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Abstract— This paper demonstrates the effectiveness of sim-
ple control-theoretic tools in generating simulation-guided ex-
periments on a synthetic in vitro oscillator. A theoretical
analysis of the behavior of such system is motivated by high
cost, time consuming experiments, together with the excessive
number of tuning parameters. A simplified model of the
synthetic oscillator is chosen to capture only its essential
features. The model is analyzed using the small gain theorem
and the theory of describing functions. Such analysis reveals
what are the parameters that primarily determine when the
system can admit stable oscillations. Experimental verification
of the theoretical and numerical findings is carried out and
confirms the predicted results regarding the role of production
and degradation rates.

I. INTRODUCTION

Synthetic biology has two main objectives: engineering
new biological systems out of characterized parts, and, by
systematic modification of existing systems, improving our
understanding of design principles. This interdisciplinary
field attracts scientists from the areas of biology, mathemat-
ics, physics and engineering: a strong theoretical analysis
of experimental data increases our ability to interpret and
predict the behavior of engineered biological devices.

When operating in an in vitro environment with a limited
number of biological parts, scientists have the opportunity
to program and deeply investigate the molecular interactions
that produce overall designed behaviors. This is one of the
most important features of the field of DNA nanotechnol-
ogy [12], and is a key to the development of molecular
computation [11]. But even in a controlled environment,
there are cases in which the behavior of the system under
observation needs a thorough theoretical and experimental
analysis to be correctly interpreted.
A recently proposed synthetic in vitro oscillator [5], com-
posed only of nucleic acids and two enzyme species, presents
several challenges regarding its dynamics and tuning. In
particular, detailed modeling of the underlying chemical
reaction network offers a poor qualitative understanding of its
behavior: the complex model is in turn of little help in aiding
experiments to modulate the frequency/amplitude character-
istics of the circuit. Additionally, the cost and duration of the
experiments make it well worth looking for a better modeling
resource that could qualitatively predict the features of the
oscillator.
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In this paper we consider a simplified model of the
mentioned synthetic oscillator [7] and study its characteris-
tics using classical control-theoretic tools rather than solely
simulations of its differential equations. In particular, we
used the small gain theorem for monotone systems [2], [1] to
derive parametric conditions for which the system can admit
an oscillatory regime. Such results are numerically refined
using the method of the describing functions, which is an
appropriate tool for systems presenting static nonlinearities
and delays.

Under certain simplifying assumptions, we found that
RNA production and degradation, together with the Hill
functions thresholds, confine the region of the parameter
space where oscillations are achievable. We focused on the
role of production and degradation, mapping it qualitatively
to the amounts of enzymes used in the experiments. By
varying the production/degradation enzyme ratio and total
enzyme volume, we collected data that confirm the main fea-
tures of the model predictions. The theoretical and numerical
analysis were therefore useful in guiding the experimental
choices and allowed us to obtain a tuning methodology.

The paper is organized as follows. The synthetic oscillator
we consider is described in Section II, where we outline
its biological features and introduce the chosen simplified
mathematical model. In Section III we report the small-
gain theorem analysis and the numerical results based on
the describing function method. Finally, experimental results
are reported in Section IV.

II. A SYNTHETIC in vitro OSCILLATOR

The in vitro genetic circuits considered in this paper
consist only of nucleic acids (DNA and RNA) and two
enzyme species, RNA polymerase (RNAP) and RNase H.
RNAP binds to DNA double-stranded promoter regions and
transcribes the downstream sequence into RNA. The RNase
H instead hydrolyses and degrades RNA in RNA-DNA
duplexes, releasing the DNA strand.

The genes are synthetic and can be designed using ex-
isting software packages [8], [9]. Each gene state can be
switched on and off by designing its promoter with a nick
on the coding template (the strand complement-transcribed
by RNAP). Exploiting the mechanism of toehold-mediated
branch migration [13], the promoter can be covered or
uncovered, effectively reducing the rate of transcription by
RNAP. For example: a synthetic gene is in an off state when
the promoter is incomplete, i.e. partly single stranded. A
promoter-complementary activating DNA strand in solution
will switch the gene on. This activator is designed to present
an exposed overhang, i.e. is longer than the promoter binding
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Fig. 1: Scheme representing the main chemical reactions
occurring in the considered biochemical oscillator. This is
a two-node oscillator: the synthetic genes T12 and T12

respectively repress or activate one another. Single stranded
nucleic acids dA1, dA2 and dI1 are DNA species whose
concentration is controlled; rA1 and rI2 are RNA species.
Arrows on the nucleic acid strands indicate the 5′ to 3′

orientation. The molecular domains are assigned a color to
emphasize their different roles. Areas that are complementary
have the same color. In orange and red we indicate the activa-
tion/inhibition domains, while the branch migration initiation
toeholds are colored in blue, cyan and light green. Gray and
dark gray indicate promoter and transcribed regions.

region. An inhibiting strand fully complementary to the
activator can strip it off from the promoter, switching the
gene off. While activators can only be designed out of
DNA, inhibitors can be RNA molecules. Different genes can
therefore be interconnected.

The circuit considered in this paper consists of two syn-
thetic genes connected by the RNA they transcribe, as shown
in Figure 1. The gene T21 transcribes RNA species rI2 which
inhibits gene T12. The latter in turn produces rA1, which
activates T21. Through this interconnection, experiments on
this circuit show an oscillatory behavior.

The full dynamics of this biochemical oscillator can be
derived by the underlying chemical reactions. Such model,
presented in [5] and reported in the Appendix A, consists of
7 differential equations and over 20 parameters, giving little
qualitative information and intuition on the system behavior.
A simplified model of the system [7] is:

d[rA1](t)
dt = kp [T12A2](t)− kd [rA1](t), (1)

d[rI2](t)
dt = kp [T21A1](t)− kd [rI2](t), (2)

where

[T12A2](t) = [T tot12 ] Kn
I

Kn
I +[rI2](t−τ)n , (3)

[T21A1](t) = [T tot21 ] [rA1](t−τ)n

Kn
A+[rA1](t−τ)n . (4)

The model assumes a rate of transcription proportional
to the concentration of the activated template and a rate of

degradation proportional to the concentration of RNA. The
constants kp and kd can be thought of as the concentration
of RNAP and RNase H respectively. The activation of the
two templates is described by Hill functions with a delay.
The DNA activator dA2 and inhibitor dI1 act as thresholds
for T12 and T21 respectively: the Hill apparent dissociation
constants KI and KA represent the concentration of input
RNA that is needed before the switches start turning on.
The overall hybridization dynamics, which may be affected
by unwanted and unknown reactions, are accounted for in
the delay τ .

In the rest of the paper, unless otherwise stated, the
parameters will be set to, [T tot12 ] = [T tot21 ] = 100 nM,
KA = KI = 1 µM, kp = 0.04 s−1, kd = 0.002 s−1,
n = 5, τ = 180 s. With this choice, the system defined by
equations (1)-(4), will display sinusoidal oscillations with a
period of about 30 minutes. This choice of the parameters
was initially made for consistency with [7].

III. CONTROL THEORETIC ANALYSIS

The small gain theorem for monotone systems is useful
to explore the areas of the synthetic oscillator parameter
space which admit an oscillatory regime. This method can
be used to prove the existence of global asymptotic stability,
which rules out the existence of stable oscillations. In the
following section we will present a closed form expression
for when the dynamical system converges to an equilibrium
regardless of the initial state. Furthermore the describing
function technique will be applied numerically to verify
when stable oscillations are achieved.

A. The small gain theorem for monotone systems
The small gain theorem for monotone systems [2] can

be used to determine when a monotone system is globally
asymptotically stable. Let us briefly recall the definition of
a monotone system. Consider the following I/O system:

dx

dt
= f(x(t), u(t)) y = h(x), (5)

where x represents the state vector, u and y are scalar input
and output respectively (only SISO systems are considered
in this paper). Denote the solution to the initial value
problem (5), with x(0) = x0, as ϕ(t, x0, u). Let x(t),
u(t) and y(t) evolve on the sets X, U and Y respectively,
which here are assumed to be subsets of ordered Euclidean
spaces, each with a non-empty closed positive cone K. The
positive cone K defines an order, and is assumed to have
the following properties: it is a cone, i.e. αK ⊂ K for
α ∈ R+, it is convex and K ∩ (−K) = {0}. An I/O system
is then monotone if the output map h is order preserving
and for all initial states x1,x2 and all inputs u1(t), u2(t) the
following property holds: if x1 � x2 and u1(t) � u2(t) then
ϕ(t, x1, u1) � ϕ(t, x2, u2) for all t > 0. Here we will only
consider partial orders induced by orthants K in Rn meaning
that x � y iff y − x ∈ K.

We can rewrite equations (1)–(4) as an interconnection of
two subsystems, which will facilitate the direct application
of the small gain theorem. Define system Σ1 as:




d[rI2](t)

dt = kp [T tot21 ] [rA1](t−τ)n

Kn
A+[rA1](t−τ)n − kd [rI2](t)

= f1(rI2, rA1)
y1(t) = [rI2](t) = h1([rI2])

and system Σ2 as:


d[rA1](t)

dt = kp [T tot12 ] Kn
I

Kn
I +[rI2](t−τ)n − kd [rA1](t)

= f2(rA1, rI2)
y2(t) = [rA1](t) = h2([rA1]).

The systems Σ1 and Σ2 are cascaded in a closed-loop
system. To apply the small gain theorem [2] we need to
verify the following points:

(i) Σ1 is monotone when its input and output are ordered
according to the “standard order”, which is the order
induced by the positive real semi-axis.

(ii) Σ2 is monotone when its input is ordered according
to the “standard order” and the output uses an order
induced by the negative real semi-axis.

(iii) Each subsystem I/O characteristics are respectively
monotonically increasing and decreasing.

(iv) Every solution of the closed-loop system is bounded.
(v) The discrete time dynamical system

uk+1 = (ky2 ◦ ky1)(uk)

has a unique globally attractive equilibrium.
First, note that the delays do not affect the stability

analysis using the small gain theorem, so from now on
they will be neglected [1], [3]. For the system Σ1 let the
input, output and state space U1, Y1 and X1 respectively be
equal to R+ with the natural order induced by R+ and for
the system Σ2 let the input, output and state space U2, Y2

and X2 respectively be equal to R+ with the natural order
induced by R+ for U2 and X2 and with the reverse order
induced by R− for Y2. In fact 0 ≤ [rI2] ≤ kp

kd
[T21]tot and

0 ≤[rA1] ≤ kp

kd
[T12]tot which means that the closed loop

system is bounded, i.e. condition (iv) is fulfilled.
Monotonicity of system Σ1 holds because ∂f1

∂[rA1]
≥ 0 and

h1 is monotonically increasing [2]. After making a change
of variable in system Σ2 according to [r̃A1] = −[rA1]
it can be seen that ∂f̃2

∂[rI2]
≥ 0 and h̃2 is monotonically

decreasing, where f̃2 and h̃2 are the functions after the
change of variable, which shows monotonicity. That means
that conditions (i) − (ii) hold. Condition (iii) is fulfilled
since the I/O characteristic ky1([rA1]) = kp

kd
T tot21

[rA1]
n

Kn
A+[rA1]n

of system Σ1 is monotonically increasing and the I/O char-
acteristic ky2([rI2]) = kp

kd
T tot12

Kn
I

Kn
I +[rI2]n

of system Σ2 is
monotonically decreasing.

To prove the existence of a globally attractive equilibrium
of the discrete time dynamical system uk+1 = (ky2 ◦
ky1)(uk), the Banach fixed point theorem can be applied.
Assume that (X, d) is a non-empty complete metric space
and let T : X → X be a contraction mapping on X ,

i.e. there is a non-negative real number q < 1 such that
d(Tx, Ty) ≤ q d(x, y) for all x, y in X. Then the Banach
fixed point theorem states that the map T admits one and
only one fixed point x∗ in X and the sequence xn = Txn−1

converges to the limit x∗.
For the oscillator, let X = R+, d be the Euclidean

distance and the map T be the composition of the two I/O
characteristics ky1(u1) = kp

kd
[T21tot] un

1
Kn

A+un
1
≡ k1

un
1

Kn
A+un

1

and ky2(u2) = kp

kd
[T12tot] Kn

I

Kn
I +un

2
≡ k2

Kn
I

Kn
I +un

2
, i.e. T =

ky2 ◦ ky1 . To show that T is a contraction mapping, it is
enough to show that the derivative |D(ky2 ◦ ky1)| < 1. To
that end, use the fact that

|D(ky2 ◦ ky1)(u)| = |Dky2(ky1(u))Dky1(u)|
≤ sup |Dky2 | sup |Dky1 | (6)

The derivatives are

Dky2(u) = −nun−1k2
Kn
I

(Kn
I + un)2

, (7)

Dky1(u) = k1
nun−1

Kn
A + un

− nun−1k1
un

(Kn
A + un)2

(8)

and the supremum is found at

arg sup |Dky2 | = KI

(
n− 1
n+ 1

)1/n

≡ KIc, (9)

arg sup |Dky1 | = KA

(
n− 1
n+ 1

)1/n

≡ KAc, (10)

where n is the Hill coefficient and c is a constant used to
simplify calculations. By plugging the arguments in equa-
tions (9) and (10) into equations (7) and (8) respectively, we
find that

sup |Dky2 | = |Dky2(KIc)| =
k2

KI

ncn−1

(1 + cn)2
,

sup |Dky1 | = |Dky1(KAc)| =
k1

KA

ncn−1

(1 + cn)2
.

Restricting ourselves to the case when k1 = k2 = k and
KI = KA = K, equation (6) becomes

|D(ky2 ◦ ky1)(u)| ≤ sup |Dky2 | sup |Dky1 | =

=
(
k

K

)2(
ncn−1

(1 + cn)2

)2

< 1

or K
k > ncn−1

(1+cn)2 .
With n = 5 the condition for convergence is

K

k
' 1.3.

Summing up, in this section we have used the small
gain theorem to explore the influence of phenomenological



parameters representing thresholds, delays, RNA production
and degradation rates on the system oscillatory regime. In
particular, we have derived a relationship between thresholds
and ratio of production to degradation that defines a region in
the parameter space where oscillations are not admitted. In
the next sections, we will compare this result with numerical
simulations.

B. Describing functions

The describing function (DF) method is an approximate
technique allowing to determine whether a closed loop
linear dynamical system presenting nonlinearities can admit
periodic orbits. This technique has been previously applied to
models of biological oscillators [10], investigating the effect
of delays, of the Hill coefficient and of the linear transfer
function order. The DF method can be used to determine
at what frequencies periodic solutions can occur, what the
amplitude and offset are, and whether the oscillatory regime
is stable or not.

The idea with describing functions is that they give the
gain of the system at a particular frequency just as the trans-
fer function does for linear systems. The difference is that
describing functions are dependent on the size of the input
signal, which is natural since they describe a nonlinear sys-
tem. To define the describing functions for the dc-component
and fundamental frequency of a static nonlinear system f ,
assume that the input signal can be written as w(t) =
B+A sin (ωt) . The output of the static system equals z(t) =
f (w (t)) ≈ c0(A,B)+c1(A,B) sin (ωt+ φ (A,B)) , where
the last step is a truncation of the Fourier series of the output.
It then follows that the first two describing functions can be
written as:

H (A,B) =
c0 (A,B)

B
,

F (A,B) =
c1 (A,B) eiφ(A,B)

A
.

The method can be directly applied to the biochemical
oscillator described by equations (1)–(4). The dynamical
system can be viewed as a closed-loop system with two
subsystems, each consisting of a low-pass filter Ḡi(s) =
kp

s+kd
with a delay e−sτ , cascaded with the static nonlin-

ear Hill function [T tot21 ] [rA1]
n

Kn
A+[rA1]n

and [T tot12 ] Kn
I

Kn
I +[rI2](t−τ)n

respectively (Fig. 2). The presence of low pass transfer func-
tions guarantees that higher frequencies will be attenuated,
satisfying one of the requirements for the application of the
DF method. Indeed, the harmonic balance technique is only
verified at the zero and first order harmonics, neglecting
higher frequency components of the propagated signal.

The harmonic balance equations that have to be solved
are [4], [10]:

f1 e−sτ Ḡ1

f2e−sτḠ2

w1

z1

z2

w2
G1

G2

Fig. 2: Block diagram of the biochemical oscillator. Each
Ḡi block represents a linear dynamical system, while the fi
blocks represent a static nonlinearity.

2∏
j=1

Hj(Aj , Bj)Gj(0) = 1, (11)

2∏
j=1

Fj(Aj , Bj)Gj(iω) = 1, (12)

assuming that the input signals to the two nonlinearities can
be written as wj(t) = Bj + Aj sin(ωt), j ∈ {1, 2} and
that Hj and Fj are the so called describing functions for
the dc-component and fundamental frequency respectively.
Equations (11)–(12) express the requirement for sustained
oscillations, which is that the closed loop gain for the offset
component and fundamental frequency has to be equal to
one.

C. Numerical results

In this section, the area of the parameter space admitting
oscillations will be analyzed numerically, comparing the re-
sults with the small gain theorem predictions. Such numerical
analysis is based on the DF method, solving equations (11)-
(12). After rewriting A2 and B2 in terms of A1, B1 and
ω, this becomes a system of three unknowns, which can
be solved with the MATLAB function lsqnonlin with
constraints enforcing the variables to be positive. In fact
ω can be solved for separately from equation (12), which
comes from the fact that the describing functions Fj are
real for the model of the biochemical oscillator. This leaves
two unknowns. To ensure that the periodic solutions are
stable, we need to verify that the derivative of the closed-
loop gain for the fundamental frequency as a function of
the amplitude A1 is negative at the amplitude A1,sol of
the oscillations [10]. This ensures stability because if the
amplitude is slightly increased then the closed-loop gain
will decrease and the trajectory will return to the limit
cycle. The converse holds if the amplitude is decreased. To
determine whether the derivative is negative, two amplitudes
A1,left = A1,sol − 4A1 and A1,right = A1,sol + 4A1,
where 4A1 is small, are chosen. Then B1(A1) is solved
for in equation (11) and finally the two closed-loop gains
2∏
j=1

Fj(Aj , Bj)Gj(iω) with A1 = A1,left, B1 = B1(A1,left)

and A1 = A1,right, B1 = B1(A1,right) respectively are



Fig. 3: Simulation results based on the DF method, illus-
trating the influence of the parameters K and k on the
oscillatory regime. Green stars indicate the existence of
stable oscillations and red means a lack thereof. The limit
given by the small gain theorem is represented by the black
line, to the left of which the system is asymptotically stable.

calculated. By taking the difference of the gains, the sign
of the derivative is obtained.

The small gain theorem gave us a relation between
k = kp

kd
[T totij ] and K = KA = KI when the system is

globally asymptotically stable. This relation can be verified
with the describing function analysis by marking whether
the system displays stable oscillations or not in a graph with
k on the x-axis and K on the y-axis (Fig. 3). The describing
function analysis also provides additional information for
parameter values where global asymptotic stability is not
achieved.

The quotient k = kp

kd
[T totij ] that appears in the small

gain theorem analysis indicates the importance of having
the right relation between kp, which can be interpreted as
the concentration of the enzyme RNAP and kd, which can
be interpreted as the concentration of the enzyme RNase H.
Having too little RNAP or too much RNase H will make
the quotient K

k > 1.3, which implies that there can not be
sustainable oscillations.

To highlight the effects of the choice of enzyme con-
centrations, the frequency and amplitude of the oscillations
can be plotted as a function of kp and kd by applying the
describing function technique (Fig. 4). Once again it can be
seen that if the quotient kp

kd
gets too small oscillations are not

achieved, but it is also seen that kd being too small prohibits
oscillations.

Last it is interesting to answer whether a too high kp
or in other words too much of the enzyme RNAP, has
negative effects. It turns out that such a choice results in
oscillations with increasingly longer periods. Using only the
MATLAB function dde23 in combination with a program
that detects the extrema of the trajectory, it is possible to
generate a graph with the angular frequency plotted versus
kp (Fig. 5). It is clear from the graph that the frequency

Fig. 4: Amplitude and frequency are plotted as a function
of of kp (RNAP) and kd (RNase H). The system does not
achieve oscillations in the dark blue areas.

Fig. 5: Numerical simulation of the angular frequency plotted
versus kp with τ = 1200s. A high value of RNA production
kp results in slow oscillations.

decreases monotonically with kp which is the fact that makes
it undesirable to have too much RNAP. When periods start
approaching several hours, it is no longer practical for real
experiments. To emphasize this effect, the delay τ was here
also increased to 1200 s. Regardless of the choice of τ the
monotonically decreasing graphs are obtained, but with this
particular choice the period becomes as high as 3 hours when
kp = 9.6 s−1.

IV. EXPERIMENTAL RESULTS

The analysis based on the small gain theorem and the
DF method was helpful in directing the experimental work
on the synthetic oscillator. Previous observations on the
role of the enzyme amounts suggested that frequency and
amplitude of the oscillations were particularly sensitive to
such parameters. In particular, Figure 4 shows that only
certain ratios of RNA production (RNAP) to degradation
(RNase H) will yield an oscillatory regime. We decided
to focus on this aspect of the numerical results, and run
a series of experiments where the enzyme volumes were
systematically tuned. The results qualitatively confirm the
numerical predictions and provide a methodology to modu-
late frequency and amplitude of the oscillations.



Fig. 6: Effects of RNAP:RNase H volume ratio for a fixed
total enzyme volume of 6 µL. The oscillatory regime is lost
for ratios that are too low (the period decreases until the high
amplitude is damped) or too high (the period increases while
the amplitude is shrinked).

Fig. 7: Effects of total enzyme volume variations for a fixed
RNAP:RNase H volume ratio of 8 : 1. The oscillatory regime
is lost if the total volume is too low, because the produc-
tion/degradation dynamics are not sufficiently sustained.

Fig. 8: The data collected varying enzyme ratios and volumes
are summarized and fitted. The areas of the graph that are not
in color correspond to enzyme amounts that will not yield
an oscillatory regime.

1) Materials and Methods: All the DNA was purchased
from Integrated DNA Technologies, Coralville, IA. Template
T21 is monitored in the experiments, and is labeled with the
TYE665 fluorophore (649/665nm ex/em), while Activator
dA1 is labeled with the IAB fq quencher molecule. The
strand sequences are reported in Appendix B. T7 RNAP was
purchased from Epicentre Biotechnologies, Cat. n. TM910K.
E. coli cloned RNase H was purchased from Ambion, Cat. n.
AM2292. Nucleoside triphosphates (NTPs) were purchased
from Epicentre Biotechnologies, Cat. n. RN02825. Transcrip-
tion buffer and dithiothreitol (DTT) were purchased from
Epicentre Biotechnologies, Cat. n. BP1001. Pyrophosphatase
was purchased from Sigma Aldrich, Cat. n. I1891-100UN,
and diluted in Tris HCl 20 mM, pH 7.2, 50% glycerol (v/v)
to a final concentration of 0.015 Units/µL.

The DNA templates were annealed by heating at 95◦C and
slow cooling cycles. Each experiment had the target DNA
concentrations of T12 60 nM, dA1 250 nM, T21 125 nM,
dA1 175 nM and dI1 350 nM. The buffer conditions were set
at: 7.5 mM each NTP, 1x transcription buffer, 10 mM DTT,
35 mM Magnesium Chloride, 0.015 U/µL pyrophosphatase.
Final volume was of 60 µL. The total enzyme amounts in
solution were varied between 2− 10 Units for RNase H and
400 − 1400 Units for RNAP. The unit definitions for each
enzyme used are provided by the vendors.

The on/off state of the template T21 was monitored by
measuring the fluorescence of the corresponding fluorophore.
When the template is bound to its activator, i.e. the gene is
on, its fluorescence is quenched. The signal is instead high
when the gene is off. The experiments were run at 37◦C in a
Fluorolog 3 Spectrofluorimeter, Horiba Jobin-Yvon. The data
are normalized to arbitrary units between 0 and 1, relative to
maximum and minimum fluorescence measured for the T21

switch.
2) Results: If the volume ratio of RNAP to RNase H is

varied, a range of oscillatory trajectories is observed. The
system can sustain oscillations for 12–18 hours: the loss of
enzyme activity, build up of waste products and exhaustion
of NTPs cause the degradation of the oscillatory performance
over time. For a total enzyme volume fixed at 6 µL, with
the RNAP:RNase H ratio varied between 20 : 1 and 5 : 1,
the results are shown in Figure 6. If the enzyme ratio is
fixed to 8 : 1, while the total volume is varied, we obtain
results as in Figure 7. While we cannot explicitly map
the enzyme amounts that are used in experiments with the
phenomenological parameters kp and kd, the theoretical anal-
ysis is qualitatively confirmed by the experiments. We can
reason in terms of transcription and degradation “strength”.
In Figure 4, we observe that for a given kp, or transcription
strength, oscillations are achieved if the degradation is within
certain bounds. We can repeat a similar reasoning if we fix
kd. In Figure 6 we observe that indeed sustained oscillations
(presenting period between 1 and 3 hours, and amplitude
more than 0.3) are obtained only for enzyme ratios between
18 : 1 and 8 : 1. On the other hand, for a given ratio, varying
the total volume of enzyme can result in reaching or losing
the oscillatory regime. In Figure 7, for a ratio of 8 : 1,



oscillations are lost for a too low total amount of enzyme.
Qualitatively, the plot in Figure 4 also suggests that if kp and
kd are both low, the oscillations vanish. The results showing
the overall influence of enzyme amounts on amplitude and
frequency of oscillations is summarized in Figure 8, which is
the experimental counterpart of Figure 4. As predicted in the
numerical study of the effects of kp on the oscillations period
(Fig. 5), when the amount of RNAP is too high, we obtain
oscillations with very low frequency and large amplitude.
Conversely, when a low enzyme ratio is used, the system hits
a regime presenting very fast and low amplitude oscillations.
These plots show how by solely tuning the enzyme amounts
we can modulate frequency and amplitude, but the two seem
to be inversely correlated and cannot be set independently.

V. CONCLUSIONS

In this paper we have considered an in vitro genetic circuit
given by a two node oscillator. Such a system has been
recently proposed [7]. Given the cost and duration of the
experiments, having a predictive qualitative model of the sys-
tem is helpful in exploring the oscillator performance. Rather
than resorting solely to extensive numerical simulation of
the full chemical reaction network composing the oscillator,
we focused our attention on a simplified phenomenological
model. The application of the small gain theorem and the
method of the describing functions allowed us to derive
simple relationships between the system parameters that
characterize convergence of the system rather than a periodic
behavior. Further numerical analysis showed how production
and degradation rates define areas in the parameter space
where oscillations are possible. These results were helpful
in guiding the experiments on this system, and were quali-
tatively confirmed by the data collected.
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APPENDIX

A. Full model of the biochemical oscillator

A model derived from the chemical reactions that compose
the biochemical oscillator is reported below. This model
neglects spurious interactions that can occur among the de-
signed nucleic acids, the effect of byproducts of incomplete
degradation of RNA-DNA duplexes by RNase H, and finally
the basal transcription that may result from binding of RNAP
to the DNA templates in an off state. The model states are
the concentrations of each nucleic acid present in solution.
It is assumed that the enzymes act on their DNA substrate
satisfying the assumptions of a Michaelis-Menten reaction.
The enzyme species are therefore not added as further states.
For further discussion on this model, the reader is addressed
to [5].

d[T21]

dt
= − kT A1[T21][dA1] + kT AI1[T21dA1][dI1],

d[dA1]

dt
= − kAI1[dA1][dI1] − kT A1[T21][dA1] + kAIrA1[dA1dI1][rA1],

d[dI1]

dt
= − kAI1[dA1][dI1] − krAI1[rA1][dI1] − kT AI1[T21dA1][dI1]+

+
kcatH1

KMH1
[RNaseH][rA1dI1],

d[rA1]

dt
= − krAI1[rA1][dI1] − kAIrA1[dA1dI1][rA1]+

+
kcat12

KM12
[RNAP ][T12dA2],

d[T12]

dt
= − kT A2[T12][dA2] + kT AI2[T12dA2][rI2],

d[dA2]

dt
= − kAI2[dA2][rI2] − kT A2[T12][dA2] +

kcatH2

KMH2
[RNaseH][dA2rI2],

d[rI2]

dt
= − kAI2[dA2][rI2] − kT AI2[T12dA2][rI2] +

kcat21

KM21
[RNAP ][T21dA1].

B. DNA sequences

T21-NonCoding (101mer)

TYE665/CATTAGTGTCGTTCGTTCACAGTAATACGACTCACTATAGGGAGAGTAAA

ACGGATTGAAGCAAGGGTAAGATGGAATGATAATACTGACAAAGTCAGAAA

T21-Coding (74mer)

TTTCTGACTTTGTCAGTATTATCATTCCATCTTACCCTTGCTTCAATCCGTTTTACT

CTCCCTATAGTGAGTCG

dA1 (36mer)

IAbRQ/TATTACTGTGAACGAACGACACTAATGAACTACTAC

dI1 (38mer)

GTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTTCACAG

T12-NonCoding (106mer)

TYE563/AAGCAAGGGTAAGATGGAATGATAATACGACTCACTATAGGGAGAAA

CAAAGAACGAACGACACTAATGAACTACTACTACACACTAATACTGACAAAGTC

AGAAA

T12-Coding (79mer)

TTTCTGACTTTGTCAGTATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTCGTT

CTTTGTTTCTCCCTATAGTGAGTCG

dA2 (35mer)

IAbFQ/TATTATCATTCCATCTTACCCTTGCTTCAATCCGT


