
The Effect of Sensor Health on State Estimation

Ling Shi, Michael Epstein and Richard M. Murray

Abstract— In this paper, we consider the problem of state
estimation using the standard Kalman filter recursions which
takes account of the available sensor health information. Given
a stochastic description of the sensor health, we are able
to show that the expected error covariance converges to a
unique value for all initial values, while the available previous
work only showed the upper bound of the expected error
covariance converges. Our approach provides both theoretical
value to the analysis as well as the potential to get tighter
upper bound. Our results provide a criterion of evaluating
the sensor measurement. In the multisensor fusion problem,
depending on the system error tolerance levels, it can then be
determined whether to fuse a particular sensor measurement
or not. Examples and simulations are provided to assist the
theory.

I. I NTRODUCTION

State estimation is one of the major areas in the field of
control, and one of the most frequently used state estimation
tools is the Kalman Filter [1], which deals with linear discrete
time systems with both white process and measurement
noises. Since [1] was published, the Kalman filter has been
the subject of extensive research and applications [2], [3], [4],
[5]. For example, the Kalman filter has been widely used in
autonomous and assisted navigation.

The Kalman filter in its original form dealt with a single
sensor. However as systems become increasingly complex
and more fragile to failures [6], redundancy is needed to
provide more robustness to the systems, especially when the
system is in a severe working environment. For example
in DARPA Grand Challenge 2005, the autonomous driving
contest, Team Caltech installed a rich set of sensors on Alice
(the autonomous car, see [7] for a detailed description on the
whole system) which can provide a full estimate of the state
of the car. Even if certain sensors fail to work properly, the
remaining sensors are still able to provide full estimate.

When there are multiple sensors available, it is natural
to fuse the sensor measurements to get an enhanced state
estimate. Different algorithms have been proposed in the
past few decades. See [8] for a review on the multisensor
data fusion algorithms. The Kalman filter can also be used
in multisensor state estimation, but it assumes a central-
ized system structure in the sense that measurements from
different sensors are sent to a common center. In [9], the
authors proposed a decentralized Kalman filter algorithm to
deal with multiple sensors at different locations which can
communicate with each other.
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In those sensor fusion schemes, a particular sensor model
is usually assumed to be fixed for ease of analyzing and
showing certain convergent properties of the error covari-
ance. In many situations, however, the sensor models are
changing depending on the environment the sensor is in
which is reflected through the sensor health parameter. Take
the GPS sensor in Alice [7] for example, where the satellite
numbers available to the GPS sensors are changing as Alice
crosses different areas. As the measurement noise variance
levels decreases when the number of available satellites
increase, this makes the measurement noise variance level
change from time to time. This is especially true when
Alice is traveling in Urban areas where buildings and other
obstacles can block the GPS signals.

There has been some recent work on state estimation with
sensor models not being fixed. In a slight different aspect, the
authors in [10] discussed how packet loss can affect stable
state estimation. In their work, they considered two different
sensor models, one being that the sensor is working properly,
i.e., with a finite noise covariance, and the other being that
the sensor fails,i.e., with an infinite noise covariance. They
showed there exists a certain threshold of the packet loss rate
above which the state estimation diverges in the expected
sense. They also provided lower and upper bounds of the
threshold value. As we will show later, some of their result
is just a special case of ours. In [11], the authors extended
the results in [10] to the case when partial observations can
be lost. Instead of looking at the expected value of the error
covariance, in [12], the authors considered the same problem
by looking at the distribution of the error covariance, hence
providing a better evaluation of how the packet loss rate
would affect the error covariance.

In this paper, we consider the problem of multisensor
fusion with each sensor having a health monitor which
indicates at any time which model the sensor is using. For
example, if the sensor is healthy or working properly, the
sensor model is the one with a smaller noise covariance;
otherwise, the sensor model is the one with a larger noise
covariance. We can for example think this health monitor as
the satellite counter in the GPS sensor which indicates what
measurement noise covariance should be used. This will be
made clear in the next section.

In [13], the authors considered optimal sensor scheduling
among a set of sensors. The setting of this paper can be
considered as a special case of theirs and it turns out that the
upper bound for the error covariance in our paper coincides
with their. However, there are a few major differences
between our papers. In [13], they only showed the upper
bound of the expected error covariance converges, but did not
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shed any light on how the actual expected error covariance
evolves. We in fact are able to prove that the expected error
covariance itself converges to a unique value for all initial
values. From this fact, we derive the upper bound on the
error covariance. Therefore in our paper, we provide both
theoretical value to the analysis as well as the potential to get
tighter upper bound in the future work. Another difference
as we will show in the example session is the different
assumptions on the noise covariances. Their results would
be trivial if they take our assumption.

The paper is organized as follows. In section 1, we briefly
review the motivation and some relevant past work. In section
2, the mathematical model of the problem is given and some
lemmas are provided to facilitate the main proof. In section
3, we give the main results of the paper. In section 4, we
provide an example to demonstrate the result and simulations
are also provided. The paper concludes with a summary of
our results and a discussion of the work that lies ahead.

II. PROBLEM SET UP

Consider the following discrete-time LTI system

xk+1 = Axk + wk. (1)

A set of sensorsS = {Si, · · · , SN} produce measurement
of the state. The model of sensori, i = 1, · · · , N , is given
by

yi
k = Cixk + vi1

k , (2)

with probability αi
k and

yi
k = Cixk + vi2

k , (3)

with probability 1 − αi
k. As usual,xk ∈ Rn is the state

vector,yi
k ∈ Rmi is the observation vector of theith sensor,

wk ∈ Rn and vij
k ∈ Rmi , j = 1, 2 are all white Gaussian

random vectors with zero mean and covariance matricesQ ≥
0 and Rij > 0, j = 1, 2, respectively. In particular, assume
Ri2 ≥ Ri1 > 0 which means that the sensors produce noisier
measurement when in mode two.αi

k indicate how often the
sensor is in mode one. Assume(A,Q) is stabilizable and
for eachi, the pair(A,Ci) is detectable. Finally assume that
observation models occur independently at each time step.
As we only consider the estimation problem without any
control, we are only interested in how the error covariance
evolves.

Assume a sensor fusion scheme is given, for example, the
decentralized Kalman filter algorithm described in [9], we
will then determine whether to include a particular sensor
data into to the fusion process or not. It is clear that ifRi2 is
much larger thanRi1 andαk ≤ α for all k whereα is a very
small number, intuitively in this case, the measurement from
sensori should be excluded as the measurement contains
mostly noise.

As a first step towards this ultimate objective, we restrict
ourselves to having only one sensor and hence will drop all
the i in the notations from now on. We will generalize the
result for the single sensor case to theN sensors case in the
future work.

Denote the initial error covariance asP0 > 0 and at time
k, the corresponding error covariance asPk. By using the
standard Kalman filter recursions (see [10] for an example
how to use those recursions), we obtain the updating equation
for the error covariance (to be more precise, the a priori error
covariance) as follows.

Pk+1 =
{

g1(Pk) if yk = Cxk + v1
k,

g2(Pk) if yk = Cxk + v2
k,

whereg1 andg2 are defined as

g1(X) = AXA′ + Q−AXC ′[CXC ′ + R1]−1CXA′,

g2(X) = AXA′ + Q−AXC ′[CXC ′ + R2]−1CXA′.

Notice that due to the randomness ofαk, Pk is itself a
random variable. Therefore we will only considerE[Pk]. In
the next section, we provide the main results which show the
convergence property ofE[Pk] and provide an upper bound
on its limit. Before we state the main theorem, we introduce
a few lemmas to facilitate the proof.

Lemma 1:X ≥ Y > 0 if and only if 0 < X−1 ≤ Y −1.
Proof: See [14], page 471, Corollary 7.7.4.

Lemma 2:For all X > 0, g2(X) ≥ g1(X).
Proof: We only need to show that for allX > 0,

g2(X)− g1(X) ≤ 0.

As

g2(X)− g1(X)
= AXC ′([CXC ′ + R1]−1 − [CXC ′ + R2]−1)CXA′,

and
CXC ′ + R2 ≥ CXC ′ + R1,

it follows directly from Lemma 1 thatg2(X) ≥ g1(X). ¥

Lemma 3: If gi(X) ≤ X, then gk
i (X) ≤ gk−1

i (X) for
all k, i ∈ {1, 2}. Similarly if gi(X) ≥ X, then gk

i (X) ≥
gk−1

i (X) for all k, i = 1, 2.
Proof: From Lemma 1-c in [10], if0 ≤ X ≤ Y , then

gi(X) ≤ gi(Y ). Therefore, keep applyinggi for k time to
both sides of the inequalitygi(X) ≤ X or gi(X) ≥ X, we
get the desired form. ¥

Corollary 4: If gi(X) ≤ X, then gk
i (X) ≤ X for all k,

i = 1, 2. Similarly if gi(X) ≥ X, thengk
i (X) ≥ X for all

k, i = 1, 2.
Let lj ∈ {1, 2} which stands for the sensor model at time

j, j = 1, · · · , k. Further define

I1 = I1(lk · · · l1) =
k∑

j=1

(lj mod 2),

and
I2 = I2(lk · · · l1) = k − I1(lk · · · l1).

Define
fk ,

∑

lk···l1
αI1(1− α)I2glk · · · gl1 ,



where the sum is running over all the possible2k realizations
of the sensor equations. It is easy to show thatfk is related
to fk−1 by

fk = αfk−1 ◦ g1 + (1− α)fk−1 ◦ g2,

wheref0 = I is the identity map.
Lemma 5:For all timek, fk is concave,i.e., for anyα ∈

[0, 1] and anyX ≥ 0, Y ≥ 0,

fk(αX + (1− α)Y ) ≥ αfk(X) + (1− α)fk(Y ).

Furthermore, if0 ≤ X ≤ Y , thenfk(X) ≤ fk(Y ) for all k.
Proof: From Lemma 1-e in [10], bothg1 andg2 are concave
functions,i.e.,

g1(αX + (1− α)Y ) ≥ αg1(X) + (1− α)g1(Y ),
g2(αX + (1− α)Y ) ≥ αg2(X) + (1− α)g2(Y ).

Hence fori = 1 or 2 and j = 1 or 2,

gigj(αX + (1− α)Y ) ≥ gi(αgj(X) + (1− α)gj(Y )),
≥ αgigj(X) + (1− α)gigj(Y ).

It is easily verified via induction thatglk · · · gl1 is concave
too for any value oflj , j = 1, · · · , k. Hence it follows
that fk is concave for allk. When0 ≤ X ≤ Y , it directly
follows from Lemma 1-c in [10] thatfk(X) ≤ fk(Y ) as
each individualgi is an increasing function. ¥

Lemma 6: If αk ≥ α for all k, thenE[Pk] ≤ fk(P0) for
all k.
Proof: Let hk be defined by

hk = αkhk−1 ◦ g1 + (1− αk)hk−1 ◦ g2,

with h0 = I being the identity map. ThenE[Pk] = hk(P0).
Hence we only need to show

hk ≤ fk

for all k. From the definition ofhk, it is easy to show that
if 0 ≤ X ≤ Y , thenhk(X) ≤ hk(Y ) for all k by using the
increasing property ofg1 and g2. Clearly this holds for the
case whenk = 0. Assume fork ≥ 0,

hk−1 ≤ fk−1.

Write αk = α + ∆k, where0 ≤ ∆k ≤ 1 for all k. Then

fk − hk = S1 + S2 + S3,

where

S1 = α(fk−1 ◦ g1 − hk−1 ◦ g1) ≥ 0,

S2 = (1− α)(fk−1 ◦ g1 − hk−1 ◦ g2) ≥ 0,

S3 = ∆k(hk−1 ◦ g2 − hk−1 ◦ g1) ≥ 0.

The first two hold asfk−1 ≥ hk−1 from the assumption
and the last one holds asg2 ≥ g1 from Lemma 2 andhk−1

is an increasing function. As a resultfk ≥ hk for all k. ¥

In light of Lemma 6, we can assume from now on that
αk = α for all k, i.e., we consider the worse case scenario
of the error covariance. The tradeoff is that the analysis
becomes much simpler as seen in the main theorem in the
next section.

III. M AIN RESULTS

In this section, we provide the main results of this paper.
We show thatE[Pk] converges to a unique value asymptot-
ically regardless of whereP0 > 0 starts. We further show
that this unique value is upper bounded by a known matrix.
This result will help us to determine which sensor data to
include in fusion in the multisensor fusion problem given the
error tolerance level of the system.

From now on, letP̄i be such thatgi(P̄i) = P̄i, i = 1, 2,
i.e., P̄i is the unique solution to the corresponding algebraic
riccati equation. We summarize the main result of this paper
in the following theorem.

Theorem 7:Let

D(α, P0) = lim
k→∞

E[Pk].

ThenD(α) has the following properties.

1) D(0, P0) = P̄2 andD(1, P0) = P̄1.
2) D(α, P0) exists for allα ∈ [0, 1] and all P0 > 0 and

it does not depend on the value ofP0. Furthermore, it
satisfies

P̄1 ≤ D(α, P0) ≤ P̄2.

3) D(α, P0) ≤ D̄(α), P̄1 ≤ D̄(α) ≤ P̄2 whereD̄(α) is
the unique positive definite solution to

αg1(D̄) + (1− α)g2(D̄) = D̄. (4)

4) If α1 ≤ α2, thenD̄(α1) ≥ D̄(α2).

Fig. 1. system error tolerance levels.

Before proving the theorem, we give an intuitive explana-
tion of what the theorem means for scalar system. In Figure
1, the region inside the (blue) solid line is where the actual
error eventually converges to when the sensor is healthy
(mode 1). The region inside the (red) dashed line corresponds
to when the sensor is unhealthy (mode 2). Suppose the
system error tolerance level is within the (pink) dotted line,



then we can study by how often the sensor is in mode 2 that
the error could jump outside the (pink) dotted line. In our
theorem,D̄ provides a sufficient condition to evaluate how
healthy a sensor is.

Proof: Using the previous notations, with initial error
covarianceP0, we haveE[Pk] = fk(P0). To simplify the
notation, let us writeD(α, P0) = D(α).

1) Notice that whenα = 0, fk = gk
2 , i.e., fk equals the

composition of the functiong2 for k times. Hence

D(0) = lim
k→∞

gk
2 (P0) = P̄2.

Similarly if α = 1, thenfk = gk
1 , hence

D(1) = lim
k→∞

gk
1 (P0) = P̄1.

2) We first show that ifP0 = P̄2, D(α) exists. In this
case,

E[Pk+1] = fk+1(P̄2)
= αfk ◦ g1(P̄2) + (1− α)fk(P̄2)
≤ fk(αg1(P̄2) + (1− α)P̄2) (Lemma 5)
≤ fk(αP̄2 + (1− α)P̄2) (Lemma 2)
= fk(P̄2)
= E[Pk].

Hence E[Pk] forms a monotonically decreasing se-
quence forP0 = P̄2. Also notice thatD(α) is bounded
below by P̄1 as

E[Pk] = fk(P̄2)

=
∑

lk···l1
αI1(1− α)I2glk · · · gl1(P̄2)

≥
∑

l1···lk
αI1(1− α)I2g1 · · · g1(P̄2)

= gk
1 (P̄2)

≥ P̄1.

The last inequality follows from the fact that

P̄2 = g2(P̄2) ≥ g1(P̄2) ≥ g2
1(P̄2) ≥ · · · ≥ gk

1 (P̄2)

which converges tōP1.
Hence we have a monotonic nonincreasing sequence
of matrices bounded below. It is a simple matter to
show that the sequence converges. At this point, we
do not know where the sequenceE[Pk] initiated at
P0 = P̄2 (i.e., the sequencefk(P̄2)) converges to.
Sincefk(P̄2) forms a convergent sequence, let us call
its limit as f∞(P̄2). From definition, we can write
fk(P̄2) as follows.

fk(P̄2) = αfk−1(g1(P̄2)) + (1− α)fk−1(g2(P̄2))
= αfk−1(g1(P̄2)) + (1− α)fk−1(P̄2)

or we can write

fk−1(g1(P̄2)) =
1
α

(fk(P̄2)− (1− α)fk−1(P̄2)).

As both the sequencesfk(P̄2) and fk−1(P̄2) con-
verges,fk−1(g1(P̄2)) must also converge. Let us call
its limit as f∞(g1(P̄2)). Notice thatfk(P̄2) converges
to f∞(P̄2) and (1 − α)fk−1(P̄2) converges to(1 −
α)f∞(P̄2), hence we obtain

f∞(P̄2) = f∞(g1(P̄2)).

As fk(X) ≤ fk(Y ) for X ≤ Y and g1(P̄2) ≤ P̄2,
then it is true thatf∞(P0) equalsf∞(P̄2) for at least
all P0 such thatg1(P̄2) ≤ P0 ≤ P̄2.
Next we further expandfk(P̄2) as follows.

fk(P̄2) = α2fk−2(g2
1(P̄2))+

(1− α)αfk−2(g2(g1(P̄2)))+
α(1− α)fk−2(g1(g2(P̄2)))+

(1− α)2fk−2(g2
2(P̄2)). (5)

Notice that

g2(g1(P̄2)) ≤ g2(P̄2) = P̄2,

and
g1(g2(P̄2)) = g1(P̄2), g2

2(P̄2) = P̄2.

We also have

fk−2(g2
1(P̄2)) ≤ fk−2(g2(g1(P̄2))).

As a result,

LHS ≤ fk−2(g2(g1(P̄2)) ≤ RHS

where

LHS =
1
α
{fk(P̄2)−

α(1− α)fk−2(g1(P̄2))− (1− α)2fk−2(P̄2)}
and

RHS = fk−2(P̄2).

Since both RHS and LHS converge to f∞(P̄2),
fk(g2(g1(P̄2))) must also converge tof∞(P̄2), i.e.,
f∞(g2(g1(P̄2))) = f∞(P̄2). Next substitute this back
to equation (5), it is easy to obtain thatfk(g2

1(P̄2)))
converges tof∞(P̄2). Hencef∞(P0) equalsf∞(P̄2)
for at least allP0 such thatg2

1(P̄2) ≤ P0 ≤ P̄2.
By induction, we can easily show that

f∞(P̄2) = f∞(gk
1 (P̄2)),

for all k. Since it is true that

lim
k→∞

gk
1 (P̄2) = P̄1,

it follows immediatelyf∞(P0) is a constant for allP0

such thatP̄1 ≤ P0 ≤ P̄2. This in fact includes the
case whereP0 � P̄j andP0 � P̄j , j = 1 or 2, i.e., the
eigenvalues ofP0 are not all bigger than or all smaller
than the corresponding eigenvalue ofP̄j , j = 1 or 2.
This is because for allP0 > 0,

gk
1 (P0) ≤ fk(P0) ≤ gk

2 (P0),



and

lim
k→∞

gk
1 (P0) = P̄1, lim

k→∞
gk
2 (P0) = P̄2.

Hence eventually,fk(P0) will satisfy P̄1 ≤ fk(P0) ≤
P̄2. This completes the proof for part 2.

3) Let D̄ be such that

αg1(D̄) + (1− α)g2(D̄) = D̄.

Notice that

D̄ ≤ αg2(D̄) + (1− α)g2(D̄) = g2(D̄)

and

D̄ ≥ αg1(D̄) + (1− α)g1(D̄) = g1(D̄).

Therefore by Corollary 4,

gk
1 (D̄) ≤ D̄ ≤ gk

2 (D̄)

for all k. Therefore it follows thatP̄1 ≤ D̄ ≤ P̄2.
By part 2 of the theorem,f∞(D̄) = D(α). Now take
P0 = D̄, then

E[Pk+1] = fk+1(D̄)
= αfk(g1(D̄)) + (1− α)fk(g2(D̄))
≤ fk(αg1(D̄) + (1− α)g2(D̄))
= fk(D̄)
= E[Pk].

HenceE[Pk] also forms a monotonically decreasing
sequence. Thereforef∞(D̄) ≤ D̄, i.e., D(α) ≤ D̄.

4) Assume0 ≤ α1 ≤ α2 ≤ 1 and letα2 = α1+∆, where
0 ≤ ∆ ≤ 1. Write

D̄(α1) = D̄1, D̄(α2) = D̄2

and
T (X) = α1g1(X) + (1− α1)g2(X).

Then D̄1 = T (D̄1) and D̄2 = T (D̄2) + M , where

M = ∆(g1(D̄2)− g2(D̄2)) ≤ 0.

From the expression of̄Di, i = 1, 2, we can in fact
write

D̄i = lim
k→∞

D̄i(k), i = 1, 2

where
D̄1(k + 1) = T (D̄1(k))

and
D̄2(k + 1) = T (D̄2(k)) + M(k)

with D̄i(0) = I and

M(k) = ∆(g1(D̄2(k))− g2(D̄2(k))) ≤ 0.

Clearly, D̄1(0) ≥ D̄2(0) as M(0) ≤ 0. Now assume
D̄1(k) ≥ D̄2(k), then

D̄1(k + 1) = T (D̄1(k))
≥ T (D̄2(k))
≥ T (D̄2(k)) + M(k),
= D̄2(k + 1).

Taking the limit as k → ∞, we see that
D̄(α1) ≥ D̄(α2). ¥

Notice that in the third part of the theorem, ifα = 1, then
D̄ = P̄1 and similarly if α = 0, D̄ = P̄2 which agree with
our intuition.

We can interpret the above result in many different ways.
For example, consider the scenario at [10] where they
considered the problem of Kalman filter with packet losses. It
turns out that their results on the upper bound of the expected
error covariance is just a special case of our results by letting
R2 → ∞. Then D̄ = V̄ where V̄ is their notation for the
upper bound on the expected error covariance. Furthermore
we have shown thatE[Pk] converges to the same value for
all initial conditions.

IV. EXAMPLE AND SIMULATIONS

We consider an example which is taken from that in
[13] with slight modification. In their original example, the
authors assumedR1 ≤ R2 is not true to make interesting
result, or otherwise,α1 would be just1 for all the time, hence
there is no point to optimize the probability distribution. In
fact the main difference between our paper and theirs is that
we try to evaluate a givenα for a sensor and eventually a
given set ofαi and a set of sensors{Si}, i = 1, · · · , N , while
they try to design the optimalα for a set of sensors. Let the
system parameters (equations( 1, 2, 3)) be the following

A =




1.0 0.0 0.2 0.0
0.0 1.0 0.0 0.2
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0




C =
[

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0

]

Q =




0.002 0.005 0.02 0.005
0.005 0.002 0.005 0.02
0.02 0.005 0.2 0.05
0.005 0.02 0.05 0.2




R1 =
[

0.4 0.0
0.0 0.4

]

R2 =
[

20.4 0.0
0.0 20.4

]

It is easily verified that all the assumptions are satisfied.
This also assumed in sensor mode two, both components
produce noisier data than when it is in mode one. For this
system, it is calculated that

P̄1 =




0.2780 0.0226 0.3660 0.0525
0.0226 0.2780 0.0525 0.3660
0.3660 0.0525 0.8543 0.1686
0.0525 0.3660 0.1686 0.8543




P̄2 =




4.4622 0.3132 0.3660 0.0525
0.3132 4.4622 0.0525 0.3660
0.3660 0.0525 0.8543 0.1686
0.0525 0.3660 0.1686 0.8543






And their corresponding traces areTrace(P̄1) = 2.2646 and
Trace(P̄2) = 13.1254. For a givenα ∈ [0, 1], we also
calculate the corresponding value ofD̄ according to equation
(4). The (red) dotted curve in Figure 2 shows the relationship
between the trace of̄D andα.
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Fig. 2. α versus the trace of the upper bound̄D.

In some applications, maybe only certain components
become unhealthy. We model that as a newR2, where

R2 =
[

0.4 0.0
0.0 20.4

]

This basically says that the second component of the sensor
is not working properly while the first one remains healthy.
The newly calculated values are:

P̄2 =




0.2796 0.0492 0.3686 0.0831
0.0492 4.4219 0.0831 2.1766
0.3686 0.0831 0.8585 0.2086
0.0831 2.1766 0.2086 2.0622




and Trace(P̄2) = 7.6223. We again plot the relationship
between the trace of̄D andα in the (blue) dashed curve in
Figure 2.

Much can be said from Figure 2. For example, for the
sensor with two components unhealthy,α ≥ 0.425 suffices
to provide that

Trace( lim
k→∞

E[Pk]) ≤ 4,

which could represent the system error tolerance level.α
can be further reduced to just0.265 to guarantee the same
performance when there is just one unhealthy component.

V. CONCLUSIONS ANDFUTURE WORK

As system becomes much more complex, redundancy in
terms of multiple sensors/acutators is necessary to guarantee
performance in severe working environments. Hence multi-
sensor fusion especially with changing sensor models, is of
great theoretical as well as practical importance for lots of

applications. In this paper, we considered a first step towards
multisensor fusion where each individual sensor has a health
monitor which indicates the different modes the sensor is
in. As is demonstrated in the example, we have provided
sufficient conditions to evaluate sensor measurement given a
system error tolerance level.

We will next apply the result obtained in the one sensor
case to a set of sensors. Each individual sensor is assumed to
have their own representations of of the model Equations(2,
3). We will then determine whether to include a sensor
measurement into the final fusion or not given a system error
tolerance level. Tradeoffs in terms of the noise covariances
and α values will be given for certain guaranteed system
performance.
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