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The Effect of Sensor Health on State Estimation

Ling Shi, Michael Epstein and Richard M. Murray

Abstract—In this paper, we consider the problem of state In those sensor fusion schemes, a particular sensor model
estimation using the standard Kalman filter recursions which g usually assumed to be fixed for ease of analyzing and
takes account of the available sensor health information. Given showing certain convergent properties of the error covari-

a stochastic description of the sensor health, we are able | ituati h th del
to show that the expected error covariance converges to a ance. i many Situations, NOWEVEr, e SenSor Mocels are

unique value for all initial values, while the available previous chgngi_ng depending on the environment the sensor is in
work only showed the upper bound of the expected error which is reflected through the sensor health parameter. Take
covariance converges. Our approach provides both theoretical the GPS sensor in Alice [7] for example, where the satellite
value to the analysis as well as the potential to get tighter ,,ypers available to the GPS sensors are changing as Alice
upper bound. Our results provide a criterion of evaluating dif ¢ As th t noi .
the sensor measurement. In the multisensor fusion problem, crosses diiierent areas. As the measuremen_ noise varlgnce
depending on the system error tolerance levels, it can then be |evels decreases when the number of available satellites
determined whether to fuse a particular sensor measurement increase, this makes the measurement noise variance level
or not. Examples and simulations are provided to assist the change from time to time. This is especially true when
theory. Alice is traveling in Urban areas where buildings and other
I. INTRODUCTION obstacles can block the GPS signals.
L . . ) There has been some recent work on state estimation with
State estimation is one of the major areas in the field of

.~ 'sensor models not being fixed. In a slight different aspect, the
control, and one of the most frequently used state estlmatl%n Ing fix 'ght di P

. , . - . uthors in [10] discussed how packet loss can affect stable
tools is the Kalman Filter [1], which deals with linear d'scretest[ate estimation. In their work, they considered two different

time systems with both white process and measuremen ; : .
sensor models, one being that the sensor is working properly,

noises. Since [1] was published, the Kalman filter has beeré. with a finite noise covariance, and the other being that

the subject of extensive researc_h and applications [2], (3], [4:[he sensor failsi.e., with an infinite noise covariance. They
[5]. For example, the_KaIman f|lter_ has been widely used "howed there exists a certain threshold of the packet loss rate
autonomous and assisted navigation.

The Kalman filter in its original form dealt with a single above which the state estimation diverges in the expected

nsor. However as svstems become increasinaly com Fe)z(nse. They also provided lower and upper bounds of the
sensor. Howe ystems become ncreasingly Compigte shold value. As we will show later, some of their result

and more fragile to failures [6], redundancy is needed tQ just a special case of ours. In [11], the authors extended

grz\t/éﬁ Eoirr? gozlgt:risivfﬂ?ne Sgiﬁgi}ne;ﬁecglryg(g? Iﬁ results in [10] to the case when partial observations can
y g ) Pe lost. Instead of looking at the expected value of the error

in DARPA Grand Challlenge 2005’. the autonomous d”V'r!%ovariance, in [12], the authors considered the same problem
contest, Team Caltech installed a rich set of sensors on Ali looking at the distribution of the error covariance, hence

(the autonomous car, see [7] for a detailed description on t oviding a better evaluation of how the packet loss rate

whole system) which can provide a full estimate of the statWOuI d affect the error covariance.

of the car. Even if certain sensors fail to work properly, the In this paper, we consider the problem of multisensor
remaining sensors are still able to provide full estimate. fusion with ea(;h sensor having a health monitor which
15

¢ \:thentrt]here narer rrnnultlpler srfnrs]torst avalzabrl]e, rl]thlsnnaéur >ficates at any time which model the sensor is using. For
0 'use the sensor measurements fo get an enhanced s gmple, if the sensor is healthy or working properly, the

estimate. Different algorithms have been proposed in the . - ; .
9 prop sensor model is the one with a smaller noise covariance;

sztsat Iegoie;?doerihriieT[ﬁ]efzralam;iv}(?l\;\(larocna;h;srgug:eselse% herwise, the sensor model is the one with a larger noise
us! gor! ' ! US€€ovariance. We can for example think this health monitor as

:2 gﬁultlier;jortrsta:t(ar eisrflrtr;latlon;] bu'E[hlttansqsumers r? ﬁtentfrrq 1e satellite counter in the GPS sensor which indicates what
ed system structure € sense thal measurements asurement noise covariance should be used. This will be

different sensors are sent to a common center. In [9], thneﬁade clear in the next section

authors proposed a decentralized Kalman filter algorithm to In [13], the authors considered optimal sensor scheduling

deal with multiple sensors at different locations which Ca%mong a set of sensors. The setting of this paper can be

communicate with each other. . . : .
considered as a special case of theirs and it turns out that the
Control and Dynamical Systems, California Institute of Technologyupper bound for the error covariance in our paper coincides

Pasadena, CA 91125. with their. However, there are a few major differences
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shed any light on how the actual expected error covariance Denote the initial error covariance @& > 0 and at time
evolves. We in fact are able to prove that the expected errér the corresponding error covariance Bs. By using the
covariance itself converges to a unique value for all initiabtandard Kalman filter recursions (see [10] for an example
values. From this fact, we derive the upper bound on thieow to use those recursions), we obtain the updating equation
error covariance. Therefore in our paper, we provide botfor the error covariance (to be more precise, the a priori error
theoretical value to the analysis as well as the potential to getvariance) as follows.

tighter upper bound in the future work. Another difference P { g1(Py) if g, = Cay + vl

as we will show in the example session is the different 92(Py) if yp = Cayo + 02,

assumptions on the noise covariances. Their results would
be trivial if they take our assumption. whereg; andg. are defined as

o papet s oranized s olows. I seclon L We LX) = AXA'+Q - AXCICXC 1 By OXA,

2, the mathematical model of the problem is given and song(X) = AXA'+Q- AXC[CXC"+ Ry] 'CX A
lemmas are provided to facilitate the main proof. In section Notice that due to the randomness @f, P is itself a

3, we give the main results of the paper. In section 4, weandom variable. Therefore we will only considgfP;]. In
provide an example to demonstrate the result and simulatiofife next section, we provide the main results which show the
are also provided. The paper concludes with a summary ebnvergence property df[P,] and provide an upper bound
our results and a discussion of the work that lies ahead. on its limit. Before we state the main theorem, we introduce
a few lemmas to facilitate the proof.

Il. PrOBLEM SET UP Lemma 1:X >Y >0ifandonly if 0 < X! <Y1,

Consider the following discrete-time LTI system Proof: See [14], page 471, Corollary 7.7.4.
i1 = ATk + Wy @) Lemma 2:For all X > 0, g2(X) > g1(X).
A set of sensor$§ = {S;,--- , Sy} produce measurement Proof: We only need to show that for ak’ > 0,
g;the state. The model of sensgri = 1,--- , N, is given 5(X) = g1(X) < 0.
yh = Cizy + vi, (2) As
with probability o, and 92(X) — 1(X)
vi = Cig + 02, 3) = AXC([CXC'+ R|7' - [CXC' + Ry HOX A,

with probability 1 — o%. As usual,z; € R" is the state and

! !
vector, y,i€ € R™: is the observation vector of thi¢gh sensor, CXC' + Ry 2 CXC' + Ry,
wy € R" andv)! € R™,j = 1,2 are all white Gaussian it follows directly from Lemma 1 that,(X) > g1 (X). H
random vectors with zero mean and covariance matrices
0 and R;; > 0,5 = 1,2, respectively. In particular, assume Lemma 3:1f g;(X) < X, then g5(X) < ¢"~'(X) for
Ri» > R;1 > 0 which means that the sensors produce noisiefll &, i € {1,2}. Similarly if g;(X) > X, thengF(X) >
measurement when in mode twe) indicate how often the gffl(x) forall k,i=1,2.
sensor is in mode one. Assunfd, Q) is stabilizable and Proof: From Lemma 1-c in [10], if0 < X < Y, then
for eachi, the pair(4, C;) is detectable. Finally assume thatg,(X) < g¢;(Y). Therefore, keep applying; for k time to
observation models occur independently at each time steoth sides of the inequality; (X) < X or ¢;(X) > X, we

As we only consider the estimation problem without anyet the desired form. |
control, we are only interested in how the error covariance
evolves. Corollary 4: If g;(X) < X, thengF(X) < X for all k,

Assume a sensor fusion scheme is given, for example, the= 1,2. Similarly if g;(X) > X, thengt(X) > X for all
decentralized Kalman filter algorithm described in [9], wek, i =1, 2.
will then determine whether to include a particular sensor Let /; € {1,2} which stands for the sensor model at time

data into to the fusion process or not. It is clear thaRif is  j j =1,--- , k. Further define

much larger tha?;; anday, < « for all k wherea is a very A

small number, intuitively in this case, the measurement from L=0L )= Z(Zi mod 2),
sensori should be excluded as the measurement contains =

mostly noise.

As a first step towards this ultimate objective, we restric?anl
ourselves to having only one sensor and hence will drop all
the i in the notations from now on. We will generalize thepefine
result for the single sensor case to tNesensors case in the fr 2 Z ot —a) g, gy,
future work.

L=L( 1) =k—IL(x 1)

Ul



where the sum is running over all the possidferealizations
of the sensor equations. It is easy to show thats related
to fr—1 by
fr=0afe1091+ (1 —a)fr-1092,
where fo = I is the identity map.
Lemma 5:For all timek, f; is concavej.e, for anya €
[0,1] and anyX >0, Y > 0,

Je@X + (1= @)Y) > afi(X) + (1 - a)fu(Y).
Furthermore, if0 < X <Y, then f,(X) < fi(Y) for all £.
Proof: From Lemma 1-e in [10], both, andg, are concave
functions,i.e,

g(eX +(1-a)Y) > ag(X)+(1-a)g(Y),
g2(aX +(1-a)Y) > ag(X)+(1-a)g().
Hence fori=1or2 andj =1 or 2,
9i9j(aX + (1= a)Y) 9i(ag;(X) + (1 — a)g;(Y)),
ag;gj(X) + (1 — a)gig;(Y).
It is easily verified via induction thag;, - - - ¢;, iS concave
too for any value ofl;, j = 1,---,k. Hence it follows
that f; is concave for allk. When0 < X <Y, it directly

follows from Lemma 1-c in [10] thatf,(X) < fx(Y) as
each individualg; is an increasing function. [ |

>
>

2
>

Lemma 6:If ay > « for all k, then E[Py] < fi.(Fo) for
all k.
Proof: Let h; be defined by

hi = aghr—10g1 + (1 — ag)he—1 0 g2,
with hy = I being the identity map. TheB[P;] = hi(Fo).
Hence we only need to show
hi < fr

for all k. From the definition ofu, it is easy to show that
if 0 <X <Y, thenhy(X) < hi(Y) for all £ by using the
increasing property of; and g,. Clearly this holds for the
case wherk = 0. Assume fork > 0,

hi—1 < fr—1.
Write aj, = oo + Ay, where0 < A, < 1 for all k. Then
fx —he = S1 4+ 52+ S5,

where
Si a(fe—1091 —hx—1091) >0,
So = (I—a)(fr-1091 —hr—1092) >0,
Sz = Ag(hg—10g2 —hg_10g1) >0.

The first two hold asf,_1 > hi_1 from the assumption
and the last one holds as > ¢g; from Lemma 2 andh;,_;
is an increasing function. As a resylt > hy, for all k. H

Ill. M AIN RESULTS

In this section, we provide the main results of this paper.
We show thatE'[P;] converges to a unique value asymptot-
ically regardless of wheré,, > 0 starts. We further show
that this unique value is upper bounded by a known matrix.
This result will help us to determine which sensor data to
include in fusion in the multisensor fusion problem given the
error tolerance level of the system.

From now on, letP; be such thay;(P;) = P;, i = 1,2,

i.e, P; is the unique solution to the corresponding algebraic
riccati equation. We summarize the main result of this paper
in the following theorem.

Theorem 7:Let

D(o, Py) = kh—»Holo E[Pg].

Then D(«) has the following properties.

1) D(O,P()) = pg andD(l,P()) = pl-

2) D(a, Py) exists for alla € [0,1] and all P, > 0 and
it does not depend on the value Bf. Furthermore, it
satisfies

pl S D(Oé,Po) S PQ.

3) D(a, Py) < D(a), Py < D(a) < P, where D(a) is
the unique positive definite solution to

ag1 (D) + (1 —a)g2(D) = D.
4) If a1 < ag, thenD(Oél) > D(QQ).

(4)
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Fig. 1. system error tolerance levels.

Before proving the theorem, we give an intuitive explana-

tion of what the theorem means for scalar system. In Figure
In light of Lemma 6, we can assume from now on thatl, the region inside the (blue) solid line is where the actual
ar = « for all k, i.e, we consider the worse case scenari@rror eventually converges to when the sensor is healthy
of the error covariance. The tradeoff is that the analysiénode 1). The region inside the (red) dashed line corresponds
becomes much simpler as seen in the main theorem in ttee when the sensor is unhealthy (mode 2). Suppose the
next section. system error tolerance level is within the (pink) dotted line,



then we can study by how often the sensor is in mode 2 that
the error could jump outside the (pink) dotted line. In our
theorem,D provides a sufficient condition to evaluate how
healthy a sensor is.

Proof: Using the previous notations, with initial error
covarianceP,, we haveE[P;] = fx(FPy). To simplify the
notation, let us writeD(«, Py) = D(«).

1) Notice that whem = 0, f, = g5, i.e, fi. equals the

composition of the functiorg, for k& times. Hence

D(0) = lim g5 (Py) = Px.
Similarly if o = 1, then f;, = g¥, hence
D(1) = lim gk (Py) = .

2) We first show that ifPy = P, D(a) exists. In this
case,

ElPii1] = fer1(P2)
Oéfkogl(_f 2) + (1 — a) fu(Py)

< frlagi(Py) + (1 — a)P,) (Lemma 5)
< frlaPy+ (1 —a)P,) (Lemma 2)

= fr(P2)

= E[B].

Hence E[P;] forms a monotonically decreasing se-
quence forP, = P,. Also notice thatD(«) is bounded
below by P, as

ElP] = fu(P2)
= > a"1l-a)lg, g, (P)

L1y

Yo ali(l—a)2gi---qi(Py)

Lol
= gi(P)
> P

Y

The last inequality follows from the fact that
Py = gs(P2) > g1(Py) > g7 (Py) > -+ > g (P)

which converges tdP;.

Hence we have a monotonic nonincreasing sequence
of matrices bounded below. It is a simple matter to
show that the sequence converges. At this point, we
do not know where the sequendg{P;] initiated at

Py, = P, (i.e, the sequencef,(P;)) converges to.
Since fi.(P») forms a convergent sequence, let us call
its limit as f..(P;). From definition, we can write
fr(P2) as follows.

Ji(Py) afe-1(91(F2)) + (1 — @) fr—1(g2(F2))
= afp-1(91(2)) + (1 — @) fe—1(F2)

or we can write

fit(g1(P2)) = ~(ulPo) = (1= ) fi1(P).

As both the sequenceg.(P,) and fi._1(P) con-
verges, fr_1(g1(P)) must also converge. Let us call
its limit as f..(g1(P2)). Notice thatf;,(P,) converges
10 foo(P) and (1 — a)fx_1(P) converges to(1 —
@) f~(P2), hence we obtain

foo(PQ) = foo(gl(PQ))'

As fi(X) < fi(Y) for X <Y and g1(P) < P,
then it is true thatf..(Py) equalsf..(P,) for at least
all Py such thatgl(Pg) <PF < PQ.

Next we further expandy () as follows.

fr(P2) = o fra(g7 (Pa))+

(1 — a)afi-a(ga(g1(P2)))+
a(1 = a) fr-a(g1(g2(P2)))+
(1 - a)?fr-a(g3(P2)). (5)
Notice that

92(91(P2)) < g2(P,) = P,
and B B B B
91(92(P2)) = g1(Pa), g5 (P) = Pa.

We also have

fr—2(g3(P2)) < fo—2(g2(g1(P2))).
As a result,

LHS < fr—2(g2(91(P2)) < RHS

where
LHS = —{fu(P2)-
a(l —a)fi—2(g1(P2) — (1 — a)? fr_2(P2)}

and B
RHS = fr_2(P2).

Since both RHS and LHS converge to fOO(PQ)
fr(g2(g1(P))) must also converge tg(P), i
Foo(92(91(P2))) = foo(P2). Next substitute this back
to equation (5), it is easy to obtain th#t(g?(P)))
converges tof.(Pz). Hence fo. (Pp) equalsfoo(Pg)
for at least allP, such thatg?(P) < Py < P,.

By induction, we can easily show that

foo(P2) = foolgt (P2)),
for all k. Since it is true that
hm glf(Pg) = ph

it follows immediately f.. (F) is a constant for alP
such thatP, < Py < P,. ThIS in fact includes the
case wherd?, # P; andP, £ P;, j =1o0r2,ie, the
eigenvalues ofP, are not all blgger than or all smaller
than the corresponding eigenvalue Bf, j = 1 or 2.
This is because for alP, > 0,

gt (Po) < fi(Po) < g5(Po),



3)

4)

and

kllIIl g]f(Po) = Pl,klim glzc(Po) = pz.

Hence eventuallyf, (Py) will satisfy P, < fi.(Py) <
P,. This completes the proof for part 2.
Let D be such that

agi(D) + (1 — a)gs(D) = D.

Notice that

D < agy(D) + (1 — a)g2(D) =
and

D > agi(D)+ (1 - a)gi(D) =
Therefore by Corollary 4,

gt (D) < D < g5(D)

for all k. Therefore it follows that?, < D < P.
By part 2 of the theoremf., (D) = D(«). Now take

P, = D, then
B[Py 1] frr1(D)
= afi(g1(D)) + (1 — @) fr(g2(D))
< fulagi(D) + (1 - a)ga(D))
= f(D)
— E[P.

Hence E[P;] also forms a monotonically decreasing

sequence. Thereforg, (D) < D, i.e, D(a) < D.
Assumel < a; < ap <1 and letay = a1 +A, where
0 <A <1 Write

D(Oq) = Dl,D(O&Q) = Dg
and
T(X) =o1g1(X) + (1 — a1)g2(X).
Then D, = T(D;) and Dy = T(Ds) + M, where
M = A(g1(D2) — g2(D2)) < 0.

From the expression aD;,i = 1,2, we can in fact
write

D; = lim D;(k),i=1,2

k—o0

where

Di(k+1) = T(Dy(k))

and
Do(k + 1) = T(D2(k)) + M (k)

with D;(0) = I and
M(k) = A(g1(D2(k)) — g2(D2
<

Clearly, D;(0) > D5(0) as M(0)
Dl(/{) > DQ(k), then

Dy(k+1)

(k))) < 0.
0. Now assume

S

(D1 (k)
(D2(k))
(D2(k))
+1).

S

AVARAYS
S

2 + M(k),

wll
ol

2(

limit as k — oo, we see that
[ |

Taking the
D(Oll) 2 D(O[Q).

Notice that in the third part of the theoremdf= 1, then
D = P, and similarly if « = 0, D = P, which agree with
our intuition.

We can interpret the above result in many different ways.
For example, consider the scenario at [10] where they
considered the problem of Kalman filter with packet losses. It
turns out that their results on the upper bound of the expected
error covariance is just a special case of our results by letting
Ry — oo. ThenD = V whereV is their notation for the
upper bound on the expected error covariance. Furthermore
we have shown thaE'[P;] converges to the same value for
all initial conditions.

IV. EXAMPLE AND SIMULATIONS

We consider an example which is taken from that in
[13] with slight modification. In their original example, the
authors assume®; < R, is not trueto make interesting
result, or otherwisey; would be justl for all the time, hence
there is no point to optimize the probability distribution. In
fact the main difference between our paper and theirs is that
we try to evaluate a given for a sensor and eventually a
given set ofx’ and a set of sensofss; },i = 1,--- , N, while
they try to design the optimal for a set of sensors. Let the
system parameters (equations( 1, 2, 3)) be the following

[ 1.0
0.0
0.0
0.0

0.0
1.0
0.0
i 0.0 0.0 1.0

~ [10 00 00 00
= |00 10 00 00

0.002 0.005 0.02
0.005 0.002 0.005
0.02 0.0065 0.2
0.005 0.02 0.05

o4 0.0}

0.2
0.0
1.0

0.0
0.2
0.0

0.005
0.02
0.05

0.2

R 0.0 0.4

[ 204 0.0]

Fz | 0.0 204

It is easily verified that all the assumptions are satisfied.
This also assumed in sensor mode two, both components
produce noisier data than when it is in mode one. For this
system, it is calculated that

[ 0.2780 0.0226
Py 0.0226 0.2780

0.3660 0.0525
0.0525 0.3660

4.4622 0.3132
= 0.3132 4.4622
0.3660 0.0525
0.0525 0.3660

0.0525
0.3660
0.1686
0.8543

0.0525
0.3660
0.1686
0.8543

0.3660
0.0525
0.8543
0.1686

0.3660
0.0525
0.8543
0.1686




And their corresponding traces dieace(P;) = 2.2646 and  applications. In this paper, we considered a first step towards
Trace(P,) = 13.1254. For a givena € [0,1], we also multisensor fusion where each individual sensor has a health
calculate the corresponding value@faccording to equation monitor which indicates the different modes the sensor is
(4). The (red) dotted curve in Figure 2 shows the relationshiip. As is demonstrated in the example, we have provided
between the trace ab and a. sufficient conditions to evaluate sensor measurement given a
system error tolerance level.

We will next apply the result obtained in the one sensor
case to a set of sensors. Each individual sensor is assumed to
have their own representations of of the model Equations(2,
3). We will then determine whether to include a sensor
measurement into the final fusion or not given a system error
tolerance level. Tradeoffs in terms of the noise covariances

14

two components failure

12 :'. — — — one component failure ]

0F |

trace of the upper bound

(1]
) ‘ ‘
0 0.1 0.2 .
o
[2]
Fig. 2. « versus the trace of the upper boufid [3]
[4]

In some applications, maybe only certain componentﬁsl

become unhealthy. We model that as a new where 6]
0.4 0.0
B2 = [ 0.0 204 } 7]

This basically says that the second component of the sensor
is not working properly while the first one remains healthy.
The newly calculated values are:

[8]

0.2796 0.0492 0.3686 0.0831 o]
B L | 00492 44219 00831 2.1766
0.3686 0.0831 0.8585 0.2086

0.0831 2.1766 0.2086 2.0622 (101

and Trace(P,) = 7.6223. We again plot the relationship
between the trace ab and« in the (blue) dashed curve in [11]
Figure 2.

Much can be said from Figure 2. For example, for thélz]
sensor with two components unhealthy> 0.425 suffices

to provide that [13]

Trace(klim E[Py]) < 4,

; 14
which could represent the system error tolerance lewel. 4]

can be further reduced to juBt265 to guarantee the same
performance when there is just one unhealthy component.

V. CONCLUSIONS ANDFUTURE WORK

As system becomes much more complex, redundancy in
terms of multiple sensors/acutators is necessary to guarantee
performance in severe working environments. Hence multi-
sensor fusion especially with changing sensor models, is of
great theoretical as well as practical importance for lots of

and « values will be given for certain guaranteed system
performance.
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