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Kalman Filtering Over A Packet Dropping

Network: A Probabilistic Perspective

Ling Shi, Michael Epstein and Richard M. Murray

Abstract

We consider the problem of state estimation of a discrete time process over a packet dropping net-

work. Previous work on Kalman filtering with intermittent observations is concerned with the asymptotic

behavior of E[Pk], i.e., the expected value of the error covariance, for a given packet arrival rate. We

consider a different performance metric, Pr[Pk ≤ M ], i.e., the probability that Pk is bounded by a

given M . We consider two scenarios in the paper. In the first scenario, when the sensor sends its

measurement data to the remote estimator via a packet dropping network, we derive lower and upper

bounds on Pr[Pk ≤ M ]. In the second scenario, when the sensor preprocesses the measurement data

and sends its local state estimate to the estimator, we show that the previously derived lower and upper

bounds are equal to each other, hence we are able to provide a closed form expression for Pr[Pk ≤M ].

We also recover the results in the literature when using Pr[Pk ≤ M ] as a metric for scalar systems.

Examples are provided to illustrate the theory developed in the paper.

I. INTRODUCTION

In the past decade, networked control systems have gained attention from both the control

community and the network and communication community [1]. When compared with classical

feedback control systems, networked control systems have several advantages. For example, they

can reduce the system wiring, make the system easy to operate and maintain and later diagnose

in case of malfunctioning, and increase system agility. Although networked control systems

have advantages, inserting a network in between the plant and the controller can introduce
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many problems as well. For example, in communication networks, data packets that carry the

information can be dropped, delayed or even reordered due to the network traffic conditions.

When closing the control loop over such communication networks, the overall system might

have poor performance or even become unstable when the aforementioned issues exist. Thus

the effect that those issues have on the closed loop system performance must be fully analyzed

before networked control systems become commonplace.

Recently, many researchers have investigated these issues and some significant results were

obtained and many are in progress. The problem of state estimation and stabilization of a linear

time invariant (LTI) system over a digital communication channel which has a finite bandwidth

capacity was introduced by Wong and Brockett [2], [3] and further pursued by others (e.g.,

[4]–[7]). Elia [8] considered the problem of stabilizing a networked control system over fading

channels. Sinopoli et al. [9] discussed how packet loss can affect state estimation. They showed

there exists a certain threshold of the packet arrival rate below which, E[Pk], the expected

value of the error covariance matrix, becomes unbounded as time goes to infinity. They also

provided lower and upper bounds of the threshold value. The authors extended their result

from estimation to closed loop control in [10] where stability region of packet arrival rates are

provided. Following the spirit of [9], Liu and Goldsmith [11] extended the idea to the case

where there are multiple sensors and the packets arriving from different sensors are dropped

independently. They provided similar bounds on the packet arrival rate for a stable estimate,

again in the expected sense. A scheme based on multi-description coding for packet dropping

networks, but limited to the estimation, is considered in [12]. Gupta et al. [13] studied the

problem of LQG control across packet dropping networks and showed that it is optimal to let

the sensor preprocess the measurement data and sends its local state estimate to the remote

estimator over a packet dropping network. The implicit assumption of their work is that the

sensor has unlimited computation capability. The readers are referred to [14] and references

therein for some recent results in the area of networked control systems.

The problem of state estimation of a dynamical system where measurements are sent across a

packet dropping network is also the focus of this work. Despite the great progress of the previous

researchers, the problems they have studied have certain limitations. For example, in both [9]

and [11], the authors assumed that packets are dropped independently, which is certainly not true

in the case where bursts of packets are dropped or in queuing networks where adjacent packets
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are not dropped independently. They also use E[Pk] as the measure of performance, which can

conceal the fact that events with arbitrarily low probability can cause the expected value diverge,

and it might be better to ignore such events that occur with arbitrarily low probability. We will

provide such an example in Section III-C after necessary definitions are given.

The goal of the present work is to give a different characterization of the estimator performance

by considering a probabilistic description of the error covariance, i.e., Pr[Pk ≤ M ]. For scalar

systems, this is equivalent to considering the cumulative distribution of the random variable Pk.

In [15] the present authors first introduced this notion for the same problem setting but under

the additional assumption that the measurement matrix, C, is invertible. In [16], the present

authors extended the result to the case when C is not invertible. However, extra assumptions

are made, e.g., in order to obtain the upper bound of Pr[Pk ≤ M ], A is assumed to be purely

unstable, i.e., |λi(A)| ≥ 1 for all i, where λi(A) is the i-th eigenvalue of A.

The main contributions of this paper are summarized as follows:

1) Unlike previous work where the a priori error covariance is studied, we consider the a

posteriori error covariance in this paper.

2) We remove the constraint in [16] that requires A to be unstable and work with arbitrary

A.

3) We are able to recover the result in [9] for scalar systems, i.e., from the result using

Pr[Pk ≤M ] as a metric, we derive the stability result using E[Pk ≤M ] as a metric.

4) We study the case when the sensor can preprocess the information and sends its own

state estimate to the remote estimator. In this case, we show the previously derived lower

and upper bounds on Pr[Pk ≤ M ] are the same and hence we are able to give an exact

expression for Pr[Pk ≤M ].

The rest of the paper is organized as follows. In Section II, the mathematical model of the

system that we consider is given. In Section III, some frequently used terms are defined, a quick

summary of Kalman filter updating equations is provided and some results on E[Pk] from [9] is

reviewed. In Section IV we consider the case when the sensor directly sends its measurement

packet to the estimator and we derive lower and upper bounds for Pr[Pk ≤ M ]. In Section V

we consider the case when the sensor preprocesses the measurement and sends its own state

estimate to the remote estimator. In Section VI we provide two examples to demonstrate the

theory developed. The paper concludes with a summary of our results and a discussion of the

August 4, 2008 DRAFT



4

Fig. 1. System Block Diagram

work that lies ahead.

II. PROBLEM SETUP

We consider the networked control system shown in Fig. 1.

The process dynamics and sensor measurement equation are given as follows:

xk = Axk−1 + wk−1, (1)

yk = Cxk + vk. (2)

In the above equations, xk ∈ IRn is the state vector, yk ∈ IRm is the observation vector, wk−1 ∈

IRn and vk ∈ IRm are zero mean, white, Gaussian random vectors with E[wkwj
′] = δkjQ ≥ 0,

E[vkvj
′] = δkjR > 0, E[wkvj

′] = 0 ∀j, k, where δkj = 0 if k 6= j and δkj = 1 otherwise. We

assume that the pair (A,C) is observable and (A,
√
Q) is controllable.

Depending on its computational capability, the sensor can either send yk or preprocess yk and

send x̂sk to the remote estimator, where x̂sk is defined at the sensor as

x̂sk , E[xk|y1, · · · , yk].

The two cases correspond to the two scenarios in Fig. 1, i.e., sensor with limited or unlimited

computation.

We assume that the data packets from the sensor (either yk or x̂sk) are to be sent across a packet

dropping network, with negligible quantization effects, to the estimator. Thus the estimator will
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either receive a perfectly communicated data packet or none at all. Let γk be the random variable

indicating whether a packet is dropped at time k or not, i.e., γk = 0 if a packet is dropped and

γk = 1 otherwise.

In addition, we assume the sensor has the ability to store some previous measurements in

a buffer when needed. Therefore each packet sent through the network could contain a finite

number of the previous measurements. In packet based networks the transmitted packet usually

contains a fixed amount space for data, therefore if less than this amount is needed to be

transmitted, the packet is padded to meet the required length [17]. We assume all the data from

the buffered measurements can fit into a single packet and therefore the additional measurements

do not increase the bandwidth required nor the packet dropping rate (we require this when C is

not full rank).

We define the following state quantities at the remote state estimator:

x̂−k , E[xk|all data packets up to k − 1],

x̂k , E[xk|all data packets up to k],

P−k , E[(xk − x̂−k )(xk − x̂−k )′],

Pk , E[(xk − x̂k)(xk − x̂k)′].

As mentioned in Section I, we are interested in finding a closed form solution to Pr[Pk ≤M ]

given M . In the next few sections, we consider the two scenarios in Fig. 1 and provide results

on Pr[Pk ≤M ] for each of them.

III. PRELIMINARIES

A. Definitions

The following terms that are frequently used in subsequent sections are defined in this section.

It is assumed that (A,C,Q,R) are the same as they appear in Section II; X ∈ Sn+ where Sn+ is

the set of n by n positive semi-definite matrices; fi is a function from Sn+ → Sn+, i = 1, 2; Yi is

a random variable where the underlying sample spaces will be clear from its context.
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ρ(A) , max
i
|λi(A)|,

h(X) , AXA′ +Q,

g(X) , h(X)− AXC ′[CXC ′ +R]−1CXA′,

g̃(X) , X −XC ′[CXC ′ +R]−1CX,

f1 ◦ f2(X) , f1(f2(X)),

Pr[Y1|Y2] , Pr[Y 1] given Y2.

B. Kalman Filtering Preliminaries

If the network between the sensor and the estimator is perfect, i.e., no packet is dropped, then

it is well known that the optimal linear estimator for the system described by Eqn (1) and (2)

is a standard Kalman filter, denoted as KF. We write (x̂k, Pk) in compact form as

(x̂k, Pk) = KF(x̂k−1, Pk−1, yk),

which represents the follow set of equations:

x̂−k = Ax̂k−1,

P−k = APk−1A
′ +Q,

Kk = P−k H
′
k[HkP

−
k H

′
k +Rk]

−1,

x̂k = Ax̂k−1 +Kk(yk −HkAx̂k−1),

Pk = (I −KkHk)P
−
k .

With some manipulation, P−k and Pk can be shown to satisfy

P−k = g(P−k−1), Pk = g̃ ◦ h(Pk−1).

Let P ∗ be the unique positive semi-definite solution1 to g(X) = X , i.e., P ∗ = g(P ∗). Define P

as P , g̃(P ∗). Then we have

g̃ ◦ h(P ) = g̃ ◦ h ◦ g̃(P ∗) = g̃ ◦ g(P ∗) = g̃(P ∗) = P ,

where we use the fact that h ◦ g̃ = g. In other words,

P ∗ = lim
k→∞

P−k , P = lim
k→∞

Pk.

1Since (A, C) is assumed to be observable and (A,
√

Q) controllable, from standard Kalman filtering analysis, P ∗ exists.
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C. Kalman Filtering with Intermittent Observations

Consider the case when the sensor sends the measurement data to the estimator without

processing it. Sinopoli et al. [9] showed that the Kalman filter is still the optimal linear estimator

in this setting. There is a slight change to the standard Kalman filter in that only the time update

is performed when a measurement packet is dropped. When a measurement is received, both

the time and measurement update steps are performed. The filtering equations are thus the same

as KF except that

x̂k = x̂−k + γkKk(yk − Cx̂−k ) (3)

Pk = P−k − γkKkCP
−
k . (4)

Unlike the standard Kalman filtering setting where Pk is a deterministic quantity (given an

initial value P0), the randomness of the data packet drops makes it a random variable as well.

When γk’s are independent and identically distributed Bernoulli random variables with mean

γ, it was shown in [9] that there exists a critical value γc such that if γ > γc, E[Pk] converges

as k →∞ and diverges otherwise. When C−1 exists, γc is given in exact form as

γc = 1− 1

ρ(A)2
. (5)

Using E[Pk] as a metric, however, may conceal the fact that events with arbitrarily small

probability can make the expected value diverge, and it might be better to ignore such events

when evaluate the performance of the estimator. For example, consider the unstable scalar system

with a = 2, q = 1, P0 = 1 in Eqn (1). Let the packet arrival rate γ be

γ = 0.74 < γc = 1− 1

a2
= 0.75.

Then from [9] we conclude that

lim
k→∞

E[Pk] =∞.

This is easily verifiable by considering the event σ that no packets are received in all k time

steps. Then

E[Pk] ≥ E[Pk|σ]Pr[σ] > (0.26k)4kP0 = 1.04kP0 = 1.04k.

By letting k go to infinity, we see that E[Pk] diverges. Thus σ alone can make E[Pk] diverge, and

the probability that σ occurs approaches zero when k goes to infinity. This partially motivates

us to consider Pr[Pk ≤ M ] as a metric to evaluate the performance of the estimator subject to

packet drops.
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IV. SENSORS WITH LIMITED COMPUTATION

A. Lower and Upper Bounds of Pr[Pk ≤M ]

Similar to [9], the optimal state estimate x̂k and its error covariance matrix Pk are given by

(x̂k, Pk) =

 (Ax̂k−1, h(Pk−1)), if γk = 0,

KF(x̂k−1, Pk−1, yk), if γk = 1.

As a result,

Pk =

 h(Pk−1), if γk = 0,

g̃ ◦ h(Pk−1), if γk = 1.

Assume C is full rank, and without loss of generality, assume C−1 exists. We show in

Remark 4.7 that the main result developed in Theorem 4.6 extends naturally to the general

case.

Define M , C−1RC−1′ . Then we have the following result that shows the relationship between

Pk and M .

Lemma 4.1: For any k ≥ 1, if γk = 1, then Pk ≤M .

Proof: As γk = 1, we have Pk = g̃ ◦ h(Pk−1) ≤ M , where the inequality is due to

Lemma A.2 in Appendix A.

Remark 4.2: We can also interpret Lemma 4.1 as follows. One way to obtain an estimate x̃k

when γk = 1 is simply by inverting the measurement, i.e., x̃k = C−1yk. Therefore

ẽk = C−1vk and P̃k = E[ẽkẽ
′

k] = C−1RC−1′ = M.

Since Kalman filter is optimal among the set of all linear filters, we must have Pk ≤ P̃k = M .

For M ≥M , define k1(M) and k2(M) as follows:

k1(M) , min{t ≥ 1 : ht(M) �M}, (6)

k2(M) , min{t ≥ 1 : ht(P ) �M}. (7)

We sometimes write ki(M) as ki, i = 1, 2 for simplicity for the rest of the paper. The following

lemma shows the relationship between P and M as well as k1 and k2.

Lemma 4.3: (1) P ≤M ; (2) k1 ≤ k2 whenever either ki is finite, i = 1, 2.
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Proof: (1) P = g̃(P ∗) ≤ M where the inequality is from Lemma A.2 in Appendix A. (2)

Without loss of generality, we assume k2 is finite. If k1 is finite, and k1 > k2, then according to

their definitions, we must have

M ≥ hk1−1(M) ≥ hk1−1(P ) ≥ hk2(P ),

which violates the definition of k2. Notice that we use the property that h is nondecreasing as

well as h(P ) ≥ P from Lemma A.1 and A.3 in Section A in the Appendix. Similarly we can

show that k1 cannot be infinite. Therefore we must have k1 ≤ k2.

Lemma 4.4: Assume P0 ≥ P . Then for all k ≥ 0, Pk ≥ P .

Proof: We prove this by induction. Assume Pk ≥ P for some k ≥ 0. This clearly holds

when k = 0. Let us consider Pk+1.

If γk+1 = 1, then

Pk+1 = g̃ ◦ h(Pk) ≥ g̃ ◦ h(P ) = P ,

where the inequality is due to Lemma A.1 in Appendix A.

If γk+1 = 0, then

Pk+1 = h(Pk) ≥ h(P ) ≥ P .

The induction step is thus complete.

Define Nk as the number of consecutive packet drops at time k, i.e.,

Nk , min{t ≥ 0 : γk−t = 1}. (8)

Notice that Nk is also a random variable which depends on the underlying packet arrival

sequence. Let us consider a scalar example to illustrate k1, k2 and Nk.

Example 4.5: Consider Eqn (1) and (2) with A = 1.4, C = 1, Q = 0.2, R = 0.5. It is easy to

verify that P = 0.3083, M = 0.5. For M = 5, it is calculated that k1(M) = 3, k2(M) = 4. We

plot Pk for one possible packet arrival sequence in Fig. 2 with h in the figure indicating that

the data packet is lost at that time and g indicating that the data packet arrives at the estimator.

Notice that whenever the estimator receives a packet, Pk is seen to be between P and M , no

matter how large Pk−1 is. For this particular example, we have N1 = 1, N2 = 0, N3 = 1, N4 = 2,

etc.
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Fig. 2. A Packet Arrival Sequence

With the definitions of k1, k2 and Nk, we have the following theorem that provides lower and

upper bounds on Pr[Pk ≤M ].

Theorem 4.6: Assume P ≤ P0 ≤M . For any M ≥M , we have

1−Pr[Nk ≥ k1] ≤ Pr[Pk ≤M ] ≤ 1−Pr[Nk ≥ k2]. (9)

Proof: We divide the proof into two parts.

1) Let us first prove

1−Pr[Nk ≥ k1] ≤ Pr[Pk ≤M ].

As γk = 1 or 0, there are in total 2k possible realizations of γ1 to γk as seen from Fig. 3.

Let Σ1 denote those packet arrival sequences of γ1 to γk such that Nk ≥ k1. Similarly let Σ2

denote those packet arrival sequences such that Nk < k1. Let Pk(σi) be the error covariance at

time k when the underlying packet arrival sequence is σi, where σi ∈ Σi, i = 1, 2. Consider a

particular σ2 ∈ Σ2. As γk−k1+1 = 1, from Lemma 4.1, Pk−k1+1 ≤M . Therefore we have

Pk(σ2) ≤ hk1−1(Pk−k1+1) ≤ hk1−1(M) ≤M,

where the first and second inequalities are from Lemma A.1 in Appendix A and the last inequality

is from the definition of k1. In other words,

Pr[Pk ≤M |σ2] = 1.
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Fig. 3. Nk ≥ k1

Therefore we have

Pr[Pk ≤M ] =
∑

σ∈Σ1∪Σ2

Pr[Pk ≤M |σ]Pr(σ)

=
∑
σ1∈Σ1

Pr[Pk ≤M |σ1]Pr(σ1) +
∑
σ2∈Σ2

Pr[Pk ≤M |σ2]Pr(σ2)

≥
∑
σ2∈Σ2

Pr[Pk ≤M |σ2]Pr(σ2)

=
∑
σ2∈Σ2

Pr(σ2) = Pr(Σ2) = 1−Pr(Σ1) = 1−Pr[Nk ≥ k1],

where the first equality is from the total probability theorem, the second equality holds as Σ1

and Σ2 are disjoint, the third inequality holds as the first sum is non-negative, the rest equalities

are easy to see.

2) We now prove

Pr[Pk ≤M ] ≤ 1−Pr[Nk ≥ k2].

Let Σ′1 denote those packet arrival sequences of γ1 to γk such that Nk ≥ k2, and Σ′2 denote

those packet arrival sequences such that Nk < k2 (Fig. 4). Consider σ′1 ∈ Σ′1. Let

s(σ′1) = min{t ≥ 1 : γk−t = 1|σ′1}.

As σ′1 ∈ Σ′1, we must have s ≥ k2. Consequently,

Pk(σ
′
1) = hs(σ

′
1)(Pk−s(σ′1)) ≥ hs(σ

′
1)(P ),
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Fig. 4. Nk ≥ k2

where the inequality is from Lemma 4.4. Therefore we conclude Pk(σ
′
1) � M . Otherwise

hs(σ
′
1)(P ) ≤ Pk(σ

′
1) ≤M , which violates the definition of k2. In other words, Pr[Pk ≤M |σ′1] =

0. Therefore we have

Pr[Pk ≤M ] =
∑

σ∈Σ′1∪Σ′2

Pr[Pk ≤M |σ]Pr(σ)

=
∑
σ′1∈Σ′1

Pr[Pk ≤M |σ′1]Pr(σ′1) +
∑
σ′2∈Σ′2

Pr[Pk ≤M |σ′2]Pr(σ′2)

=
∑
σ′2∈Σ′2

Pr[Pk ≤M |σ′2]Pr(σ′2)

≤
∑
σ′2∈Σ′2

Pr(σ′2) = Pr(Σ′2) = 1−Pr(Σ′1) = 1−Pr[Nk ≥ k2],

where the inequality is from the fact that Pr[Pk ≤M |σ′2] ≤ 1 for any σ′2 ∈ Σ′2.

Remark 4.7: We point out in this remark that the result in Theorem 4.6 extends naturally to

the case when C is not full rank. Since (A,C) is observable, there exists r (2 ≤ r ≤ n) such

that 
C

CA

· · ·

CAr−1


is full rank. In this section, we consider the special case when r = 2, and in particular, we
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assume

 C

CA

−1

exists. The idea readily extends cases where r > 2. Unlike the case when

C−1 exists, and yk is sent across the network, here we assume that the previous measurement

yk−1 is sent along with yk. This only requires that the sensor has a buffer that stores yk−1. Then

if γk = 1, both yk and yk−1 are received. Thus we can use the following linear estimator to

generate x̂k

x̂k = A

 CA

C

−1  yk

yk−1

 .
The corresponding error covariance can be calculated as

Pk = AM1A
′ +Q,

where

M1 =

 CA

C

−1  CQC ′ +R 0

0 R

  CA

C

−1′

.

Since Kalman filter is optimal among the set of all linear estimators, we conclude that

P ≤ Pk = AM1A
′ +Q , M if γk = 1.

Therefore we obtain the same results as in Section IV with the new M .

B. Computing Pr[Nk ≥ ki]

Theorem 4.6 provides a lower and an upper bound for Pr[Pk ≤M ]. Both bounds involve the

term Pr[Nk ≥ ki]. In this section, we show how we can compute Pr[Nk ≥ ki] given a packet

arrival and drop model.

Let k1 and k2 be given (see next section for their computation and approximation). In order to

compute Pr[Nk ≥ ki], we need to have a model that describes packet arrival and drop behaviors.

The most commonly used models in literature are

1) I.I.D model: i.e., γk’s are independent and identically distributed Bernoulli random vari-

ables with mean γ, e.g., [9], [11].

2) Gilbert-Elliott model: i.e., a two state Markov chain is used to describe the transition from

γk to γk+1, e.g., [18], [19].

We give closed form solution to both models in this section.
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Fig. 5. Gilbert-Elliott Model

1) I.I.D Model: If γk’s are i.i.d Bernoulli random variables with rate γ, then

Pr[Nk ≥ ki] = Pr[γk = 0, · · · , γk−ki+1 = 0] = (1− γ)ki . (10)

2) Gilbert-Elliott Model: Now consider a two state (0 or 1) Markov chain that represents

packet drops and arrivals (Fig. 5). Let T denote the state transition probability matrix, i.e.,

T =

 β 1− β

1− γ γ

 .
Let π = [π0 π1] be the steady state distribution of the Markov chain, i.e., π = πT . Then π

can be computed as

π = [
1− γ

2− γ − β
1− β

2− γ − β
].

Let zk be defined as

zk =

 z1
k

z2
k

 ,

 Pr[γk = 0]

Pr[γk = 1]

 .
Then

z1
k = Pr[γk = 0] =

1∑
i=0

Pr[γk = 0|γk−1 = i]Pr[γk−1 = i] = βz1
k−1 + (1− γ)z2

k−1.

Similarly, we have

z2
k = (1− β)z1

k−1 + γz2
k−1.

Therefore zk = T ′zk−1. Assume z0 is given, then zk satisfies the following equation

zk = (T ′)kz0, k ≥ 1.
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Furthermore, for k sufficiently large, zk ≈ π′, i.e.,

z1
k ≈ π0, z

2
k ≈ π1.

Therefore we have

Pr[Nk ≥ ki] = Pr[γk = 0, · · · , γk−ki+1 = 0]

=
1∑
i=0

αiPr[γk−ki
= i]

= βkiz1
k−ki

+ (1− γ)βki−1z2
k−ki

= π0β
ki + π1(1− γ)βki−1

=
1− γ

β(2− γ − β)
βki , (11)

where

αi = Pr[γk = 0, · · · , γk−ki+1 = 0|γk−ki
= i].

Remark 4.8: If β = 1− γ, i.e., we have the i.i.d model, Eqn (11) then becomes:

Pr[Nk ≥ ki] =
1− γ

β(2− γ − β)
βki = βki = (1− γ)ki ,

which is exactly the same as in Eqn (10).

C. Computing ki

In the previous section, we calculate the term Pr[Nk ≥ ki] in Eqn (10) and (11) for two

different models that describe packet arrival and drop behavior. In this section, we show how

we can compute ki.

In general, ki can be computed from their definitions, i.e., we check whether h(M) ≤M (or

h(P ) ≤ M ) is satisfied. If the answer is yes, we check whether h2(M) ≤ M (or h2(P ) ≤ M )

is satisfied, and so on and so forth until ki is found. However, ki could be unbounded when A

is stable and M is sufficiently large. Even when A is unstable, depending on the parameters, ki

could be very large. Therefore computing ki from their definitions may be time consuming or

even result in infinite computations. The good news is that from previous section, we see that

using either the i.i.d or the Gilbert-Elliott model, when ki is sufficiently large

Pr[Nk ≥ ki] ≈ 0.
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For example, when using the i.i.d model, in order that

(1− γ)ki ≤ ε,

we only need to set

ki = Ui , d log ε

log(1− γ)
e. (12)

When using the Gilbert-Elliott model, in order that

1− γ
β(2− γ − β)

βki ≤ ε,

we only need to set

ki = Ui , d log ε− log c3

log β
e. (13)

where c3 = 1−γ
β(2−γ−β)

.

When γ = 0.5, ε = 10−20, Eqn (12) returns ki = 67. Using the same ε and let β = 0.5, γ = 0.8,

Eqn (13) returns ki = 66. Hence we can use 67 or 66 to approximate the true ki. Thus we propose

Algorithm 1 to compute (and approximate) ki, where in the algorithm Φ1 = M and Φ2 = P .

Algorithm 1 INCREMENTAL SEARCH ALGORITHM

ki := 1

while hki(Φi) ≤M and ki ≤ Ui do

ki := ki + 1

end while

There are a few cases where we can make Algorithm 1 run faster or get better approximation,

depending on whether A is stable or not. We discuss those cases below.

1) When A is stable: It is well known that the Lyapunov equation AXA′ + Q = X for A

being stable and Q ≥ 0 has a unique solution M∗. Since

P ≤ h(P ) ≤ h2(P ) ≤ · · · ,

we immediately obtain ht(P ) ≤M∗ for all t ≥ 1. Thus if M ≥M∗,

k2 = min{t ≥ 1 : ht(P ) �M} =∞,

and as a result,

Pr[Nk ≥ k2] = 0.
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2) When A is unstable: In this case we can find k2 efficiently via Algorithm 2. The efficiency

and the correctness of the algorithm is easily seen.

Algorithm 2 BINARY SEARCH ALGORITHM

t := 0

k2 := 2t

while hk2(P ) ≤M and k2 ≤ U2 do

t := t+ 1

k2 := 2t

end while

if t > 0 then

l := 2t−1

u := 2t

m := d l+u
2
e

while l < u do

if hm(P ) ≤M then

l := m

m := d l+u
2
e

else

u := m

m := d l+u
2
e

end if

end while

end if

D. E[Pk] as a Metric

In this section, we show that we are able to recover the results in [9] using Pr[Pk ≤ M ] as

a metric for scalar systems. Let us consider Eqn (1) and (2) with

A = a > 1, Q = q > 0, C = c > 0, R = r > 0.
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Notice that in the scalar case, the assumption that (a, c) is observable and (a,
√
q) is controllable

holds trivially.

From Lemma A.4 in Appendix A, we can write E[Pk] as

E[Pk] =

∫ ∞

0

(1−Pr[Pk ≤M ])dM =

∫ M

0

(1−Pr[Pk ≤M ])dM +

∫ ∞

M

(1−Pr[Pk ≤M ])dM.

Using the fact

0 ≤ Pr[Pk ≤M ] ≤ 1,

we have ∫ ∞

M

(1−Pr[Pk ≤M ])dM ≤ E[Pk] ≤M +

∫ ∞

M

(1−Pr[Pk ≤M ])dM.

From Theorem 4.6, we know that when M ≥M ,

1−Pr[Nk ≥ k1] ≤ Pr[Pk ≤M ] ≤ 1−Pr[Nk ≥ k2].

Since in [9], i.i.d packet drop model is used, from Eqn (10), we have

Pr[Nk ≥ k1] = (1− γ)k1 ,

Pr[Nk ≥ k2] = (1− γ)k2 .

Therefore we obtain∫ ∞

M

(1− γ)k2(M)dM ≤ E[Pk] ≤
∫ ∞

M

(1− γ)k1(M)dM +M. (14)

Recall that k1(M) = min{t ≥ 1 : ht(M) �M} and

ht(M) = a2tM + q(1 + a2 + · · ·+ a2t−2) = (M +
q

a2 − 1
)a2t − q

a2 − 1
= c1a

2t − c2,

where

c1 = M +
q

a2 − 1
, c2 =

q

a2 − 1
,

therefore for any t ≥ 1, k1(M) = t, if c1a
2t−2 − c2 ≤M < c1a

2t − c2. From Eqn (14), we have

E[Pk] ≤ M +

∫ ∞

M

(1− γ)k1(M)dM

= M +
∞∑
t=1

∫ c1a2t−c2

c1a2t−2−c2
(1− γ)tdM

= M +
∞∑
t=1

(c1a
2t − c1a

2t−2)(1− γ)t

= M +
∞∑
t=1

c1(1− 1

a2
)(a2 − γa2)t.
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Clearly E[Pk] converges if a2 − γa2 < 1, i.e.,

γ > 1− 1

a2
. (15)

Similarly from Eqn (14), we have

E[Pk] ≥
∫ ∞

0

(1− γ)k2(M)dM

=
∞∑
t=1

∫ c′1a
2t−c2

c′1a
2t−2−c2

(1− γ)tdM

=
∞∑
t=1

(c′1a
2t − c1a

2t−2)(1− γ)t

=
∞∑
t=1

c′1(1− 1

a2
)(a2 − γa2)t,

where c′1 = P + q
a2−1

. Hence E[Pk] diverges if a2 − γa2 ≥ 1, i.e.,

γ ≤ 1− 1

a2
. (16)

From Eqn (15) and (16), we conclude that

λc = 1− 1

a2
,

which is exactly the same as Eqn (5) for scalar systems. Furthermore if we assume

γ > 1− 1

a2
,

then we have
c′1(a2 − 1)(1− γ)

1− a2 + γa2
≤ E[Pk] ≤

c1(a2 − 1)(1− γ)

1− a2 + γa2
+M.

V. SENSORS WITH UNLIMITED COMPUTATION

We now consider the second scenario in Fig. 1, i.e., when the sensor has unlimited computation

capability, and it can preprocesses yk and send x̂sk to the remote estimator. At the estimator side,

it is clear that the optimal state estimate and error covariance evolve as

(x̂k, Pk) =

 (Ax̂k−1, h(Pk−1)), if γk = 0,

(x̂sk, P
s
k ), if γk = 1.
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If we assume k is sufficiently large, e.g., when the Kalman filter enters steady state at the

sensor side and P s
k = P , we can write Pk as

Pk =

 h(Pk−1), if γk = 0,

P , if γk = 1.

In Section IV, we have defined k2 and Nk in Eqn (7) and (8) respectively. With these two

numbers, we have the following result that gives the exact form of Pr[Pk ≤M ].

Theorem 5.1: Assume k is sufficiently large such that P s
k = P . Then for any M ≥ P , we

have

Pr[Pk ≤M ] = 1−Pr[Nk ≥ k2]. (17)

Proof: A simple way to prove this runs as follows. In this case, when γk = 1, Pk = P ,

hence if we let M = P , we immediately obtain Pk ≤M . As a result, k1 = k2 and Theorem 5.1

follows directly from Theorem 4.6.

We show an alternative way to prove the theorem. Let σ′i and Σ′i, i = 1, 2 be defined in the

same way as in the proof of Theorem 4.6 (see Fig. 4). Clearly for any σ′2 ∈ Σ′2,

Pk(σ
′
2) ≤ hk2−1(P ) ≤M.

The first inequality is from the fact that γk−k2+1 = 1 and hence Pk−k2+1 = P . The second

inequality is from the definition of k2. In other words,

Pr[Pk ≤M |σ′2] = 1.

Similar to the proof of Theorem 4.6, for σ′1 ∈ Σ′1, let us define

s = s(σ′1) , min{t ≥ 1 : γk−t = 1|σ′1}.

As σ′1 ∈ Σ′1, s ≥ k2. Therefore Pk(σ′1) = hs(P ) � M . In other words, Pr[Pk ≤ M |σ′1] = 0.

Therefore

Pr[Pk ≤M ] =
∑

σ′∈Σ′1∪Σ′2

Pr[Pk ≤M |σ′]Pr(σ′)

=
∑
σ′1∈Σ′1

Pr[Pk ≤M |σ′1]Pr(σ′1) +
∑
σ′2∈Σ′2

Pr[Pk ≤M |σ′2]Pr(σ′2)

=
∑
σ′2∈Σ′2

Pr[Pk ≤M |σ′2]Pr(σ′2)

=
∑
σ′2∈Σ′2

Pr(σ′2) = Pr(Σ′2) = 1−Pr(Σ′1) = 1−Pr[Nk ≥ k2].
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Computing Pr[Nk ≥ k2] and ki follows exactly the same way as in Section IV-B and IV-C.

Since we get a strict equality for Pr[Pk ≤M ], the special cases we considered in Section IV-B

have simpler forms. For example, when A is stable and when M ≥ M∗, we have shown that

Pr[Nk ≥ k2] = 0, therefore we obtain

Pr[Pk ≤M ] = 1.

Assume

γ > 1− 1

a2,

then similar to Section IV-D, we have

c′1(a2 − 1)(1− γ)

1− a2 + γa2
≤ E[Pk] ≤

c′1(a2 − 1)(1− γ)

1− a2 + γa2
+ P ,

where c′1 = P + q
a2−1

. If
c′1(a2 − 1)(1− γ)

1− a2 + γa2
>> P,

then

E[Pk] ≈
c′1(a2 − 1)(1− γ)

1− a2 + γa2
.

VI. EXAMPLE

A. Scalar System with I.I.D Packet Arrivals

Consider Eqn (1) and (2) with

A = 1.4, C = 1, Q = 0.2, R = 0.5.

The packet arrivals are assumed to be I.I.D with arrival rate γ = 0.5. We run a Monte Carlo

simulation for both scenarios considered in Section IV and V respectively. During the simulation,

we use the relative frequency to measure Pr[Pk ≤M ].

For scenario one, i.e., when measurement packet is sent across the network, we can see

from Fig. 6 that the lower and upper bounds that we have derived in Eqn (9) provide tight

approximation of Pr[Pk ≤M ].

For scenario two, i.e., when the local estimate is sent across the network, we can also see

from Fig. 7 that the predicted value of Pr[Pk ≤M ] given by Eqn (17) agrees well with the true

value of Pr[Pk ≤M ].
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B. Vector System with Markov Packet Arrivals

Consider a vehicle moving in a two dimensional space according to the standard constant

acceleration model, which assumes that the vehicle has zero acceleration except for a small

perturbation. The state of the vehicle consists of its x and y positions as well as velocities.

Assume a sensor measures the positions of the vehicle and sends the measurements to a remote

estimator over a packet dropping network. The system parameters are given according to Eqn (1)
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Fig. 8. Packet Arrival and Drop Model

and (2) as follows:

A =


1 0 0.5 0

0 1 0 0.5

0 0 1 0

0 0 0 1

 , C =

 1 0 0 0

0 1 0 0

 .
The process and measurement noise covariances are Q = diag(0.01, 0.01, 0.01, 0.01) and R =

diag(0.001, 0.001). The packet arrival and drop is modeled as a Markov chain with state

transition probabilities shown in Fig. 8.

Similar to the scalar example, when the local estimate is sent across the network, the predicted

values of Pr[Pk ≤M ] from Eqn (17) matches well with the actual value as seen from Fig. 9. As

C is not invertible in this case, the sensor stores its previous measurement yk−1 and sends it along

with yk at time k. Unlike the scalar system example, where the actual value of Pr[Pk ≤M ] lies

in between the lower and upper bounds given by Eqn (9), the actual value here approaches the

lower bound. This happens as whenever a data packet is received, the error covariance is reset

to M using the estimation scheme in Remark 4.7. In both cases, Pr[Nk ≥ ki] is obtained from

Eqn (11).

VII. CONCLUSION

In this paper, we study the problem of state estimation of a discrete time process over a

packet dropping network based on a modified Kalman filter. We consider a probabilistic metric

on the error covariance matrix, i.e., Pr[Pk ≤ M ]. The advantage of the new metric is easy to
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see compared with the most widely used performance metric in literature, e.g., E[Pk], as the

new metric completely characterizes the behavior of Pk.

When the sensor has limited computation capability, we derive lower and upper bounds for

Pr[Pk ≤ M ]. Both bounds depend on the underlying model that describes packet arrival and

drop behavior of the communication network between the sensor and the estimator. When the

sensor has unlimited computation capability, we are able to compute Pr[Pk ≤ M ] in an exact

form. We also recover the result for scalar systems in [9].

There are many interesting directions for continuing this work, which include: finding better

estimation scheme that outperforms the simple linear estimation scheme presented in Remark 4.7;

extending the results in Section IV-D to general vector systems; studying closed loop system

performance from a probabilistic angle; looking at distributed and cooperative control problems

over packet dropping networks; and experimentally evaluating the theory developed in the paper.
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APPENDIX

A. Supporting Lemmas

Lemma A.1: For any 0 ≤ X ≤ Y ,

h(X) ≤ h(Y ),

g(X) ≤ g(Y ),

g̃(X) ≤ g̃(Y ),

g̃(X) ≤ X,

h ◦ g̃(X) = g(X),

g(X) ≤ h(X).

Proof: h(X) ≤ h(Y ) holds as h(X) is affine in X . Proof for g(X) ≤ g(Y ) can be found

in Lemma 1-c in [9]. As g̃ is a special form of g by setting A = I and Q = 0, we immediately

obtain g̃(X) ≤ g̃(Y ). Next we have

g̃(X) = X −XC ′[CXC ′ +R]−1CX ≤ X,

and

h ◦ g̃(X) = h(X −XC ′[CXC ′ +R]−1CX)

= A(X −XC ′[CXC ′ +R]−1CX)A′ +Q

= g(X).

Finally we have

g(X) = h(X)− AXC ′[CXC ′ +R]−1CXA′ ≤ h(X).

Lemma A.2: For any X ≥ 0, g̃(X) ≤M .

Proof: For any t > 0, we have

g̃(tM) =
t

t+ 1
M ≤M.

For all X ≥ 0, since M > 0, it is clear that there exists t1 > 0 such that t1M > X . Therefore

g̃(X) ≤ g̃(t1M) ≤M.
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Lemma A.3: P ≤ h(P ).

Proof:

h(P ) = h ◦ g̃(P ∗) = g(P ∗) = P ∗ ≥ g̃(P ∗) = P ,

where the first and the last equality are from the definition of P , the third equality is from the

definition of P ∗. The rest equality and inequality are from Lemma A.1.

Lemma A.4: Let X be a continuous random variable defined on [0,∞) and let F (x) =

Pr[X ≤ x]. Then

E[X] =

∫ ∞

0

[1− F (x)]dx.

Proof: See Lemma (4) in [20], page 93.
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