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Abstract— In this paper, we consider a robust net-
worked control problem. We consider linear unstable
and uncertain discrete time plants with a network
between the sensor and controller as well as between
the controller and plant. We investigate the effect
of data drop out in the form of packet losses and
we focus on the tradeoff between packet arrival rate
versus the uncertainties of the system dynamics. We
show that the minimum packet arrival rate and the
maximum uncertainty of the system dynamics have a
positive correlation. Four distinct control schemes are
explored and serve as examples to study this tradeoff.
We derive sufficient condition for each scheme to
ensure almost sure stability of the closed loop system.
Simulation and examples are provided to assist the
theory.

Index Terms— Networked Control Systems, Packet
Dropping Network, Almost Sure Stability, Norm
Bounded Uncertainty.

I. INTRODUCTION

In the past decade, networked control systems
(NCS) have gained much attention from both the
control community and the network and communi-
cation community. When compared with classical
feedback control systems, networked control sys-
tems have several advantages. For example, they
can reduce the system wiring, make the system easy
to operate and maintain and later diagnose in case
of malfunctioning, and increase system agility [1].
Although NCS have advantages, inserting a net-
work in between the plant and the controller can in-
troduce many problems as well. For instance, zero-
delayed sensing and actuation, perfect information
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and synchronization are no longer guaranteed in the
new system architecture as only finite bandwidth
is available and data packet drops and delays may
occur due to network traffic conditions. These must
be revisited and analyzed before networked control
systems become commonplace.

Recently, many researchers have investigated
these issues and some significant results were ob-
tained and many are in progress. Many of the afore-
mentioned issues are studied separately. Tatikonda
[2] and Sahai [3] have presented some interesting
results in the area of control under communication
constraints. Specifically, Tatikonda gave a necessary
and sufficient condition on the channel data rate
such that a noiseless LTI system in the closed
loop is asymptotically stable. He also gave rate
results for stabilizing a noisy LTI system over a
digital channel. Sahai proposed the notion of any-
time capacity to deal with real time estimation and
control for a networked control system. Elia in [4]
considered the problem of stabilization a networked
control system over fading channels. The effect of
packet drops on state estimation was studied by
Sinopoli, et. al. in [5], where the authors showed
that there exists a critical rate of packet arrivals
below which the modified Kalman filter diverges,
and converges otherwise. The authors extended
their result from estimation to closed loop control
in [6] where stability region of packet arrival rates
are provided. The readers are referred to [7] for
some of the recent results in the area of networked
control systems.

One of the hallmarks of a good control system
design is that the closed loop remain stable in
the presence of uncertainty. While the researchers
in [8] studied the problem of LQG control across
packet dropping networks, to our best knowledge,
not many have considered the norm bounded un-
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certainty investigated in the present paper. In [9],
we have examined the impact of a norm bounded
uncertainty on the network control system and
provide sufficient conditions for stability in terms
of the minimum data rates, packet arrival rates for
the networks and system uncertainties. The major
restriction is that we require the system matrices B
and C, defined in Eqn (1) – (2), be invertible. In
this present paper, the restriction is removed and we
only require that the pair (A,B) is controllable and
the pair (C,A) is observable, where A is defined
in the same equation as B is.

Though NCS in general provides a rich structure
and freedom in designing and placing the estimator
and controller [8], only four schemes are discussed
in this paper. The focus of this paper is to study
the tradeoff between packet arrival rate and the
uncertainties in the system dynamics, thus the four
control schemes are explored and only serve as ex-
amples to study this tradeoff. We consider bounded
norm uncertainty as it is one of the most popular
uncertainty models in control theory [10]. Exten-
sions of our results to other types of uncertainties
will be pursued in future work. Partial results of
this present paper have appeared in [11].

The rest of the paper is organized as follows. In
Section II, we present the mathematical model of
the system and state our assumptions. Some back-
ground mathematics is also provided. In Section
III, we state the sufficient conditions for closed
loop stability for four distinct control schemes. In
Section IV, we provide an algorithm to find the
lower bounds on the packet arrival rates and upper
bound on the uncertainty. Simulations on an exam-
ple problem are given in Section V. Conclusions
and future work are given in the last section.

II. SYSTEM DESCRIPTION AND SOME MATH

PRELIMINARIES

Throughout the paper, the following notations are
adopted: if x ∈ IRn, ||x|| denotes its Euclidian
norm. If A ∈ IRn×n, ρ(A) is its spectrum radius;
||A|| denotes its induced two norm; ||A||H denotes
its induced H norm corresponding to the quadratic

form xTHx for H > 0, i.e. ,

||A||2 = sup
x 6=0

||Ax||2

||x||2
= sup

x 6=0

xTATAx

xTx

||A||2H = sup
x 6=0

||Ax||2H
||x||2H

= sup
x 6=0

xTATHAx

xTHx
.

Whenever log appears, it is of base 2.
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Fig. 1. Networked Control System

We consider the networked control systems as
seen in Figure 1 with linear discrete time uncertain
plants of the form:

xk+1 = (A+ ∆k)xk +Buk (1)

yk = Cxk (2)

where xk ∈ IRn is the state of the plant, uk ∈ IRm

is the control input and yk ∈ IRq is the output of the
plant. The pair (A,B) is assumed to be controllable
and (C,A) is assumed to be observable. The plant
uncertainty is given by ∆k which is unknown but
satisfies ||∆k|| < β1. The initial condition x0 ∈ IRn

is unknown but bounded.
As seen in Figure 1 the output of the sensor and

the output of the controller are to be sent through

1We only consider the uncertainty associated with the plant
dynamics in this paper for brevity. The results extend straight-
forward to the cases where actuator and sensor uncertainties
are included as well, i.e. , instead of considering B,C, B+∆B

and C + ∆C are considered.



the networks. We analyze the effect of packet
drops in these networks (ignoring packet delays and
reordering issues) and assume infinite bandwidth.
The packet drops are indicated by λk and γk, in
Network 1 and Network 2, respectively, where λk
and γk are Bernoulli independent and identically
distribute (i.i.d) random variables with parameters
λ and γ, i.e. , E[λk] = λ and E[γk] = γ for all
k. It is also assumed λk and γk are independent of
each other for all k.

We assume the use of a linear observer and a
state feedback controller that are designed ignoring
the effect of the networks. There are several ways to
implement the observer and controller in the NCS
as described below. We seek to answer the question:
what are the conditions on the packet arrival rate
and the uncertainties in the system dynamics, i.e. ,
(λ, γ, β) such that the close loop system is stable?
and what is the tradeoff between these quantities?
Before we present the main results, we introduce a
few lemmas.

Lemma 1: Assume A ∈ IRn×n is stable. Then
there exists an induced matrix norm || · ||H such
that ||A||H < 1.
Proof: As A is stable, the following Lyapunov
equation has a unique solution H > 0 for any
Q > 0.

ATHA−H = −Q.

Let P = H
1
2 and multiply P−T from the left and

P−1 from the right to get

P−TATP TPAP−1 = I − P−TQP−1 < I,

hence

||PAP−1|| =
√
λmax(P−TATP TPAP−1) < 1.

Now define z = Px, then

||A||2H = sup
x 6=0

xTATHAx

xTHx

= sup
z 6=0

zTP−TATP TPAP−1z

zT z

= ||PAP−1||2

< 1. �

Corollary 2: For any matrix A ∈ IRn×n and any

H > 0, the following identity holds

||A||H = ||PAP−1||,

where P = H
1
2 .

As packet drops introduce unavoidable random-
ness into the system, the classical notion of stability
for deterministic systems in the sense of Lyapunov
[12] is not adequate. The definition of stability
in a probabilistic setting is not new. It is usually
considered when there is inherent randomness in
the system, for example, in the jump linear systems
[13] or in stochastic hybrid systems [14]. In [13],
the authors give the most frequently seen definitions
of stochastic stability. We use almost sure stability
in our problem formulation. Before we give the
definition, we first introduce a discrete-time Jump
Linear System (JLS) as we will model the closed
loop NCS as a JLS. A Jump Linear System is
described by

xk+1 = A(σk)xk, k ≥ 0 (3)

where σk is either an i.i.d process in the state space
N = {1, 2, · · · , N} with probability distribution
P = {σ0 = j} = pj for j ∈ N or a finite-state and
time homogeneous Markov chain with state space
N , transition probability matrix P = (pij)N×N ,
and initial distribution p = (p1, · · · , pN ). The un-
derlying probability space is denoted by (Ω,F ,P)
and the solution process xk(x0, ω) is then a random
process defined on (Ω,F ,P), as indicated by the
dependence on ω ∈ Ω.

Definition 3: A JLS (3) is called almost surely
stable if for any x0 ∈ IRn and any initial distribu-
tion (p1, p2, · · · , pN ) on σ0,

P{ lim
k→∞

|xk(x0, ω)| = 0} = 1.
The following lemma provides a sufficient condi-
tion on the almost sure stability for a JLS.

Lemma 4: [15] Suppose the form process {σk}
is a finite-state ergodic Markov process with the
unique invariant distribution π = {π1, · · · , πN}.
Then the system in Eqn (3) is almost surely stable
if there exists a matrix norm || · || such that

N∏
i=1

||A(i)||πi < 1 .



III. MAIN RESULTS

We have several different options in designing
the control loop in the NCS. We can choose where
to place the observer: at the sensor, in which case
the estimate x̂k is sent across the network; or at
the controller, in which case the raw sensor mea-
surement yk is transmitted. We consider only state
feedback controllers, but we also have a choice of
what to apply at the plant when the control packet
is not received: apply zero control, i.e. the plant
will evolve open-loop; or use anticipatory control
which predicts what the control signal would have
been and applies that value. We will analyze all
four of these situations below.

1) Zero control, observer at the sensor
2) Zero control, observer at the controller
3) Anticipatory control, observer at the sensor
4) Anticipatory control, observer at the con-

troller
Although the control packets may not be received
by the plant, we make the assumption that the
observer, regardless of where it is placed, will
always know whether or not the control packet was
received. For each of the schemes, we show that
the minimum packet arrival rate has a positive cor-
relation with the norm of the uncertainty associated
with the system dynamics. We also derive sufficient
condition for each scheme to ensure almost sure
stability of the closed loop system.

A. Zero Control and Observer at the Sensor

The state estimator is placed at the sensor and
receives the output from the plant directly. The
observer is of the form

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k) . (4)

The state estimate x̂k is then sent across the first
network, where it is either received (λk = 1) or
dropped (λk = 0) by the controller.

The controller then calculates the state feedback

uk = λkFx̂k . (5)

As seen from Eqn (5) the state feedback term will
be zero when the state estimate is not received by

the controller, i.e. λk = 0. The control packet uk
is then sent across the second network to the plant
where it is either received (γk = 1) or dropped
(γk = 0). As mentioned above, the zero control
implementation will evolve open-loop when the
control packet is not received, hence the control
applied to the plant is given by

uk = γkλkFx̂k . (6)

We can now write the evolution of the closed
loop NCS. Define ek = xk − x̂k, then we have

xk+1 = (A+ λkγkBF )xk − λkγkBFek + ∆kxk

ek+1 = (A− LC)ek + ∆kxk .

Or in compact form as a Jump Linear System,[
xk+1

ek+1

]
= Aθ(k)

[
xk
ek

]
(7)

where Aθ(k) is a random matrix taking the follow-
ing forms:

Aθ(k) =

{
M1 + Tk , if λkγk = 1
M2 + Tk , if λkγk = 0

(8)

with

M1 =
[
A+BF −BF

0 A− LC

]
(9)

M2 =
[
A 0
0 A− LC

]
(10)

Tk =
[

∆k 0
∆k 0

]
. (11)

Recall ||∆k|| < β, so we have

||Tk|| =
√
λmax(T Tk Tk)

=
√

2λmax(∆T
k ∆k)

=
√

2 ||∆k||
<
√

2 β .

Since (A,B) is assumed to be controllable, we can
properly design F such that A + BF is stable.
Similarly, we can properly design L such that
A − LC is stable as (C,A) is observable. Hence
M1 is stable. By Lemma 1, we know there exists
H = PP > 0 such that ||M1||H < 1. Hence we



have

||Tk||H = ||PTkP−1|| ≤
√

2 β||P || · ||P−1||.

Let
β < βmax =

1− ||M1||H√
2 ||P || · ||P−1||

, (12)

and define the following quantities

N1 = ||M1||H +
√

2 β||P || · ||P−1|| (13)

N2 = ||M2||H +
√

2 β||P || · ||P−1|| . (14)

Note Ni ≥ ||Mi + Tk||H for all i ∈ {1, 2} and all
k, and N1 < 1.

Theorem 5: Given the zero control scheme with
the observer placed at the sensor, and the quantities
defined in Eqn (9) – (14), then if λ and γ satisfy

Nλγ
1 N1−λγ

2 < 1, (15)

the closed loop NCS is almost surely stable.
Proof: This is a direct consequence from Lemma

4 by considering the networked control system as
a jump linear Markov system, in which case the
underlying Markov chain is ergodic2 with invariant
distribution {λγ, 1− λγ}. �

Notice that as N1 < 1, inequality (15) can always
be satisfied for sufficiently large λ and γ.

1) Special Case: when B and C are invertible:
Consider the system (1)-(2) having B,C invertible.
This is a special class of LTI systems in which the
actuator can actuate all the states and the sensor
can measure all the states. Without packet drops,
we show in [9] that the optimal control law which
minimizes the upper bound of the state is uk =
−B−1AC−1yk, leaving

xk+1 = ∆k · · ·∆0x0.

Lemma 6: If λ = γ = 1, i.e. , the networks are
perfect and do not introduce any packet drops, then
β < 1 if the system is to be made stable.
Proof: See [9]. �

If there are packet drops in the network, using
zero control and putting the observer at the sensor,

2As we assume that packet drops are i.i.d, the underlying
Markov chain is then aperiodic and positive recurrent

we have a tighter result comparing with that in
Theorem 5.

Lemma 7: If λ, γ satisfy

(||A||+ β)1−λγβλγ < 1

then the closed loop system is almost surely stable.
Proof: See [9]. �

B. Zero Control and Observer at the Controller

We consider the same setup as above, but place
the observer at the controller. This means the raw
sensor measurement yk is sent across the first
network to the controller. The observer updates the
estimate of the state according to

x̂k+1 = Ax̂k +Buk + λkL(yk − Cx̂k) , (16)

which corresponds to doing the correction step
only when the measurement packet is received. The
control packet sent to the plant is then

uk = Fx̂k (17)

and the control applied to the plant

uk = γkFx̂k . (18)

The corresponding closed loop JLS is Eqn (7),
but with

Aθ(k) =


M1 + Tk , if λk = 1 and γk = 1
M2 + Tk , if λk = 1 and γk = 0
M3 + Tk , if λk = 0 and γk = 1
M4 + Tk , if λk = 0 and γk = 0

(19)
where M1,M2 and Tk are the same as in Eqn (9-11)
and

M3 =
[
A+BF −BF

0 A

]
(20)

M4 =
[
A 0
0 A

]
(21)

Once again defining

Ni = ||Mi||H +
√

2 β||P || · ||P−1|| , (22)

for i = {1, 2, 3, 4}, we have the following sufficient
condition for stability.



Theorem 8: Given the zero control scheme with
the observer placed at the controller, and the quan-
tities defined in Eqn (12) and Eqn (22), then if λ
and γ satisfy

Nλγ
1 N

λ(1−γ)
2 N

(1−λ)γ
3 N

(1−λ)(1−γ)
4 < 1, (23)

the closed loop system is almost surely stable.
Proof: The proof follows exactly the same lines

as in Theorem 5. �

C. Anticipatory Control and Observer at the Sensor

In the previous sections, when the control packet
was not received at the plant the control was set
to zero. As an alternative one could use a scheme
similar to [16], whereby if the plant does not
receive a control packet it applies the predicted
control value. In this scenario, the controller trans-
mits not only the current control value uk, but
also the predicted control values for the future,
i.e. {uk+1, uk+2, . . .}. We will denote this control
sequence that is transmitted to the plant at time k
as uk = {uk, uk+1, uk+2, . . .}.

Comparing this to the zero control implemen-
tation we see that the control packet will contain
much more data with anticipatory control. In fact,
the way it is written it will contain the predicted
control input for all future time. Since we have
assumed infinite bandwidth in this network this is
not an issue.

The predicted control values are found by sim-
ulating the known plant dynamics. That is we use
the model

xn+1 = Axn +Bun ,∀n = k, k + 1, . . . (24)

and let un = Fxn. Thus we can see the control
sequence sent to the plant at time k is given by

uk = {Fxk, F (A+BF )xk, F (A+BF )2xk, . . .} .
(25)

The model will need to capture the effect of packet
drops in the networks. The key will be how the
model state xk is initialized. This depends on where
the observer is located.

For the observer placed at the sensor, the ob-
server will be the same as in Eqn (4). The state es-

timate x̂k is once again sent across the first network
to the controller, where the model Eqn (24) resides.
At every timestep that the estimate is received at
the controller, the value of the model state is set
to the observer xk = x̂k. When the estimate is not
received, the model state is initialized by setting
xk = Axk−1 + Buk−1, recall the assumption that
knowledge of what control was previously applied
allows the use of this expression.

Since the control packets uk are randomly
dropped, the plant applies the control value
corresponding to the current timestep from
the last received control sequence. In other
words, uk = ur(k − r + 1) where r =
max {m : γm = 1,m ≤ k}, i.e. the last timestep
the control packet was successfully received at the
plant, and uk(i) is the ith entry in the control packet
uk. So once a new control packet is received the
previous sequences are all disregarded. Thus we see
the control applied to the plant at time k can be
written in terms of the state estimate according to

uk = F (A+BF )k−px̂p
where p = max {m : λmγm = 1,m ≤ k} ,

(26)
that is p is the last timestep both the estimator and
control packets were successfully received. Note
that if p = k, i.e. the current estimator and control
packets are received, we recover the non-networked
control signal uk = Fx̂k.

Now define ex = xk− x̂k and ek = xk−xk, then
we see

xk+1 = (A+BF )xk − λkγkBFek
−(1− λkγk)BFek + ∆kxk

ek+1 = (A− LC)ek + ∆kxk

ek+1 = λkγkAek + (1− λkγk)Aek + ∆kxk

We can now write the closed loop system as a JLS, xk+1

ek+1

ek+1

 = Aθ(k)

 xk
ek
ek

 (27)

where

Aθ(k) =

{
M1 + Tk , if λkγk = 1
M2 + Tk , if λkγk = 0

(28)



and

M1 =

 A+BF −BF 0
0 A− LC 0
0 A 0

 (29)

M2 =

 A+BF 0 −BF
0 A− LC 0
0 0 A

 (30)

Tk =

 ∆k 0 0
∆k 0 0
∆k 0 0

 . (31)

where now ||Tk|| <
√

3 β. Similarly to the previous
analysis, M1 will be stable (eigenvalues are those
of A + BF , A − LC and 0), so there exists an
H = PP such that ||M1||H < 1. We still need
M1 + Tk to be stable, so we will require

β <
1− ||M1||H√
3 ||P || · ||P−1||

, (32)

and once again define the following

N1 = ||M1||H +
√

3 β||P || · ||P−1|| (33)

N2 = ||M2||H +
√

3 β||P || · ||P−1|| . (34)

Now we state the sufficient condition for stability.
Theorem 9: Given the anticipatory control

scheme described above with the observer placed
at the sensor, and the quantities defined in
Eqn (29) - (34), then if λ and γ satisfy

Nλγ
1 N1−λγ

2 < 1, (35)

the closed loop system is almost surely stable.
Proof: The proof follows exactly the same lines

as in Theorem 5. �

D. Anticipatory Control, Observer at Controller

The control strategy is the same as described
above, but now we move the observer to the con-
troller. This means that the raw sensor measurement
yk is broadcasted across the first network and
the observer takes the form as in Eqn (16). The
predicted control values are calculated using the
same model as in Eqn (24). The difference is how
the model is initialized. Since the observer is now
located at the controller, the model always has

access to the state estimate; hence the model is
initialized to xk = x̂k at every timestep.

The control packet sent at time k is the same as
Eqn (25). Likewise the plant implements the control
in the same manner, by keeping only the most
recently received packet and choosing the signal
corresponding to the current time. It is not too hard
to see that in terms of the state estimate, the control
signal applied to the plant at time k is given by

uk = F (A+BF )k−px̂p
where p = max {m : γm = 1,m ≤ k} , (36)

that is p is the last timestep the control packet was
successfully received.

We can now write the closed loop system as the
JLS in Eqn (27), with

Aθ(k) =


M1 + Tk , if λk = 1 and γk = 1
M2 + Tk , if λk = 1 and γk = 0
M3 + Tk , if λk = 0 and γk = 1
M4 + Tk , if λk = 0 and γk = 0

(37)
where M1,M2 and Tk the same as in Eqn (29-31)
and

M3 =

 A+BF −BF 0
0 A 0
0 A 0

 (38)

M4 =

 A+BF 0 −BF
0 A 0
0 0 A

 (39)

Once again defining

Ni = ||Mi||H +
√

3 β||P || · ||P−1|| , (40)

for i = {1, 2, 3, 4}, we have the following sufficient
condition for stability.

Theorem 10: Given the anticipatory control
scheme with the observer placed at the controller,
and the quantities defined in Eqn (32) and Eqn (40),
then if λ and γ satisfy

Nλγ
1 N

λ(1−γ)
2 N

(1−λ)γ
3 N

(1−λ)(1−γ)
4 < 1, (41)

the closed loop system is almost surely stable.
Proof: The proof follows exactly the same lines

as in Theorem 5. �



IV. FINDING || · ||H
In Section III, we provide sufficient conditions

on the network and system parameters such that
the closed loop system is almost surely stable.
The theorems give a condition on λ and γ for a
particular H such that ||M1||H < 1 and upper
bound on β. The question is how to choose the
H such that we can get a tight lower bound on
λ and γ and a tight upper bound on β. Clearly
we want to make ||M1||H as small as possible to
allow for higher percentages of packet drop, but the
tradeoff is that the corresponding H could make the
other ||Mi||H and ||P || · ||P−1|| large, which can
increase the lower bounds on λ and γ and decrease
the upper bound on β. In general we want to find
suitable H such that

βmax =
1− ||M1||H
||P || · ||P−1||

is maximum. We also want to find suitable H
such that the λ and γ are minimized. Notice that
they have contradicting objectives. If we allow
more uncertainty in the system, we need larger
packet arrival rates. If the uncertainty is small, the
arrival rates can also be made small. We provide
an algorithm below to find the smallest lower
bounds on λ and γ and largest upper bound on β,
which iteratively solves the discrete time Lyapunov
equation to find H .

Given (A,B,C, F, L) and corresponding control
scheme, the algorithm runs as follows.

1) Form the matrices Mj as in Section III.
2) Set i = 1 and Qi = I .
3) Solve ATHiA − Hi = −Qi to get Hi. Set

Qi = Hi.
4) Decompose Hi into Hi = PiPi.
5) Find maximum sufficient uncertainty accord-

ing to (12) or (32).
6) Find minimum λ and γ according to Theo-

rems 5, 8, 9 or 10.
7) i = i+ 1
8) Repeat steps 3 to 7 until the incremental

increase or decrease of these numbers are
within a certain threshold.

When this algorithm stops, the results we get
may not be the best ones we are interested in. For
example, as the algorithm starts, the lower bounds
on λ and γ may begin decreasing but later increase
(those bounds are equal for the case only M1 and
M2 are present), while the upper bound on β may
keep decreasing. Hence an intelligent way to make
use of this algorithm is to look at the history of
the results obtained and determine which values
are the best (see next section for an example). For
systems having less uncertainty and more packet
drops, more iterations are better. While for systems
having large uncertainty and less packet drops, less
iterations are enough.

V. EXAMPLES AND DISCUSSION

Consider the system described by Eqn (1) – (2)
with the following parameters,

A =
[

1.04779 0.09672
0.947898 0.951068

]
B =

[
0.0048768
0.096734

]
C = [1, 0]

so the eigenvalues of the A matrix are
[1.306, 0.6927]. The gains F and L were chosen
so that the eigenvalues of A + BF and A − LC
were placed at [0.025, 0.026] and [0.015, 0.016]
respectively. In all the simulations described below
the maximum norm of the uncertainty was set to
30% of it’s theoretical limit.

We can plot how the βmax, λmin, and γmin evolve
under the algorithm presented in the previous sec-
tion. The results are shown in Fig. 2 for the antic-
ipatory control with the observer at the controller.
As seen in the plot, for roughly the first 50 iterations
the minimum packet acceptance rates are decreas-
ing but then the λmin value begins to increase. The
βmax appears to be monotonically decreasing.

The tradeoff in choosing H should now be
apparent. For the remainder of the results, H will
be chosen with the algorithm terminating after 50
iterations. In Fig. 3 we see the stability regions for
each of the NCS implementations. From this plot
it would seem the zero control scheme would be
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Fig. 2. Plotting the evolution of βmax, λmin, and γmin under the
algorithm in Section IV for anticipatory control with observer
at the controller.

best as it gives the larger region for stability. When
running a simulation, however, we will see that in
fact the anticipatory control gives more desirable
behavior.
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Fig. 3. Stability regions for the four different NCS imple-
mentations.

In the simulation results shown below, the initial
state was bounded so that |xi(0)| ≤ 1 and the
observer state |x̂i(0)| ≤ 1. In Fig. 4 the norm of
the state is plotted for λ = 0.9 and γ = 0.95 and
each of the NCS implementations. As seen they all
converge to the origin as t → ∞, and indeed this

(λ, γ) pair is inside the stability region for all four
cases. The peak of the norms are slightly smaller
using the anticipatory control, indicating this might
a better choice. Next, the rates were dropped to λ =
0.8 and γ = 0.65 which makes it outside the guar-
anteed stability region for all the control schemes.
Nonetheless, as seen in Fig. 5 the states converge
to the origin as well. This demonstrates that our
conditions are only sufficient and not necessary. As
in the previous simulation the peaks of anticipatory
control scheme are significantly smaller than their
zero control counterparts.
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Fig. 4. Simulation results for λ = 0.9 and γ = 0.95, plots
are the norm of the state.
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Fig. 5. Simulation results for λ = 0.8 and γ = 0.65, plots
are the norm of the state.

The reason the stability region for the anticipa-
tory control scheme is smaller than the zero control
scheme has to do with the fact that we introduce
an extra state variable in the anticipatory case. This



can have the effect of increasing the associated H
norms of the JLS matrices. Intuitively, the antici-
patory scheme should provide better performance
(provided the uncertainty is small) since the plant
receives more information. This is indeed verified
from the example above.

VI. CONCLUSION AND FUTURE WORK

In this paper we analyzed controlling linear dis-
crete time systems with norm bounded uncertainty
in the plant matrix over packet dropping networks.
We considered the effect of packet losses on closed
loop stability. Sufficient conditions for stability are
given in terms of the packet arrival probability as
well as the norm of the uncertainty for four control
schemes. Our results show that the packet arrival
rate has a positive correlation with the norm of
the uncertainty, i.e. , the higher the packet arrival
rate, the higher the norm of the uncertainty that
the system can tolerate. A heuristic algorithm is
proposed to find the stability region of package
arrival rate for the four schemes.

Although the norm bounded uncertainty is fre-
quently used, there are other types of uncertain
models that might be more applicable in certain
cases. For example, when the uncertainty is de-
scribed by a convex set [17]. We would like to
obtain similar results for other types of uncertainty
as well.

The four schemes that we propose in the paper
serve as examples to demonstrate the tradeoff be-
tween the packet arrival rate and the uncertainties of
the system dynamics. It is interesting to look for the
control scheme that provides the optimal tradeoff,
i.e. , for a given λ and γ, β is maximized and vice
verse.

This paper has given sufficient conditions for sta-
bility and certainly some of them are not necessary.
It is interesting to find necessary conditions for
stability as well. Lastly, this paper has dealt with
guarantees for stability but has not addressed the
issue of performance. Investigating how the embed-
ded networks degrade performance is a interesting
area for future work.
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