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Abstract— In this paper, we consider a robust network
control problem. We consider linear unstable and uncertain
discrete time plants with a network between the sensors and
controller and the controller and plant. We investigate two
defining characteristics of network controlled systems and the
impact of uncertainty on these. Namely, the minimum data rates
required for the two networks and the tolerable data drop out
in the form of packet losses. We are able to derive sufficient
conditions in terms of the minimum data rate and minimum
packet arrival rate to ensure stability of the closed loop system.

I. I NTRODUCTION

Recently, networked control systems (NCS) have gained
great attention from both the control community and the
network and communication community. When compared
with classical feedback control system, networked control
systems have many advantages. For example, they can reduce
the system wiring, make the system easy to operate and
maintain and later diagnose in case of malfunctioning, and
increase system agility [16]. In spite of the great advantages
that the networked control architecture brings, inserting a
network in between the plant and the controller introduces
many problems as well. For instance, zero-delayed sensing
and actuation, perfect information and synchronization are
no longer guaranteed in the new system architecture as only
finite bandwidth is available and packet drops and delays
may occur due to network traffic conditions. These must be
revisited and analyzed before any practical networked control
systems are built.

In the past decade, many researchers have spent effort on
those issues and a number of significant results were obtained
and many are in progress. Many of the aforementioned
issues are studied separately. Tatikonda [15] and Sahai [11]
have presented some interesting results in the area of con-
trol under communication constraints. Specifically, Tatikonda
gave a necessary and sufficient condition on the channel
data rate such that a noiseless LTI system in the closed
loop is asymptotically stable. He also gave rate results for
stabilizing a noisy LTI system over the digital channel. Sahai
proposed the notion of anytime capacity to deal with real
time estimation and control for a networked control system.
In our companion paper [13], the authors have considered
various rate issues under finite bandwidth, packet drops and
finite controls. The effect of pacekt loss and delay on state
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estimation was studied by the work of Sinopoli, et. al.
in [2]. It has further been investigated by many researchers
including the present authors in [12] and [5].

One of the hallmarks of a good control system design
is that the closed loop remain stable in the presence of
uncertainty [3], [4]. While the researchers in [7] studied the
problem of LQG control across a packet dropping networks,
not many have considered the norm bounded uncertainty
investigated in the present paper. We examine the impact of
a norm bounded uncertainty on the network control system
and provide sufficient conditions for stability in terms of the
minimum data rates and packet arrival rates for the networks.

The paper is organized as follows. In Section II, we present
the mathematical model of the closed loop system and
state our assumptions. In Section III, we state the sufficient
conditions for closed loop stability for the case where a
network connects the sensors to the controller. In Section IV,
we state the sufficient stability conditions where in addition
there is a network between the controller and the plant. For
both sections we obtain results for scalar and general vector
cases. Conclusions and future work are given in the last
section.

II. PROBLEM SET UP

We consider linear discrete time systems with a norm
bounded uncertainty in theA matrix. We will investigate two
NCS that we will define by the type of networks embedded
in the control loop. The first NCS considered has a network
between the measurement sensors and the controller, with
the controller then directly connected to the actuators/plant.
The second NCS will also include a network between the
controller and the actuators/plant. These two network types
and depicted in Figures 1 and 2. The networks are defined in
terms of their data rates and probability of dropping packets.
We would consider any packet delays as losses,i.e., we do
not use delayed packets for estimation or control.

The following equations represent the closed loop system
for NCS I (Figure 1).

xk+1 = (A + ∆k)xk + Buk (1)

yk = λkCxk (2)

wherexk ∈ IRn is the state of the system,uk ∈ IRm is the
control input,yk ∈ IRp is the output of the system, andλk

are Bernoulli i.i.d random variable with parameterλ, i.e.,
E[λk] = λ for all k. ∆k satisfies∆T

k ∆k ≤ K2I for all k.
We also assume the initial conditionx0 ∈ IRn is bounded.
The matrix A is assumed to be unstable without loss of
generality as for any matrixA, we can always do some state
transformation to decompose the states into stable ones and
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Fig. 1. Networked Control System I

unstable ones. The stables ones converges to the origin for
any given initial condition even without any control. The
network has data rateR + n, i.e., the network can deliver a
packet ofR + n bits of information per discrete time step,
which can be dropped depending on what valueλ is. The bits
of the packet are allocated such thatR bits are reserved for
the magnitude of the state signals andn bits are to indicate
the sign of each of the state signals.

The corresponding scalar system is represented by

xk+1 = (a + ∆k)xk + uk, (3)

yk = λkxk, (4)

wherea > 1 and |∆k| ≤ K for all k.
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Fig. 2. Networked Control System II

For NCS II (Figure 2), the closed loop system are repre-
sented by

xk+1 = (A + ∆k)xk + γkBuk, (5)

yk = λkCxk, (6)

where the parameters are exactly the same as in (1) except
that γk are Bernoulli i.i.d random variable with parameter
γ, i.e., E[γk] = λ for all k. The network one has data rate
R1 + n and the network two has data rateR2 + n.

The scalar version is

xk+1 = (a + ∆k)xk + γkuk, (7)

yk = λkxk. (8)

For all the rest of the paper, ifx ∈ IRn, |x| means the
Euclidian norm of it. IfX ∈ IRn×n, |X| means the induced
matrix norm of it. log is assumed to have base 2.

As packet drops introduce unavoidable randomness into
the system, the classical notion of stability for deterministic
systems in the sense of Lyapunov [14] is not adequate. The
definition of stability in a probabilistic setting is not new. It
is usually considered when there is inherent randomness in
the system, for example, in the jump linear systems [6] or in
stochastic hybrid systems [1]. In [6], the authors have given
the most frequently seen definitions of stochastic stability.
We use almost sure stability in our problem formulation
which is defined below.

Definition 1: System (1) is called almost sure stable if

P{ lim
k→∞

|xk(x0, ω)| = 0} = 1,

whereω is the underlying randomness for the closed loop
system.

Stability in the sense of Lyapunov requires that for any
ε > 0, there exists a timeT , such that for allk ≥ T , |xk| ≤ ε.
For almost sure stability, however, it is allowed thatxk > ε
for any k > 0 and for anyε > 0 which may occur with
arbitrary low probability .

III. G URANTEES FORCLOSED LOOPSTABILITY FOR

NETWORK TYPE I

A. Scalar Systems

All the lemmas in this section are for the scalar system
(3) in NCS I (Figure 1).

Lemma 2:Assumeλ = 1, i.e., there is no packet drop
and R = ∞. Then the closed loop system is exponentially
stable ifK < 1.

Proof: At time 1, the controller knowsx0 but not∆0. Let
u0 = −ax0 and sox1 = ∆0x0. Similarly, let

u1 = −ax1 = −a∆0x0,

we have
x2 = ∆1∆0x0.

Following this procedure, by lettinguk = −axk, we have

xn = ∆n∆n−1 · · ·∆0x0.

Hence ifK < 1, then

|xn| ≤ Kn|x0|,

which converges to zero exponentially fast.

QED



Lemma 3:Assumeλ = 1 and K < 1. Then the closed
loop system is exponentially stable ifR satisfies

R > Rmin = log a− log(1−K).
Proof: Encodex̄k to be the mostR significant bits ofxk,

hence if|xk| ≤ 2M , then

|εk| = |xk − x̄k| ≤ 2M−R.

Now let uk = −ax̄k, we have that

|xk+1| = |aεk + ∆kxk| ≤ a2M−R + K2M .

Hence if |xk+1| < 2M , i.e., the upper bound on the state
norm is shrinking, or

R > Rmin = log
a

1−K
= log a− log(1−K),

the closed loop system will be exponentially stable.

QED

Lemma 4:Assumeλ < 1 and R = ∞. Then the closed
loop system is almost sure stable ifK < 1 and

λ > λmin =
log(a + K)

log(a + K)− log K
. (9)

Proof: Supposeλ0 = 1, i.e., x0 is received. Letu0 =
−ax0, then x1 = ∆0x0. Now assumex1 is not received.
Applying no control we get

x2 = (a + ∆1)∆0x0.

Supposex2 is received, then we can let

u2 = −ax2 = −a(a + ∆1)∆0x0.

Hence
x3 = ∆2(a + ∆1)∆0x0.

Following this procedure, wheneverxk is received,uk =
−axk and wheneverxk is not received,uk = 0. Then we
can write

xn =
∏

i

∆i

∏
j

(a + ∆j)x0,

where i indicates that packet at timei is received andj
indicates that packet at timej is dropped. Forn sufficiently
large, from the weak law of large numbers [10], with
arbitrary high probability thatnλ packets are received and
n(1− λ) packets are dropped. Hence

|xn| ≤ Knλ(a + K)n(1−λ)|x0| = [Kλ(a + K)1−λ]n|x0|,

is true almost surely forn sufficiently large. Therefore, if

Kλ(a + K)1−λ < 1,

or

λ >
log(a + K)

log(a + K)− log K
,

the closed loop system is almost surely stable.

QED

The lower bound onλ is shown in Figure 3 for different
values of(a,K). Note thatλmin → 1 whenK → 1 meaning

that zero drop rate is required andλmin → 0 whenK → 0
meaning if there is no uncertainty we only require a nonzero
arrival rate to be almost surely stable. In additionλmin →
1 as a → ∞, meaning all packets must be received. This
also means that all the contour lines approach the y-axis in
Figure 3.
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Fig. 3. Minimum packet arrival rate for NCS I. The contour lines are
constant values ofλmin given in Eqn. 10. The closed loop system is almost
surely stable for all(a, K) pairs to the left of the contour lines.

Lemma 5: In proving Lemma 2 and Lemma 4, the pro-
posed control law is optimal in the sense that it minimizes
the upper bound of the state variable each time step.

Proof: Let’s first revisit the proof in Lemma 2. At the
first time step,u0 = −ax0 is indeed the best control law as
|x1| ≤ |∆0||x0| ≤ K|x0|. For any other control law, it is not
guaranteed that

|x1| ≤ K|x0|

as there always exists allowable∆0 such that

|x1| > K|x0|.

For example, if we let

u0 = −ax0 + 0.5K,

then
∆0 = sgn(x0)K

leads to the fact that

x1 = K(0.5 + |x0|) > K|x0|.

Therefore setting the control such that it cancels only the
known state is the best choice in the sense that it minimizes
the upper bound of the state.

Now consider the control strategy in proving Lemma 4.
Consider the same scenario thatx1 is dropped. The control
law u1 = F (x0), as x0 is the only known factor to the
controller. Then

x2 = (a∆0 + ∆0∆1)x0 + F (x0).



If F (x0) = 0, then we know for sure

|x2| ≤ (aK + K2)|x0|.

For any otherF (x0) 6= 0, there always exists allowable∆0

and∆1 such that

|x2| > (aK + K2)|x0|.

Hence the proposed control law is optimal.

QED

Remark 6:The above lemma basically tells that if we
only know the upper bound but not the distribution of
the uncertainties, the best control law is that it either
compensate the known state or does nothing.

Lemma 7:AssumeK < 1 and

λ >
log(a + K)

log(a + K)− log K
.

Then the closed loop system is almost sure stable ifR
satisfies

R > Rmin = log a− log(2
λ−1

λ log(a+K) −K).
Proof: Use the same encoding and decoding strategy in

proving Lemma 3. When there is a packet drop, applying
no control so that the norm of the state expands at most
a+K times. When there is no packet drop, the norm shrinks
at leasta2−R + K times. Hence by the weak law of large
numbers, the critical value ofR for the closed loop almost
sure stability satisfies

(a + K)1−λ(a2−R + K)λ < 1,

which after simplification gives

R > Rmin = log a− log(2
λ−1

λ log(a+K) −K).

QED

Remark 8:Notice that the condition

λ >
log(a + K)

log(a + K)− log K
,

guarantees that

2
λ−1

λ log(a+K) −K > 0.

And λ < 1 guarantees that

2
λ−1

λ log(a+K) −K < 1−K,

hence the required bandwidth is bigger than that in Lemma
3 which is as expected.

B. General Systems

The results for the scalar case are extended to the general
vector case and combined into the theorem below.

Theorem 9:AssumeB,C are invertible and the system
dimension isn. Then a sufficient condition for the closed
loop almost sure stability (if there are no packet drops,i.e.,
λ = 1, change this notion to exponential stability) is that
the network parameters and system parameters satisfy the
inequality below

(|A|+ K)1−λ(|A| 2−R
n + K)λ < 1.

Proof: The proof to this theorem is similar to the proofs
for Lemma 2, 3, 4 and 7 and is omitted here.

QED

Remark 10:The assumptions are in general very conser-
vative as we need both the matricesB andC to be invertible.
We need this assumption because ifB is not invertible,
we may not be able to compensate for the known state
in one time step and hence may make the uncertainties
grow out of control. If C is not invertible, we need to
wait for long enough consecutive packets to get complete
state information and hence make the probabilistic analysis
difficult. The authors are working towards relaxing these
conditions.

It is interesting to make a comparison between our rate
results with those in the literature, especially in Taktionda’s
work [15], where various rate results were given for noiseless
LTI systems over digital communication channels. We briefly
state one of his main results below.

Theorem 11:(Tatikonda [15]) Consider the discrete time
system (1) in Figure 1. Assumeλ = 1, i.e., there is no
packet drop andK = 0, i.e., there is no uncertainty about the
plant. Further assume that(A,B) is controllable and(C,A)
is observable. Then a sufficient and necessary condition for
the overall closed loop system to be asymptotically stable is
that R satisfies

R > Rmin =
∑

i

log |λi(A)|,

whereλi(A) are the unstable eigenvalues ofA.
One of the many reasons that we cannot directly apply his

result to system (1) is that(A,B) being controllable does not
imply (A + ∆k, B) is controllable for allk. If we apply his
result to the scalar case (3), we might be able to say that

R > Rmin = log(a + K),

asRmin ≥ log(a + ∆k) for all k. However as we see from
Lemma 2,K < 1 is needed for closed loop stability and
directly applying Tatikonda’s result reveals this fact. The
correct sufficient condition is given by Lemma 3.

IV. GURANTEESFOR CLOSED LOOPSTABILITY FOR

NCS II

A. Scalar Systems

Lemma 12:Assume network one has data rateR1 and
network two has data rateR2. Further assume thatλ = 1,



γ = 1 andK = 0. Then a sufficient condition onR1 andR2

such that the closed loop system (7) is exponentially stable
is that

a(2−R1 + 2−R2) < 1
Proof: Use the same encoding and decoding strategy in

proving Lemma 3. Without loss of generality, let0 < x0 <
2M and we write the binary expansion ofx1 as

x1 =
M−1∑
i=−∞

αi2i,

whereαi s are either 1 or 0 depending on the value ofx0.
At time 1, let x̄0 denote the mostR1 significant bits ofx0,
i.e.,

x̄0 =
M−1∑

i=M−R1−1

.

Hence
|ε0| = |x0 − x̄0| ≤ 2M−R1 .

Let u0 = −ax̄0, then |u0| ≤ a2M . Let ū0 denote the most
R2 bits of it, hence

|u0 − ū0| ≤ a2M−R2 .

Then

|x1| = |ax0 + ū0|
= |ax̄0 + aε0 + ū0|
= | − u0 + ū0 + aε0|
≤ |u0 − ū0|+ a|ε0|
≤ a2M−R2 + a2M−R1 .

In order that the norm ofx1 is shrinking, a sufficient
condition is then

a2M−R2 + a2M−R1 < 2M ,

which after simplification gives

a(2−R1 + 2−R2) < 1.

Similarly if the above condition holds, for all later time steps,
the state norm shrinks by a factor of at least

1
a2M−R2 + a2M−R1

which guarantees the closed loop system is exponentially
stable.

QED

Remark 13:In the above lemma, it is required thatR1 >
log a andR2 > log a to make (10) hold. Furthermore, if we
set eitherR1 = ∞ or R2 = ∞, from (10), we getR1 > log a
or R2 > log a which is the same as in Tatikonda’s result
(Theorem 11). Figure 4 plots the contour lines of2−R1 +
2−R2 . Stability regions are above the lines for fixeda and
K.
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Fig. 4. Contour plot of2−R1 + 2−R2 . The lines depict fixed values ofa
andK. Regions above the lines are stable for these fixed values.

Lemma 14:Assume network one has data rateR1 and
network two has data rateR2. Further assume thatλ = 1,
γ = 1 andK < 1. Then a sufficient condition onR1 andR2

such that the closed loop system (7) is exponentially stable
is that

a(2−R1 + 2−R2) < 1−K.

Proof: The proof is similar to the proves for Lemma 4
and Lemma 12 and is omitted here.

QED

Lemma 15:Assumeλ < 1, γ < 1, R1 = ∞ and R2 =
∞. Then the closed loop system is almost sure stable if
K < 1 and

λγ >
log(a + K)

log(a + K)− log K
. (10)

Proof: The proof is similar to the proves for Lemma 4
and is omitted here.

QED

It is interesting to note the form of Eqn. 10 involves the
product of the two network arrival rates. This means the
stabliity conditions result in a plot similar to that in Figure 5.

Theorem 16:Assumeλ < 1, γ < 1, R1 < ∞ andR2 <
∞ andK < 1. Then the closed loop system is almost sure
stable if the following inequality holds

(a + K)1−λγ(a2−R1 + a2−R2 + K)λγ < 1
Proof: The proof is similar to the proves for Lemma 4

and Lemma 7 and is omitted here.

QED

Remark 17:The above theorem links all the different
pieces together to produce a unified framework for closed
loop almost sure stability.

Example 18:We wish to present a simple numerical ex-
ample to illustrate our results. Consider the closed loop scalar
system (7) witha = 2.75 and K = 0.4. We pick an initial
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Fig. 5. Stability plot for the two network case packet arrival ratesγ and
λ.

condition ofx0 = 100 and simulate the closed loop system
for various values of the network properties defined above.

In Figure 6 we only consider packet drops, that is letR1 =
R2 = ∞. We let λ = 0.85 and γ = 0.8, which satisfy
the sufficient condition from Lemma 4. The plot shows that
indeed the system is almost surely stable.
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Fig. 6. System in Example 18 withR1 = R2 = ∞, λ = 0.85, γ = 0.8.

In Figure 7 we do not consider packet drops, that is let
λ = γ = 1 and letR1 = 5 and R2 = 5, which satisfy the
sufficient condition from Lemma 4 for exponential stability.

Next we assume both packet drops and finite bandwidth,
with the network parameters satisfying the sufficient condi-
tions for almost sure stability in Lemma 4. The results are
plotted in Figure 8.

Lastly, we again assume packet drops and finite band-
width, but set the parameters toR1 = 5, R2 = 3, λ = 0.5
andγ = 0.6. These values do not give sufficient conditions
for almost sure stability. Figure 9 shows the norm of the state
to diverge. Note that the conditions for stability in this paper
are only sufficient conditions, hence violating them does not
necessarily mean the state will diverge. It so happens that
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Fig. 7. System in Example 18 withR1 = R2 = 5, λ = γ = 1.
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Fig. 8. System in Example 18 withR1 = R2 = 5, λ = 0.85, γ = 0.8.

the parameters chosen here were degraded far enough that
the state did diverge.
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Fig. 9. System in Example 18 withR1 = 5, R2 = 3, λ = 0.5, γ = 0.6.



B. General Systems

The results for the scalar case are extended to the general
vector case and combined into the theorem below.

Theorem 19:AssumeB,C are invertible and the system
dimension isn. Then a sufficient condition for the closed
loop almost sure stability (if there are no packet drops,i.e.,
λ = 1 andγ = 1, change this notion to exponential stability)
is that the network parameters and system parameters satisfy
the inequality below

(|A|+ K)1−λγ(|A|2−
R1
n + |B| |B−1A| 2−

R2
n + K)λγ < 1.

Proof: The proof to this theorem is similar to the proofs
for Lemma 2, 3, 4 and 7 and is omitted here.

QED

Remark 20:We can in fact recover any of the above
lemmas or theorems from Theorem 19 only. For example,
take R2 = ∞ and γ = 1, i.e., the NCS has changed from
II to I. Then we get Theorem 9 which summarizes all the
lemmas in section III.

V. CONCLUSION AND FUTURE WORK

In this paper we analyzed controlling linear discrete time
systems with norm bounded uncertainty in the plant matrix
over packet dropping networks. We considered the effect of
finite bandwidth and packet losses on closed loop stability.
Sufficient conditions for stability are given in terms of the
minimum data rates and packet arrival probability as well as
the norm of the uncertainty.

The most obvious extension to this work is to relax the
restriction thatB andC are invertible for the general case.
Likewise to extend the NCS II results to the vector case.
As most networks experience not only finite bandwidth and
packet drops but delays as well [8], we would like to include
this effect in the stability analysis.

Although the norm bounded uncertainty is frequently used,
there are other types of uncertain models that might be
more applicable in certain cases. For example, when the
uncertainty is described by a convex set [9]. We would like to
obtain similar results for other types of uncertainty as well.

This paper has given sufficient conditions for stability and
certainly some of them are not neccesary. It is interesting
to find necessary conditions for stability as well. Lastly,
this paper has dealt with guarantees for stability but has
not addressed the issue of performance. Investigating how
the embedded networks degrade performance is a interesting
area for future work.
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