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Abstract— In this paper, we consider a robust network
control problem. We consider linear unstable and uncertain
discrete time plants with a network between the sensor and
controller and the controller and plant. We investigate the
effect of data drop out in the form of packet losses. Four
distinct control schemes are explored and sufficient conditions
to ensure almost sure stability of the closed loop system are
derived for each of them in terms of minimum packet arrival
rate and the maximum uncertainty.

I. INTRODUCTION

In the past decade, networked control systems (NCS)
have gained much attention from both the control com-
munity and the network and communication community.
When compared with classical feedback control system,
networked control systems have several advantages. For
example, they can reduce the system wiring, make the
system easy to operate and maintain and later diagnose
in case of malfunctioning, and increase system agility
[20]. Although NCS have advantages, inserting a network
in between the plant and the controller introduces many
problems as well. For instance, zero-delayed sensing and
actuation, perfect information and synchronization are no
longer guaranteed in the new system architecture as only
finite bandwidth is available and data packet drops and
delays may occur due to network traffic conditions. These
must be revisited and analyzed before networked control
systems become prevalent.

Recently, many researchers have spent effort on these
issues and some significant results were obtained and many
are in progress. Many of the aforementioned issues are
studied separately. Tatikonda [19] and Sahai [13] have
presented some interesting results in the area of control
under communication constraints. Specifically, Tatikonda
gave a necessary and sufficient condition on the channel
data rate such that a noiseless LTI system in the closed
loop is asymptotically stable. He also gave rate results
for stabilizing a noisy LTI system over a digital channel.
Sahai proposed the notion of anytime capacity to deal with
real time estimation and control for a networked control
system. In our paper [17], the authors have considered
various rate issues under finite bandwidth, packet drops and
finite controls. An optimal bit allocation scheme is given
in [16] under the networked setting. The effect of pacekt
drops on state estimation was studied by Sinopoli, et. al.
in [3]. It has further been investigated by many researchers
including the present authors in [15] and [6].
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One of the hallmarks of a good control system design
is that the closed loop remain stable in the presence of
uncertainty [4], [5]. While the researchers in [9] studied the
problem of LQG control across packet dropping networks,
not many have considered the norm bounded uncertainty
investigated in the present paper. In [14], we have exam-
ined the impact of a norm bounded uncertainty on the
network control system and provide sufficient conditions
for stability in terms of the minimum data rates, packet
arrival rates for the networks and system uncertainties.
The major restriction being we require the system matrices
B and C be invertible. In this present paper, we remove
the condition and only require that the pair (A,B) is
controllable and the pair (C,A) is observable. To do that,
we introduce a new matrix norm, called H norm under
which if a matrix is stable, the corresponding H norm is
strictly less than one. Furthermore, by properly choosing
H , a matrix’s H norm can converge to its spectrum radius,
i.e. , the largest absolute value of its eigenvalues.

The paper is organized as follows. In Section II, we
present the mathematical model of the system and state
our assumptions. Some background mathematics is also
provided. In Section III, we state the sufficient conditions
for closed loop stability for four distinct control schemes.
In Section IV, we provide two algorithms to find the lower
bounds on the packet arrival rates and upper bound on the
uncertainty. Simulations on an example problem are given
in Section V. Conclusions and future work are given in the
last section.

II. SYSTEM DESCRIPTION AND SOME MATH
PRELIMINARIES

Throughout the paper, the following notations are
adopted: if x ∈ IRn, ||x|| denotes its Euclidian norm. If
A ∈ IRn×n, ρ(A) is its spectrum radius, ||A|| denotes its
induced two norm and ||A||H denotes its induced H norm
induced on the quadratic form xT Hx for H > 0, i.e. ,

||A||2 = sup
x6=0

||Ax||2

||x||2
= sup

x6=0

xT AT Ax

xT x

||A||2H = sup
x6=0

||Ax||2H
||x||2H

= sup
x6=0

xT AT HAx

xT Hx
.

Whenever log appears,it is of base 2.
We consider the networked control systems as seen in

Figure 1 with linear discrete time uncertain plants of the
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form:

xk+1 = (A + ∆k)xk + Buk (1)
yk = Cxk (2)

where xk ∈ IRn is the state of the plant, uk ∈ IRm is the
control input and yk ∈ IRq is the output of the plant. It
is assumed, without loss of generality, that A is unstable.
The pair (A,B) is assumed to be controllable and (C,A) is
assumed to be observable. The plant uncertainty is given
by ∆k which is unknown but satisfies ||∆k|| < β. The
initial condition x0 ∈ IRn is unknown but bounded.

As seen in Figure 1 the output of the sensor and the
output of the controller are to be sent through the networks.
We analyze the effect of packet drops in these networks
(ignoring packet delays and reordering issues) and assume
infinite bandwidth. The packet drops are indicated by
λk and γk, in Network 1 and Network 2 respectively.
Where λk and γk are Bernoulli independent and identically
distribute (i.i.d) random variables with parameters λ and
γ, i.e. , E[λk] = λ and E[γk] = γ for all k. It is also
assumed λk and γk are independent of each other for all
k.

Fig. 1. Networked Control System

We assume the use of a linear observer and a state
feedback controller that are designed ignoring the effect
of the networks. There are several ways to implement the
observer and controller in the NCS as described below.
We seek to answer the question: what are the conditions
on the network and system parameters (λ, γ, β,A, B, C)
such that the closed loop system is stable in some sense?

Before we give our sufficient conditions, we introduce
a few lemmas on which our results rely.

Lemma 1: Assume A ∈ IRn×n is stable. Then there
exists an induced matrix norm || · ||H such that ||A||H < 1.

Proof: As A is stable, the following Lyapunov equation
has a unique solution H > 0 for any Q > 0.

AT HA−H = −Q.

Let P = H
1
2 and multiply P−T from the left and P−1

from the right to get

P−T AT PT PAP−1 = I − P−T QP−1 < I,

hence

||PAP−1|| =
√

λmax(P−T AT PT PAP−1) < 1.

Now define z = Px, then

||A||2H = sup
x6=0

||Ax||2H
||x||2H

= sup
x6=0

xT AT HAx

xT Hx

= sup
z 6=0

zT P−T AT PT PAP−1z

zT z

= ||PAP−1||2

< 1.

�

Corollary 2: For any matrix A ∈ IRn×n and any H >
0, the following identity holds

||A||H = ||PAP−1||,

where P = H
1
2 .

As packet drops introduce unavoidable randomness into
the system, the classical notion of stability for deterministic
systems in the sense of Lyapunov [18] is not adequate. The
definition of stability in a probabilistic setting is not new.
It is usually considered when there is inherent randomness
in the system, for example, in the jump linear systems [8]
or in stochastic hybrid systems [1]. In [8], the authors give
the most frequently seen definitions of stochastic stability.
We use almost sure stability in our problem formulation
which is defined below.

Definition 3: System (1) is called almost sure stable if

P{ lim
k→∞

|xk(x0, ω)| = 0} = 1,

where ω is the underlying randomness for the closed loop
system.

Stability in the sense of Lyapunov requires that for any
ε > 0, there exists a time T , such that for all k ≥ T ,
|xk| ≤ ε. For almost sure stability, however, it is allowed
that xk > ε for any k > 0 and for any ε > 0 which may
occur with arbitrary low probability.

Let us now consider a discrete-time jump linear system
(JLS) given by

xk+1 = H(σk)xk, k ≥ 0 (3)

where σk is either an i.i.d process in the state space
N = {1, 2, · · · , N} with probability distribution P =
{σ0 = j} = pj for j ∈ N or a finite-state and time
homogeneous Markov chain with state space N , transition
probability matrix P = (pij)N×N , and initial distribution
p = (p1, · · · , pN ). We will model the closed loop NCS as
such a jump linear system. The following lemma provides
a sufficient condition on the almost sure stability for such
a system.



Lemma 4: [7] Suppose the form process {σk} is a
finite-state ergodic Markov process with the unique invari-
ant distribution π = {π1, · · · , πN}. Then the system in
Eqn. (3) is almost sure stable if there exist a matrix norm
|| · || such that

N∏
i=1

||H(i)||πi < 1.

III. MAIN RESULTS

We have several different options in designing the con-
trol loop in the NCS. We can choose where to place the
observer: at the sensor, in which case the estimate x̂k is
sent across the network; or at the controller, in which case
the raw sensor measurement yk is transmitted. We consider
only state feedback controllers, but we also have a choice
of what to apply at the plant when the control packet is
not received: apply zero control, i.e. the plant will evolve
open-loop; or use anticipatory control which predicts what
the control signal would have been and applies that value.
We will analyze all four of these situations below.

1) Zero control, observer at the sensor
2) Zero control, observer at the controller
3) Anticipatory control, observer at the sensor
4) Anticipatory control, observer at the controller

Although the control packets may not be received by the
plant, we make the assumption that the observer, regardless
of where it is placed, will always know without delay
whether or not the control packet was received.

A. Zero Control and Observer at the Sensor

The state estimator is placed at the sensor and receives
the output from the plant directly. The observer is of the
form

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k) . (4)

The state estimate x̂k is then sent across the first network,
where it is either received (λk = 1) or dropped (λk = 0)
by the controller.

The controller then calculates the state feedback

uk = λkFx̂k . (5)

As seen from Eqn. (5) the state feedback term will be zero
when the state estimate is not received by the controller,
i.e. λk = 0. The control packet uk is then sent across
the second network to the plant where it is either received
(γk = 1) or dropped (γk = 0). As mentioned above, the
zero control implementation will evolve open-loop when
the control packet is not received, hence the control applied
to the plant is given by

uk = γkλkFx̂k . (6)

We can now write the evolution of the closed loop NCS.
Define ek = xk − x̂k, then we have

xk+1 = (A + λkγkBF )xk − λkγkBFek + ∆kxk

ek+1 = (A− LC)ek + ∆kxk .

Or in compact form as a Jump Linear System,[
xk+1

ek+1

]
= Aθ(k)

[
xk

ek

]
(7)

where Aθ(k) is a random matrix taking the following
forms:

Aθ(k) =

{
M1 + Tk , if λkγk = 1
M2 + Tk , if λkγk = 0

(8)

with

M1 =
[

A + BF −BF
0 A− LC

]
(9)

M2 =
[

A 0
0 A− LC

]
(10)

Tk =
[

∆k 0
∆k 0

]
. (11)

Recall ||∆k|| < β, so we have

||Tk|| =
√

λmax(TT
k Tk)

=
√

2λmax(∆T
k ∆k)

=
√

2 ||∆k||
<

√
2 β .

Since (A,B) is assumed to be controllable, we can prop-
erly design F such that A + BF is stable. Similarly, we
can properly design L such that A+LC is stable as (C,A)
is observable. Hence M1 is stable. By Lemma 1, we know
there exists H = PP > 0 such that ||M1||H < 1. Hence
we have

||Tk||H = ||PTkP−1|| ≤
√

2 β||P || · ||P−1||.

Let
β < βmax =

1− ||M1||H√
2 ||P || · ||P−1||

, (12)

and define the following quantities

N1 = ||M1||H +
√

2 β||P || · ||P−1|| (13)
N2 = ||M2||H +

√
2 β||P || · ||P−1|| . (14)

Note Ni ≥ ||Mi + Tk||H for all i ∈ {1, 2} and all k, and
we also have N1 < 1.

Theorem 5: Given the zero control scheme with the
observer placed at the sensor, and the quantities defined
in Eqn. (9) - (14), then if λ and γ are such that

Nλγ
1 N1−λγ

2 < 1, (15)

the closed loop NCS converges almost surely.
Proof: This is a direct consequence from Lemma 4 by

considering the networked control system as a jump linear
Markov system, in which case the underlying Markov
chain is ergodic with invariant distribution {λγ, 1 − λγ}.
Notice that as N1 < 1, inequality (15) can always be
satisfied for sufficiently large λ and γ. �



Corollary 6: If λ and γ are such that

λγ > Rmin =
log N2

log N2 − log N1
, (16)

the closed loop system converges almost surely.

B. Zero Control and Observer at the Controller

We consider the same setup as above, but place the
observer at the controller rather than at the sensor. This
means the raw sensor measurement yk is sent across the
first network to the controller. The observer updates the
estimate of the state according to

x̂k = Ax̂k + Buk + λkL(yk − Cx̂k) , (17)

which corresponds to doing the correction step only when
the measurement packet is received. The control packet
sent to the plant is then

uk = Fx̂k (18)

and the control applied to the plant

uk = γkFx̂k . (19)

The corresponding closed loop JLS is Eqn. (7), but with

Aθ(k) =


M1 + Tk , if λk = 1 and γk = 1
M2 + Tk , if λk = 1 and γk = 0
M3 + Tk , if λk = 0 and γk = 1
M4 + Tk , if λk = 0 and γk = 0

(20)

where

M1 =
[

A + BF −BF
0 A− LC

]
(21)

M2 =
[

A 0
0 A− LC

]
(22)

M3 =
[

A + BF −BF
0 A

]
(23)

M4 =
[

A 0
0 A

]
(24)

Tk =
[

∆k 0
∆k 0

]
. (25)

Once again defining

Ni = ||Mi||H +
√

2 β||P || · ||P−1|| , (26)

for i = {1, 2, 3, 4}, we have the following sufficient
condition for stability.

Theorem 7: Given the zero control scheme with the
observer placed at the controller, and the quantities defined
in Eqn. (12) and Eqn. (21) - (26), then if λ and γ are such
that

Nλγ
1 N

λ(1−γ)
2 N

(1−λ)γ
3 N

(1−λ)(1−γ)
4 < 1, (27)

the closed loop system converges almost surely.
Proof: The proof follows exactly the same as in

Theorem 5. �

C. Anticipatory Control and Observer at the Sensor

In the previous sections, when the control packet was
not received at the plant the control was set to zero. As
an alternative one could use a scheme similar to [12],
whereby if the plant does not receive a control packet it
applies the predicted control value. In this scenario, the
controller transmits not only the current control value uk,
but also the predicted control values for the future, i.e.
{uk+1, uk+2, · · · }. We will denote this control sequence
that is transmitted to the plant at time k as uk =
{uk, uk+1, uk+2, · · · }.

Comparing this to the zero control implementation we
see that the control packet will contain much more data
with anticipatory control. In fact, the way it is written it
will contain the predicted control input for all future time.
Since we have assumed infinite bandwidth in this network
this is not an issue.

The predicted control values are found by simulating the
known plant dynamics. That is we use the model

xn+1 = Axn + Bun ,∀n = k, k + 1, · · · (28)

and let un = Fxn. Thus we can see the control sequence
sent to the plant at time k is given by

uk = {Fxk, F (A+BF )xk, F (A+BF )2xk, · · · } . (29)

The model will need to capture the effect of packet drops
in the networks. The key will be how the model state xk is
initialized. This depends on where the observer is located.

For the observer placed at the sensor, the observer will
be the same as in Eqn. (4). The state estimate x̂k is once
again sent across the first network to the controller, where
the model Eqn. (28) resides. At every timestep that the
estimate is received at the controller, the value of the model
state is set to the observer xk = x̂k. When the estimate is
not received, the model state is initialized by setting xk =
Axk−1 + Buk−1, recall the assumption that knowledge of
what control was previously applied allows the use of this
expression.

Since the control packets uk are randomly dropped,
the plant applies the control value corresponding to the
current timestep from the last received control sequence.
In other words, uk = ur(k − r + 1) where r =
max {m : γm = 1,m ≤ k}, i.e. the last timestep the con-
trol packet was successfully received at the plant, and uk(i)
is the ith entry in the control packet uk. So once a new
control packet is received the previous sequences are all
disregarded. Thus we see the control applied to the plant
at time k can be written in terms of the state estimate
according to

uk = F (A + BF )k−px̂p

where p = max {m : λmγm = 1,m ≤ k} ,
(30)

that is p is the last timestep both the estimator and control
packets were successfully received. Note that if p = k, i.e.
the current estimator and control packets are received, we
recover the non-networked control signal uk = Fx̂k.



Now define ex = xk − x̂k and ek = xk − xk, then we
see

xk+1 = (A + BF )xk − λkγkBFx̂k

−(1− λkγk)BFxk + ∆kxk

ek+1 = (A− LC)ek + ∆kxk

ek+1 = λkγkAek + (1− λkγk)Aek + ∆kxk

We can now write the closed loop system as a JLS, xk+1

ek+1

ek+1

 = Aθ(k)

 xk

ek

ek

 (31)

where

Aθ(k) =

{
M1 + Tk , if λkγk = 1
M2 + Tk , if λkγk = 0

(32)

and

M1 =

 A + BF −BF 0
0 A− LC 0
0 A 0

 (33)

M2 =

 A + BF 0 −BF
0 A− LC 0
0 0 A

 (34)

Tk =

 ∆k 0 0
∆k 0 0
∆k 0 0

 . (35)

where now ||Tk|| <
√

3 β. Similarly to the previous
analysis, M1 will be stable (eigenvalues are those of
A+BF , A−LC and 0), so there exists an H = PP such
that ||M1||H < 1. We still need M1 + Tk to be stable, so
we will require

β <
1− ||M1||H√
3 ||P || · ||P−1||

, (36)

and once again define the following

N1 = ||M1||H +
√

3 β||P || · ||P−1|| (37)
N2 = ||M2||H +

√
3 β||P || · ||P−1|| . (38)

Now we state the sufficient condition for stability.
Theorem 8: Given the anticipatory control scheme de-

scribed above with the observer placed at the sensor, and
the quantities defined in Eqn. (33) - (38), then if λ and γ
are such that

Nλγ
1 N

(1−λγ)
2 < 1, (39)

the closed loop system converges almost surely.
Proof: The proof follows exactly the same as in

Theorem 5. �

D. Anticipatory Control, Observer at Controller

The control strategy is the same as described above, but
now we move the observer to the controller. This means
that the raw sensor measurement yk is broadcasted across
the first network and the observer takes the form as in
Eqn. (17). The predicted control values are calculated using
the same model as in Eqn. (28) The difference is how the
model is initialized. Since the observer is now located at
the controller, the model always has access to the state
estimate; hence the model is initialized to xk = x̂k at
every timestep.

The control packet sent at time k is the same as
Eqn. (29). Likewise the plant implements the control in the
same manner, by keeping only the most recently received
packet and choosing the signal corresponding to the current
time. It is not too hard to see that in terms of the state
estimate, the control signal applied to the plant at time k
is given by

uk = F (A + BF )k−px̂p

where p = max {m : γm = 1,m ≤ k} ,
(40)

that is p is the last timestep the control packet was
successfully received.

We can now write the closed loop system as the JLS in
Eqn. (31), with

Aθ(k) =


M1 + Tk , if λk = 1 and γk = 1
M2 + Tk , if λk = 1 and γk = 0
M3 + Tk , if λk = 0 and γk = 1
M4 + Tk , if λk = 0 and γk = 0

(41)

and

M1 =

 A + BF −BF 0
0 A− LC 0
0 A 0

 (42)

M2 =

 A + BF 0 −BF
0 A− LC 0
0 0 A

 (43)

M3 =

 A + BF −BF 0
0 A 0
0 A 0

 (44)

M4 =

 A + BF 0 −BF
0 A 0
0 0 A

 (45)

Tk =

 ∆k 0 0
∆k 0 0
∆k 0 0

 . (46)

Once again defining

Ni = ||Mi||H +
√

3 β||P || · ||P−1|| , (47)

for i = {1, 2, 3, 4}, we have the following sufficient
condition for stability.

Theorem 9: Given the anticipatory control scheme with
the observer placed at the controller, and the quantities



defined in Eqn. (36) and Eqn. (42) - (47), then if λ and γ
are such that

Nλγ
1 N

λ(1−γ)
2 N

(1−λ)γ
3 N

(1−λ)(1−γ)
4 < 1, (48)

the closed loop system converges almost surely.
Proof: The proof follows exactly the same as in

Theorem 5. �

IV. FINDING || · ||H
In Section III, we provide sufficient conditions on the

network and system parameters such that the closed loop
system is almost sure stable. The theorems give a condition
on λ and γ for a particular H such that ||M1||H < 1 and
upper bound on β. The question is how to chose the H
such that we can get a tight lower bound on λ and γ and a
tight upper bound on β. Clearly we want to make ||M1||H
as small as possible to allow for higher percentages of
packet drop, but the tradeoff is that the corresponding H
could make the other ||Mi||H and ||P || · ||P−1|| become
large, which can increase the lower bounds on λ and γ
and decrease the upper bound on β. In general we want to
solve the following problems.
• Find suitable H such that

βmax =
1− ||M1||H
||P || · ||P−1||

is maximum.

• Find suitable H such that the λ and γ satisfying the
sufficient stability condition for the corresponding
NCS implementation are minimized.

Notice that they have contradicting objectives. If we
allow more uncertainty in the system, we need larger
packet arrival rates. If the uncertainty is small, the arrival
rates are certainly reduced.

We provide two algorithms below to find the smallest
lower bounds on λ and γ and largest upper bound on
β. Before we introduce them, we state a few theorems
that state there indeed exists H > 0 such that we can
push ||M1||H to its lower limit, i.e. , make ||M1||H as
close to ρ(M1) as possible. Again the tradeoff is that the
corresponding H may make ||M2||H and ||P || · ||P−1||
large.

Theorem 10: (Schur) Given A ∈ IRn×n with real eigen-
values λ1, · · · , λn in any prescribed order, there is an
orthogonal matrix U ∈ IRn×n such that

UT AU = T = [tij ]

is upper triangular, with diagonal entries tii = λi, i =
1, · · · , n.
Proof: See [2], page 79. �

Theorem 11: Assume A ∈ IRn×n is stable. Then there
exists a sequence of Hi > 0 such that

lim
i→∞

||A||Hi = ρ(A) .

Proof: Let Di = diag(i, i2, · · · , in). By Schur’s the-
orem, there is an orthogonal matrix U and an upper
triangular matrix T such that A = UT TU . As

DiTD−1
i =


λ1 i−1t12 i−2t13 · · · i−n+1t1n

0 λ2 i−1t23 · · · i−n+2t2n

0 0 λ3 · · · i−n+3t3n

· · · · · · ·
0 0 0 · · · i−1tn−1,n

0 0 0 0 λn


for any given ε > 0, for sufficiently large i, we can be sure
that

||DiTD−1
i || ≤ ρ(A) + ε.

Define Hi = UT DT
i DiU > 0 and z = Pix where Pi =

DiU . Then

||A||2Hi
= sup

x6=0

xT AT HAx

xT Hx

= sup
z 6=0

zT P−T
i AT PT

i PiAP−1
i z

zT z

= ||PiAP−1
i ||2

= ||DiUUT TUUT D−1
i ||

= ||DiTD−1
i ||

≤ ρ(A) + ε.

On the other hand, any matrix norm is bounded below by
its spectral radius, by letting i go to infinity, we hence
prove the theorem. �

Remark 12: If A ∈ IRn×n does not have real eigenval-
ues, then U becomes unitary instead of orthogonal. The
transpose operator is replaced by the Hermitian transpose.
Everything else is unchanged.

We can use the proof to Theorem 11 to form the
algorithm given in Table I.

TABLE I
ALGORITHM I

Given (A, B, C, F, L) and corresponding control scheme
1. Form the matrices Mj as in Section III,

where j ∈ {1, 2} or {1, 2, 3, 4}
depending on different control schemes.

2. Find U, T such that M1 = UT TU
via standard Schur’s algorithm.
Set i = 1.

3. Form Hi = P T
i Pi where Pi = DiU

and Di = diag(i, i2, · · · , in).
4. Find maximum sufficient uncertainty

according to (12) or (36) depending on
different control schemes.

5. Find minimum sufficient packet arrival rates λ and γ
for some portion of the uncertainty found in the
last step according to Theorems 5, 7, 8 or 9.

6. i = i + 1
7. Repeat steps 3 to 6 until the

incremental increase or decrease of
these numbers are within a certain threshold.



This algorithm works fine to get a lower bound for λ and
γ, however it works terrible to find a upper bound for β as
zero is almost obtained in each iteration. The reason relies
on the way we form the Hi matrices. In each iteration Di is
increased dramatically and hence make ||P || · ||P−1|| very
big. Therefore we seek another algorithm to compensate
for this.

The second algorithm iteratively solves the discrete time
Lyapunov equation to find H . Details are given in Table II.

TABLE II
ALGORITHM II

Given (A, B, C, F, L) and corresponding control scheme
1. Form the matrices Mj as in Section III,

where j ∈ {1, 2} or {1, 2, 3, 4}
depending on different control schemes.

2. Set i = 1 and Qi = I
3. Solve AT HiA − Hi = −Qi via standard Lyapunov

equation solvers to get Hi. Set Qi = Hi.
4. Decompose Hi into Hi = PiPi via standard algorithms.
5. Find maximum sufficient uncertainty

according to (12) or (36) depending on
different control schemes.

6. Find minimum sufficient packet arrival rates λ and γ
for some portion of the uncertainty found in the
last step according to Theorems 5, 7, 8 or 9.

7. i = i + 1
8. Repeat steps 3 to 7 until the

incremental increase or decrease of
these numbers are within a certain threshold.

Notice that the difference between the two algorithms
lies in the way we form H . In the first algorithm, we
decompose H into H = PT P , while in the second
H = PP .

It turns out that the second algorithm almost produces
the same result for lower bound of λ and γ as in the first
algorithm, but gives a much better upper bound of β.

When this algorithm stops, the results we get may not
be the best ones we are interested in. For example, as the
algorithm starts, the lower bounds on λ and γ may begin
decreasing but later increase (those bounds are equal for
the case only M1 and M2 are present), while the upper
bound on β may keep decreasing. Hence an intelligent
way to make use of this algorithm is to look at the history
of the results obtained and determine which values are the
best. For systems having less uncertainty and more packet
drops, more iterations are better. While for systems having
large uncertainty and less packet drops, less iterations are
enough.

V. EXAMPLES AND DISCUSSION

Consider the system described by Eqn. (1) - (2) with the
following parameters,

A =
[

1.04779 0.09672
0.947898 0.951068

]
B =

[
0.0048768
0.096734

]
C = [1, 0]

so the eigenvalues of the A matrix are [1.306, 0.6927]. The
gains F and L were chosen so that the eigenvalues of
A + BF and A − LC were placed at [0.025, 0.026] and
[0.015, 0.016] respectively. In all the simulations described
below the maximum norm of the uncertainty was set to
30% of it’s theoretical limit.

Using the second algorithm above, we can plot how the
βmax, λmin, and γmin evolve under Algorithm 2. The results
are shown in Fig. 2 for the anticipatory control with the
observer at the controller. As seen in the plot, for roughly
the first 50 iterations the minimum packet acceptance rates
are decreasing but then the λmin value begins to increase.
The βmax appears to be monotonically decreasing.
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Fig. 2. Plotting the evolution of βmax, λmin, and γmin under Algorithm 2
for anticipatory control with observer at the controller.

The tradeoff in choosing H should now be apparent.
For the remainder of the results, H will be chosen with
Algorithm 2 terminating after 50 iterations. In Fig. 3 we
see the stability regions for each of the NCS implementa-
tions. From this plot it would seem the zero control scheme
would be best as it gives the larger region for stability.
When running a simulation, however, we will see that in
fact the anticipatory control gives more desirable behavior.

In the simulation results shown below the initial state
was bounded so that |xi(0)| ≤ 1 and the observer state
|x̂i(0)| ≤ 1. In Fig. 4 the norm of the state is plotted
for λ = 0.9 and γ = 0.95 and each of the NCS
implementations. As seen they all converge to the origin
as t →∞, and indeed this (λ, γ) pair is inside the stability
region for all four cases. The peak of the norms are slightly
smaller using the anticipatory control, indicating this might
a better choice. Next, the rates were dropped to λ = 0.8
and γ = 0.65 which makes it outside the guaranteed
stability region for all the control schemes. Nonetheless, as
seen in Fig. 5 the states converge to the origin as well. This
demonstrates that our conditions are only sufficient and
not necessary. As in the previous simulation the peaks of
anticipatory control scheme are significantly smaller than
their zero control counterparts.

The reason the stability region for the anticipatory
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Fig. 3. Stability regions for the four different NCS implementations.
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Fig. 4. Simulation results for λ = 0.9 and γ = 0.95, plots are the
norm of the state.
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Fig. 5. Simulation results for λ = 0.8 and γ = 0.65, plots are the
norm of the state.

control scheme is smaller than the zero control scheme
has to do with the fact that we introduce an extra state
variable in the anticipatory case. This can have the effect
of increasing the associated H norms of the JLS matrices.

Intuitively, the anticipatory scheme should provide better
performance (provided the uncertainty is small) since the
plant receives more information. This is indeed verified
from the example above.

VI. CONCLUSION AND FUTURE WORK

In this paper we analyzed controlling linear discrete
time systems with norm bounded uncertainty in the plant
matrix over packet dropping networks. We considered the
effect of packet losses on closed loop stability. Sufficient
conditions for stability are given in terms of the packet
arrival probability as well as the norm of the uncertainty
for different control schemes. As most networks experience
not only packet drops but delays as well [10], we would
like to include this effect in the stability analysis.

Although the norm bounded uncertainty is frequently
used, there are other types of uncertain models that might
be more applicable in certain cases. For example, when the
uncertainty is described by a convex set [11]. We would
like to obtain similar results for other types of uncertainty
as well.

This paper has given sufficient conditions for stability
and certainly some of them are not necessary. It is interest-
ing to find necessary conditions for stability as well. Lastly,
this paper has dealt with guarantees for stability but has not
addressed the issue of performance. Investigating how the
embedded networks degrade performance is a interesting
area for future work.
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