedforward loop
circuit. A–B. Negative feedback is added from y onto itself. C–D. Negative
feedback is added from x onto itself. Simulations are performed as noted
previously. Additional parameters K

y

= J

x

= 1.

point of view of temperature robustness. If a rate k has a
Q10 in the range 2–3, then

p
k has a Q10 in the range

1.41–1.73, which indicates enhanced temperature robustness.
Consistent with this, we find that the Q10 of y

eq

should lie in
the range 0.54–1.84. This is a slightly narrower range than
that obtained in the model without transcriptional feedback.
Indeed, this is also seen when the Q10’s of parameters are
chosen randomly (Fig. 3B). These computations show a
slight enhancement in the temperature robustness properties
of the adaptation value as well as the peak pulse amplitude.
For these parameters, there is no significant difference in how
the timescale properties of the pulse depend on temperature
between this model and the main model. In general, the
presence of the square root can have an effect of reducing
the temperature dependence compared to the main model
even if the production rates and binding constants have other
temperature dependencies different from the ones assumed
here. Likewise, negative feedback of y on itself with higher
co-operativity ((K

y

/y)

n, n > 1 rather than just K

y

/y) can
further augment such a temperature robustness effect.
2. Negative feedback of x on itself. Next, we consider
the case where x negatively feeds back on itself. The
corresponding model is,

dx

dt

= ↵

x

u

J

x

x

� �x, (10)

dy

dt

= ↵

y

u

K

x

x

� �y. (11)

Here, we find that the equilibrium value itself depends
on the input, y

eq

⇠
p

u. This dependence on the input
indicates that the adaptation property itself does not exist.
Nevertheless, we performed a similar analysis as above to
gauge how temperature may affect output properties (Fig.
3C–D). We find that the output amplitudes corresponding to
the maximum and final values, y

m

and y

eq

, respectively, have
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a larger spread relative to temperature, whereas the timescale
⌧

r

depends on temperature similar to the above cases.
These two models illustrate the effect of adding different

negative feedback configurations with the aim of modifying
temperature robustness of the pulse property of the inco-
herent feedforward loop circuit. Of the two, we find that
the negative feedback from y onto itself can help enhance
temperature robustness of the amplitude properties.

Finally, we explored a case in which the temperature
dependence of the circuit given by Eqn. (4)–(5) is known.
For simplicity, we localize the temperature dependence to
one parameter ↵

x

, assuming the remaining parameters to be
independent of temperature. In this case, perfect temperature
compensation can be achieved if a term such as v =

�
�
↵

x

(T ) � ↵

x

(T0))u can be added to Eqn. (4). A possible
biomolecular implementation of this is through the design
of a promoter producing x, but with opposite temperature
dependence.

V. PRELIMINARY EXPERIMENTS

As a step towards the experimental design of an inco-
herent feedforward loop circuit that is temperature-robust,
we performed a preliminary experiment measuring the cir-
cuit dynamics of such a circuit inside cells at different
temperatures. The goal of this experiment was to observe
whether or not temperature affects the behavior of an actual
circuit realization inside growing cells. This implementation
of an incoherent feedforward loop uses transcriptional in-
teractions (Fig. 4A): Transcription factor AraC can activate
the expression of the transcriptional repressor TetR and the
green fluorescent protein deGFP. Both proteins are expressed
under the AraC-activable P

bad

promoter. Additionally, TetR
binding sites are inserted into the P

bad

promoter controlling
expression of deGFP so that it is repressible by TetR. An
advantage of using the transcription factors AraC and TetR is
that their activity can be modulated using inducers arabinose
and anhydrotetracycline (aTc), respectively. Finally, AraC is
expressed from a constitutive promoter that is regulated by
the housekeeping sigma factor �

70. We realized that this
promoter was temperature-sensitive in that its expression
increases with increasing temperature. Further, this sensitiv-
ity is a consequence of the activity of a mutant cI protein,
which can additionally affect the growth rate. Nevertheless,
we proceeded with measurements of this circuit to get a sense
of whether and how temperature can affect the response.

Circuit dynamics were measured in a platereader (BioTek
Synergy H1). A single colony from an LB plate was picked
and grown overnight in a clear, rich media (MOPS-glycerol,
Teknova M2105 with 50% glycerol instead of 20% glucose,
final concentration 0.4% glycerol) at 29

�C. This liquid
culture was diluted 1:50 into fresh media and grown for a
second overnight cycle at the same temperature. Then, the
culture was diluted 1:50 in fresh media and grown for around
2 hours at the same temperature. This culture was used for
assays with appropriate amounts of inducers. Measurements
were performed in a 96-well plate sealed with a Breathe-
EZ membrane. The plate reader protocol alternated double-
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Fig. 4. Preliminary data characterizing the temperature dependence of an
incoherent feedforward loop circuit. A. Schematic illustration of the circuit
realization. B. and C. are measurements at 29�C D. and E. are measurements
at 33�C. In each panel, different colors represent different inducer combi-
nations. ++ara denotes 0.018% arabinose. +ara denotes 0.0018% arabinose.
+aTc denotes 0.001 µg/ml aTc. -ara and -aTc denote the absence of these
inducers. Raw fluorescence and OD values were background subtracted
using well with only media and no cells (autofluorescence was found to
be similar to this blank fluorescence in this media). Each measurement was
performed in triplicate on the same day.

orbital shaking with measurements at 3 minute intervals
of the optical density (600 nm, denoted OD) and green
fluorescent protein (excitation 485 nm, emission 525 nm)
at 29

�C. All growth steps were performed with appropriate
antibiotics.

We found that the circuit could exhibit a pulse response
(Fig. 4B). Interestingly, this pulse response depended on the
presence of the inducer aTc, with no pulse in the absence of
aTc. This is likely due to the strong repressing effect of TetR.
Additionally, there was a small increase in the height of the
pulse as arabinose levels were increased, consistent with the
expectation from the circuit diagram. To check this further,
two different arabinose levels were used in the presence
of aTc (Fig. 4C). As expected, pulse height increased with
arabinose level. Overall, we found an expected pulse-like
shape for this circuit, but the apparent dominant effect of
aTc needed to be investigated further.

To investigate whether this response is temperature depen-
dent, we repeated the above protocol at 33

�C (Fig. 4D,E).
The circuit exhibited a pulse-like shape at this temperature
as well. However, we noted that the maximum pulse am-
plitude as well as the time taken to reach this amplitude
were different. These results provide initial evidence for the
dependence of both the pulse height and timescale of the
response on temperature. We note the two non-idealities of
this circuit realization due to the apparent dominant effect
of the inducer aTc and the temperature-sensitive promoter
expressing AraC. Indeed, addressing the latter through the
use of a different promoter can directly reduce the effect
of temperature on both promoter strengths and the growth
rate, corresponding to the model parameters ↵

x

, ↵

y

and �,
respectively. These measurements naturally raise questions
of how to make this design more temperature-robust, by
addressing these non-idealities as well as through the models



analyzed in previous sections.

VI. CONCLUSIONS AND FUTURE WORK

Design of biomolecular circuits whose function is ro-
bust to temperature is a key challenge. Here, we used
control-theoretic principles to guide the goal of designing a
temperature-robust pulse-generating incoherent feedforward
loop circuit. First, we computationally studied a standard
incoherent feedforward loop circuit using a structured uncer-
tainty representation, pointing out inherent circuit features
that promote robustness. Second, we investigated design
additions that can improve this robustness, including neg-
ative transcriptional feedback at the output stage, and noted
conditions where perfect temperature compensation can be
possible. Third, we present preliminary experiments showing
that the response of an initial incoherent feedforward loop
circuit design can change with temperature. These results
lay the groundwork for the design of a temperature-robust
incoherent feedforward loop circuit.

An interesting aspect in achieving temperature robustness
is how much knowledge of the temperature dependence
of the circuit parameters is required. From one point of
view, some mechanisms can promote temperature robustness
without this information per se. An example is in the first
design variant, where addition of a square root expression
can reduce the Q10 of the output. On the other hand,
it is reasonable to expect knowledge of the temperature
dependence to aid temperature compensation. As in examples
of the production-degradation circuit and the feedforward
loop circuit, this can cancel the effect of temperature through
appropriate feedback. This seems similar to the Internal
Model Principle, where an internal model of a disturbance
in a system allows it complete disturbance attenuation.

A natural extension of this study is to proceed with the
construction of feedforward loop circuit designs with differ-
ent temperature-robustness properties. In addition to experi-
ments in cells, the use of a cell extract-based transcription-
translation environment may also help by providing faster
design cycles [21]. As part of this, a first step is to con-
struct an alternative to the basic incoherent feedforward
loop circuit to verify the predicted inherent temperature
robustness properties. A second step is to add the negative
transcriptional feedback at the output stage and check for
the predicted enhancement in robustness. Additionally, it
should motivate the development of mathematical tools for
uncertainty representations as design aids.

Investigating the design of temperature-robust biomolecu-
lar circuits is part of a larger goal of designing biomolecular
circuits that robustly function in a range of environments.
We have presented foundational steps towards the design of a
temperature-robust incoherent feedforward loop, a biomolec-
ular circuit that is both widespread and exhibits rich dynamic
behavior. These results should help in the design of other
temperature-robust circuits as well as to further analyze
temperature-robustness in naturally occurring biomolecular
circuits.
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