
The Mechanics and Control of Robotic Locomotion

with Applications to Aquatic Vehicles

Thesis by

Scott D� Kelly

In Partial Ful�llment of the Requirements
for the Degree of

Doctor of Philosophy

1 8 9 1

C
A

L
IF

O
R

N
IA

 I

N
S T IT U T E O F T

E
C

H
N

O
L

O
G

Y

California Institute of Technology
Pasadena� California

����

�Defended May ��� ����	



ii

c� ����
Scott D
 Kelly

All Rights Reserved



iii

The Mechanics and Control of Robotic Locomotion
with Applications to Aquatic Vehicles

by

Scott D� Kelly

In Partial Ful�llment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract

This work illuminates a theory of locomotion rooted in geometric mechanics and
nonlinear control
 We regard the internal con�guration of a deformable body� to�
gether with its position and orientation in ambient space� as a point in a trivial
principal �ber bundle over the manifold of body deformations
 We obtain connec�
tions on such bundles which describe the nonholonomic constraints� conservation
laws� and force balances to which certain propulsors are subject� and construct and
analyze control�a�ne normal forms for di
erent classes of systems
 We examine the
applicability of results involving geometric phases to the practical computation of
trajectories for systems described by single connections
 We propose a model for
planar carangiform swimming based on reduced Euler�Lagrange equations for the
interaction of a rigid body and an incompressible �uid� accounting for the generation
of thrust due to vortex shedding through controlled coupling terms
 We investigate
the correct form of this coupling experimentally with a robotic propulsor� comparing
its observed behavior with that predicted numerically




iv



v

Contents

� Prolegomenon �

�
� Historical perspective 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 �
�
� Overview of contributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 �

� Mathematical Preliminaries �
�
� Notions of di
erentiation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 �
�
� Ideas from di
erential geometry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 �

�
�
� Lie algebras and Lie groups 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 �
�
�
� Distributions and Frobenius� theorem 
 
 
 
 
 
 
 
 
 
 
 
 
 �
�
�
� Di
erential forms and Stokes� theorem 
 
 
 
 
 
 
 
 
 
 
 
 
 �
�
�
� Actions of Lie groups 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 �
�
�
� Material� body� and spatial velocity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Rigid motion in the plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� The calculus of variations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Principal bundles and related objects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Geometric phases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
�
� Holonomy groups and bundles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Abelian bundles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

� Lagrangian Mechanics ��
�
� Fundamentals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
�
� The Euler�Lagrange equations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Symmetries and momentum maps 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� The Lagrange�d�Alembert principle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� Reduction on Cartesian products 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

� The Geometry of Locomotion ��
�
� Locomotion and principal bundles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
�
� Connections on con�guration bundles 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Kinematic and nonholonomic connections 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� The kinematic car 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Mechanical connections 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� Interpolation for Rayleigh systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� The interpolated equations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� The heavy inchworm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��



vi

�
�
� Extension to more general forces 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

� Controllability and Related Issues ��

�
� De�nitions and tests 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Controllability for kinematic systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
�
� Principal connections and Chow�s theorem 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Local and global controllability of a wheelchair 
 
 
 
 
 
 
 
 ��

�
� Accessibility for Rayleigh systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Accessibility modulo momentum 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� A vehicle with two internal rotors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� The heavy inchworm revisited 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

� Gaits for Kinematic Systems ��
�
� De�nitions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Systems on Abelian bundles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Inchworm gaits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Local expansion of holonomy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Two�input systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

� Principal Connections and Swimming ��
�
� Ideal �ow and the hydromechanical connection 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
�
� Potential �ow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Fluid momentum and Kelvin impluse 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� The hydromechanical connection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� Creeping �ow and the Stokes connection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Stokes �ow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� The Stokes connection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� Squirming circles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

� Rigid Bodies in Fluids �	
�
� Modelling assumptions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The reduced Lagrangian 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The reduced equations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Special cases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

	 Planar Carangiform Locomotion �	

�
� The unforced equations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The substitution vortex model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Planar carangiform accessibility 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The experiment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Modelling and simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
�
� The steady �ow model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�
� Simulation and validation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� The substitution vortex revisited 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Flow visualization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Carangiform gaits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��



vii

�
 Future Work �
�



viii

List of Figures

�
� Constructions on a principal bundle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� The kinematic car on the plane
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� An inchworm robot on a viscous �lm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� A wheelchair on the plane
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� Two types of gaits for the inchworm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The caterpillar gait
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� Derivation of the potential function
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� A squirming circle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Geometric phase for a particular gait
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��

�
� Silhouette and cross section of a louvar
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The apparatus from above
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The apparatus from the side
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The apparatus from forward and above
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The apparatus from the side
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� The Polhemus transmitter
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Displacement with the peduncle and �n in phase
 
 
 
 
 
 
 
 
 
 
 
 ��
�
� Displacement with the peduncle and �n out of phase
 
 
 
 
 
 
 
 
 
 ��
�
� The simulated experiment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�� Steady �ow model for in�phase gaits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�� Steady �ow model for out�of�phase gaits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�� Flow around a �at plate with circulation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�� The characteristic carangiform wake
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��
�
�� A counter�rotating vortex pair
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ���
�
�� A planar carangiform robot
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ���
�
�� An out�of�phase drive gait
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ���
�
�� An out�of�phase drive�and�rotate gait 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ���



ix

List of Tables

�
� Gait table for two�input systems� T � ��
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ��



x



�

Chapter �

Prolegomenon

Swim
 Fishbone

��� Historical perspective

Since

The way of an eagle in the air�
the way of a serpent upon a rock�

The way of a ship on the high seas�
and the way of a man with a maiden

perplexed the ancient Hebrews ����� locomotion has intrigued the human mind

Leonardo da Vinci�s anatomically informed examinations of the human body in
motion predated the landmark photographic studies of Eadweard Muybridge ���� ���
by four centuries
 According to Sir James Gray ����� however� advancements in the
quantitative description of animal locomotion were few until the present
 Gray cites
Giovanni Borelli�s De motu animalium �����	� which borrowed its title from a work
of Aristotle�s� and �Etienne�Jules Marey�s Machine Animale �����	 as works of rare
signi�cance


James Watt�s ���� improvement to the Newcomen atmospheric engine ushered
in the age of man�made self�powered vehicles� his �yball governor is often hailed
as the �rst modern control system
 Biologists like C
 Bernard �Les ph�eomenes de
la vie� ����	 and L
 Frederick �who coined the term �regulatory agencies� in ����	
were among the �rst to recognize the similarities between the feedback control of
steam engines and fundamental bioregulatory processes ����


Biomimetic design pervades robotics
 As early as ����� Hutchinson and Smith
built a small robot which was able to walk and ascend obstacles on four independently�
controlled legs ����
 The General Electric Walking Truck� designed and built in the
����s� epitomizes large legged vehicles under strictly mechanical control ����
 The
last two decades have witnessed the construction of several walking robots with two
to six legs� as well as Raibert�s hopping machines with as few as one ���� ���
 To�
movic and Karplus ���� �rst applied mathematical methods� including the theory of
�nite states� to the analysis of legged locomotion
 Hildebrand ���� and McGhee ����



�

formalized the analysis of perambulatory gaits� the role of central pattern genera�
tors in dictating such gaits has been considered by Collins and Stewart ����
 Recent
research into the dynamics and control of legged machines has included McGeer�s
work on passive dynamic walking ����


Hirose and Umetani began their work with snakelike robots� or �active cord
mechanisms�� in the ����s
 An early creation of theirs propelled itself in a ser�
pentine fashion but was con�ned to the plane ����� a later robot could lift sec�
tions of its body for maneuvers which included climbing stairs ����
 The kinemat�
ics of �hyper�redundant� robot locomotion have been examined more recently by
Chirikjian and Burdick �who coined the term	 ����� Krishnaprasad and Tsakiris �����
and Ostrowski ����


The e�ciency� maneuverability� and stealth of marine animals have provided
an enticing paradigm for the design of biomimetic robots since Gray�s �paradox�
ical� ���� study of drag reduction on dolphins
 The most celebrated pisciform
robots today are arguably the MIT RoboTuna and its siblings ����� which resemble
members of the taxonomic family Carangidae in body type
 Fukuda and others�
however� have developed aquatic microrobots which exploit qualitatively di
erent
�ow phenomena ����
 Untethered submersible technology currently welcomes cues
from many corners of aquatic zoology ����


The application of gauge theory to the unassisted reorientation of deformable
bodies in vacuo began with Marsden� Montgomery� and others ���� ��� ���� inspired
in part by conspicuous feline gymnastics ����
 The navigation of deformable bodies
undergoing sinusoidal changes in shape was addressed by Murray and Sastry ����

Lagrangian reduction was developed by Marsden and Scheurle ���� ��� and extended
to incorporate systems subject to nonholonomic constraints by Bloch et al
 ����

Kelly and Murray ���� and Ostrowski ���� integrated these ideas into a geometric
theory of robotic locomotion


The evolution of an inviscid� incompressible �uid was �rst addressed as a prob�
lem in geometric mechanics by Arnol�d ���
 Ebin and Marsden probed the manifold
structure of certain di
eomorphism groups to realize theorems concerning the exis�
tence and uniqueness of solutions to classical equations of �uid �ow ����
 Marsden
and Weinstein revisited inviscid �ow in the context of Hamiltonian reduction ����

A complete modern exposition of �uid mechanics appears in the recent volume of
Arnol�d and Khesin ���


Benjamin and Ellis ��� and Sa
man ���� �rst demonstrated that a deformable
body could accelerate from rest in an ideal �uid� Benjamin introduced Hamiltonian
formalism to this problem ���
 Benjamin and Ellis ���� and Miloh and Galper ����
returned to the problem motivated in part by the observed behavior of sonically
irradiated air bubbles in water
 The Poisson bracket structure underpinning the
motion of a �nite ideal �uid with a free boundary was clari�ed by Lewis et al
 ����


The position controllability of a deformable body in an ideal �uid was de�ned by
Mahalov and Nikitin ����
 Kelly and Murray presented the equations governing the
rectilinear swimming of a deformable cylinder as a driftless nonlinear control sys�
tem ����
 Mason ���� and Andreas ��� considered the optimal control of homogeneous
and heterogeneous cylinders
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The undulatory swimming of a nearly circular cylinder at low Reynolds number
was studied �rst by Blake ����� anticipating his spherical envelope approach to ciliary
propulsion ����
 Shapere and Wilczek addressed the gauge theoretic nature of this
problem ���� and examined the e�ciency of certain swimming strokes for cylindrical
and spherical bodies ����
 Ehlers ���� and Koiller et al
 ���� have applied gauge
theoretic techniques to the swimming of a variety of microorganisms� the ability to
swim at low Reynolds number on a macroscopic scale boasts arguable advantage as
well ����
 Kelly and Murray proposed a simple interpolation between the geometric
equations governing inviscid swimming and those governing Stokesian swimming to
model the self�propulsion of an inertial body subject to viscous dissipation ����


The dynamics and stability of a rigid vehicle immersed in an irrotational �uid
have been studied� and interpreted in a general Hamiltonian setting� by Leonard and
Marsden ����
 �Ozcazan�c examined the dynamical interaction of a �nite vortical �uid
and a free rigid container ����
 We will see that a piscimimetic vehicle is followed by
a wake with a very particular structure� which may be approximated in cross�section
by an appropriate arrangement of point vortices
 Koiller has studied the coupled
motion of vortices and planar rigid bodies ����� and Aref the stability of certain
wake�like vortex patterns ���
 Langford and Zhan explored the resonance properties
of a model for the vortex�induced vibration of an elastically�mounted cylinder ����


The biological literature addressing the swimming of �sh is considerable
 The
term �carangiform� was coined by Breder to signify pisciform locomotion of the sort
we review� Breder applied the term �anguilliform� to the contrasting swimming of
eels ����
 Lighthill has made theoretical contributions across the full spectrum of
aquatic locomotion ����� as has Wu ���� ���
 Recent e
orts to model carangiform
swimming in a fashion amenable to control analysis include those of Harper et
al
 ���� ��� and Kelly et al
 ���� ���


The most e�cient carangiform swimmers sport caudal �ns which are lunate
in pro�le� recent re�nements to the analysis of their performance include those of
Karpouzian et al
 ����
 Ahlborn et al
 focused on the introduction and extraction
of energy to and from a structured wake by a �apping lunate tail with a single
rotational degree of freedom ���


We note� �nally� that the computational techniques applied by Martins and
Ghoniem to the intake �ow in a piston�chamber device ���� seem particularly adapt�
able to the interaction of a free body and its vortex wake


��� Overview of contributions

Problems in the self�propulsion of deformable bodies invite the cooperation of tools
from geometric mechanics and nonlinear control theory
 The internal con�guration
of a deformable body� together with its position and orientation in ambient space�
constitutes a point in a trivial principal �ber bundle over the manifold of body
deformations
 A propulsor which controls its own shape navigates this manifold to
exploit the conservation laws� nonholonomic constraints� and hydrodynamic e
ects
which allow it to move
 Individually� each of these may often be described by a
connection on the con�guration bundle




�

The equivalence of a mechanical connection to the conservation of a deforming
body�s momentum was described by Marsden et al
 ����
 We obtain a mechanical
connection which captures the conservation of Kelvin impulse governing the self�
propulsion of a deformable surface in an irrotational �uid
 The connection underly�
ing swimming at low Reynolds number was recognized by Shapere and Wilczek ����

We derive this connection from a dissipation function� elucidating its equivalence to
the net balance of drag on a Stokesian propulsor
 This equivalence of a connection
to a force balance is not limited to the aquatic realm� we evince the limits of its
extension
 We also demonstrate that the equations describing the motion of a La�
grangian system in the presence of quadratic dissipation may� in general� be realized
geometrically in terms of two connections and an evolving momentum


The swimming of �sh hinges upon the exchange of �uid vorticity for body mo�
mentum
 The mechanism by which vorticity is shed gives rise to forces which elude
the theory of connections� but we are not at a loss to describe such systems geo�
metrically
 Carangiform propulsors resemble� morphologically� certain members of
the �sh order Percomorphi
 In nature� this physical resemblance engenders a simi�
larity in high propulsive e�ciency and speed ����
 We propose a planar model for
carangiform swimming based on reduced Euler�Lagrange equations for the interac�
tion of a rigid body and an incompressible �uid
 We account for the generation of
thrust due to vortex shedding through controlled coupling terms
 At the heart of
this coupling is an abstraction from hydrofoil theory� we investigate its applicability
to real carangiform swimming using an articulated robotic caudal mechanism
 We
compare the observed behavior of our experimental apparatus to that predicted by
steady hydrodynamics


Ultimately� we view the self�propulsion of any deformable body as a problem
in nonlinear control
 We realize normal forms for systems described by one or
more connections� interpreting established tests for controllability and accessibil�
ity in terms of the properties of these connections
 Locomotion problems suggest
particular nontraditional notions of controllability and accessibility� we de�ne these
both intuitively and geometrically


Related to the constructive demonstration of controllability is the study of gaits

We examine the computation of geometric phases in this context� illuminating the
implications of the Ambrose�Singer theorem and an equation for the local expansion
of holonomy for certain types of locomotion systems
 We explore carangiform gaits
experimentally and computationally
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Chapter �

Mathematical Preliminaries

��� Notions of di�erentiation

Let E and F be normed spaces� U an open set in E� and u� a point in U 
 If
f � U � F � there exists at most one A � L�E� F 	 such that

gA � U � F � u �� f�u�	 �A�u� u�	

is tangent to f at u�� in the sense that

lim
u�u�

jjf�u	� gA�u	jj

jju� u�jj
� ��

If such an A exists� we say that f is Fr�echet di�erentiable at u�� and de�ne its
Fr�echet derivative at u� to be Df�u�	 � A
 The evaluation of Df�u�	 on e � E is
denoted Df�u�	 � e
 If f is Fr�echet di
erentiable at every u� � U � the map

Df � U � L�E� F 	 � u �� Df�u	

is said to be the Fr�echet derivative of f 

The map f � U � F is said to be di
erentiable in the direction e � E at the

point u� � U if the quantity

d

dt

����
t��

f�u� � te	 ��
�	

exists
 A function f is said to be G�ateaux di�erentiable at the point u� if it is
di
erentiable in every direction there
 If f is Fr�echet di
erentiable at u�� it is
G ateaux di
erentiable there and its directional derivatives are given by

d

dt

����
t��

f�u� � te	 � Df�u�	 � e�

We will sometimes write Def�u�	 for the derivative of f in the direction e




�

��� Ideas from di�erential geometry

����� Lie algebras and Lie groups

We denote the space of vectors tangent to the smooth manifold M at the point x
by the symbol TxM � the dual space of covectors by T �xM � and their pairing by

h�� �i � T �xM � TxM � R�

We denote the tangent bundle projection by �M � TM �M 
 If f � M � N � x �� y
is a smooth map between manifolds� we write Txf � TxM � TyN to denote its
tangent map at the point x � M 
 We denote the space of smooth vector �elds
on M by X �M	
 Let f � M � R be a smooth function on M 
 The operation
��� �� � X �M	� X �M	� X �M	 de�ned by

�X� Y �f � XY f � Y Xf for X� Y � X �M	

is called the Jacobi�Lie bracket of vector �elds on M 

A Lie algebra is a vector space V together with an operation ��� �� � V � V � V

such that

�
 ��� �� is bilinear�

�
 �v� v� � � for every v � V �

�
 �u� �v� w��� �v� �w� u��� �w� �u� v�� � � for all u� v� w � V 


The equation specifying the third requirement is called the Jacobi identity
 A Lie
algebra is said to be Abelian if the bracket operation is trivial
 The Jacobi�Lie
bracket endows X �M	 with the structure of a Lie algebra


A Lie group is a manifold on which a smooth group operation is de�ned
 A Lie
group is said to be Abelian if this operation is commutative
 We denote the identity
element of the Lie group G by e
 If g� h � G� left translation by h corresponds to
the map

Lh � g �� hg

and right translation by h to the map

Rh � g �� gh�

If v � TgG� we will sometimes abuse notation and write

hv � TgLhv � ThgG and vh � TgRhv � TghG�

If G is a Lie group� a vector �eld X � X �G	 is said to be left invariant if

TgLhX �g	 � X �hg	 �



�

and right invariant if

TgRhX �g	 � X �gh	 �

for all g� h � G
 We denote the set of left invariant vector �elds on G by XL �G	
and the set of right invariant vector �elds on G by XR �G	
 If X� Y � XL �G	� then

TgLh ��X �g	 � Y �g	�	 � �TgLhX �g	 � TgLhY �g	�

� �X �hg	 � Y �hg	��

thus XL �G	 constitutes a Lie subalgebra of X �G	
 The left invariance of every
X � XL �G	 implies that XL �G	 and TeG are isomorphic as vector spaces
 The
Jacobi�Lie bracket on XL �G	 therefore determines a bracket operation on TeG given
by

��� �� � �TeLg�� TeLg�� �e	 �

We denote TeG together with this bracket operation by g� and refer to g as the
Lie algebra corresponding to G
 We note that Jacobi�Lie bracket on XR �G	 also
determines a bracket operation ��� ��R � TeG� TeG� TeG
 Indeed�

��� ��R � ���� �� for all �� � � g�

It is proven in ���� that a connected Lie group is Abelian if and only if the corre�
sponding Lie algebra is Abelian


If � � g� it is proven in ���� that the di
erential equation

dg

dt
� TeLg�� g ��	 � e

has a unique solution g� �t	 � G for all t
 We de�ne the exponential map exp � g� G
such that exp � � g� ��	
 The exponential map determines a di
eomorphism from a
neighborhood of � � g to a neighborhood of e � G


����� Distributions and Frobenius� theorem

Anm�dimensional distribution D onM is the smooth assignment of anm�dimensional
subspace D �x	 of TxM to every x � M 
 A vector �eld X on M is said to lie in
D if X �x	 � D �x	 at every x � M 
 The distribution D is said to be involutive if
�X� Y � � D for all X� Y � D


A submanifold N � M is an integral manifold of D if D �x	 � TxN at every
x � N 
 If D exhibits an integral manifold at every x �M � D is said to be integrable

Involutivity and integrability are related by the following result


Theorem ��� �Frobenius
 A distribution is integrable if and only if it is involu�
tive�

Di
erent versions of this theorem are stated and proved in ����
 If D is an m�



�

dimensional distribution on an n�dimensional manifold M � thenM is foliated locally
by the level surfaces of �n�m	 functions f�� � � � � fn�m � M � R


����� Di�erential forms and Stokes� theorem

A �j� k	 tensor �eld � on a manifold M assigns to each point x � M a multilinear
map �or tensor	

� �x	 � �T �xM	j � �TxM	k � R�

The tensor product of a ��� k	 tensor �eld � on M and a ��� l	 tensor �eld � on M
is given by

��	 �	 �x	 �v�� � � � � vk�l	 � � �x	 �v�� � � � � vk	� �x	 �vk��� � � � � vk�l	 �

where v�� � � � � vk�l � TxM 
 A ��� k	 tensor �eld � is said to be skew symmetric if the
value of � �x	 �v�� � � � � vk	 reverses sign under odd permutations of its arguments

The alternation operator acts on a ��� k	 tensor �eld � such that

�Alt�	 �x	 �v�� � � � � vk	 �
�

k!

X
��Sk

sgn ��	� �x	
�
v����� � � � � v��k�

�
�

where Sk is the group of permutations of the integers �� � � � � k

A real�valued di�erential k form on the manifold M is a skew symmetric ��� k	

tensor �eld M 
 We denote the set of all k forms on M by "k �M	� and the set of
all forms on M by " �M	
 If � is a k form and � an l form on M � we de�ne their
wedge product on M by

� 
 � �
�k � l	!

k!l!
Alt ��	 �	 �

We note� in particular� that the wedge product of �� � � " �M	 is given at x � M

by

�� 
 �	 �v�� v�	 � � �v�	� �v�	� � �v�	� �v�	 �

where v�� v� � TxM 
 Endowed with the wedge product� " �M	 forms an associative
algebra overR� known as the exterior algebra onM 
 If V is a vector space� we de�ne
a V �valued form on M to be the sum of terms of the form �	 v� where � � " �M	
and v � V 


If � is a k form and X a vector �eld on M � we de�ne the interior product
� X �M	� " �M	� " �M	 such that X � � "k�� �M	 satis�es

�X �	 �X�� � � � � Xk��	 � � �X�X�� � � � � Xk��	 �

The exterior derivative d� � "k�� �M	 of a di
erential form � � "k �M	 is
determined by the unique linear map d � " �M	� " �M	 such that



	

�
 df is the di
erential of f for any function f � "� �M	�

�
 d �� 
 �	 � d� 
 � � ���	k � 
 d� for � � "k �M	 and � � "l �M	�

�
 d �d�	 � � for any � � "k �M	


If � is a k form on M and X�� � � � � Xk vector �elds in X �M	� then

d� �X�� � � � � Xk	 �
kX
i��

���	iXi

�
�
�
X�� � � � �  Xi� � � � � Xk

��

�
X
i�j

���	i�j �
�
�Xi� Xj�� X�� � � � �  Xi� � � � �  Xj� � � � � Xk

�
�

��
�	

where  X indicates that X is omitted from an argument

An n�dimensional manifold M is said to be orientable if it admits a nonvanishing

n form
 Such an n form determines a basis for "n �M	 and is called a volume form


Theorem ��� �Stokes
 If M is a compact� oriented� n�dimensional manifold with
boundary 	M � then Z

M
d� �

Z
�M

�

for any �n� �	 form on M �

����� Actions of Lie groups

A left action of the Lie group G on the manifoldM is a smooth map # � G�M �M
such that

�
 # �e� x	 � x for all x �M �

�
 # �g�# �h� x		 � # �gh� x	 for all x �M and g� h � G


A right action is such that # �g�# �h� x		 � # �hg� x	
 We consider left actions
except as noted
 The symbol #g ��	 is often used in place of # �g� �	
 An action of
G on M is said to be free if g �� #g �x	 is injective for every x �M 
 If M � V is a
vector space and each #g a linear transformation� the action # � G�V � V is said
to be a representation of G on V 
 The action de�ned by

Ad � G� TeG� TeG � �g� �	 �� TgRg��TeLg�

is called the adjoint representation of G on g
 It is sometimes realized as the
derivative of the inner automorphism

Ig � G� G � h �� ghg���



�


Every representation # of a Lie group G on a vector space V determines a dual
contragredient representation #� � G� V � � V � such that

h#�gz� vi � hz�#gvi

for z � V � and v � V 

The in�nitesimal generator of the action # � G � M � M corresponding to

� � g is the vector �eld on M given by

�M �x	 �
d

dt

����
t��

# �exp t�� x	 for x �M�

The in�nitesimal generator of the adjoint representation is given by

ad� � � �g � � ��� �� for �� � � g�

It is true in general that

��M � �M � � ���� ��M� ��
�	

If� in particular� the group G acts on itself by left multiplication

# � G� G� G � �g� h	 �� Lgh�

then

�G �g	 � TeRg�� ��
�	

����� Material	 body	 and spatial velocity

Let 
 � I � G � t �� g �t	� where I � R� de�ne a curve in the Lie group G
 The
Lagrangian or material velocity is given by

vmaterial �t	 � $g �t	 � Tg�t�G�

Left and right translation in G both determine isomorphisms between TeG and
Tg�t�G
 The convective or body velocity is given by

vbody �t	 � Tg�t�Lg���t� $g �t	 � TeG�

and the Eulerian or spatial velocity by

vspatial �t	 � Tg�t�Rg���t� $g �t	 � TeG�

It follows that

vspatial �t	 � Tg�t�Rg���t�TeLg�t�vbody �t	

� Adg�t� vbody �t	



��

and

vbody �t	 � Tg�t�Lg���t�TeRg�t�vspatial �t	

� Tg���t�Rg�t�TeLg���t�vspatial �t	

� Adg���t� vspatial �t	 �

It is demonstrated in ��� that if � �t	 � g� then

d

dt

�
Adg�t� � �t	

�
� Adg�t� $� �t	 � Adg�t� adTg�t�Lg���t� �g�t�

� �t	 �

If � �t	 � g�� it is furthermore the case that

d

dt

�
Ad�g�t� � �t	

�
� Ad�g�t� $� �t	 � ad�Tg�t�Lg���t� �g�t�

Ad�g�t� � �t	 � ��
�	

where Ad� � g� � g� denotes the contragredient coadjoint representation


����
 Rigid motion in the plane

We often work explicitly with SE��	 and its associated Lie algebra� se��	
 Their
properties� as detailed below� may be derived from the properties of SE��	 and
se��	 detailed in ����


We may regard elements of SE��	 as matrices of the form

g �

�
�cos � � sin � x
sin � cos � y

� � �

�
	 �

so that the group operation corresponds to matrix multiplication
 We will some�
times denote the corresponding elements of SE��	 by triplets �x� y� �	
 If g� �
�x�� y�� ��	 � g� � �x�� y�� ��	 � SE��	� then

g� � g� � �x� � x� cos �� � y� sin ��� y� � x� sin �� � y� cos ��� �� � ��	 �

We may regard elements of se��	 as matrices of the form

g �

�
� � ��� �x
�� � �y
� � �

�
	 �

so that the bracket operation corresponds to matrix commutation
 We will some�
times denote the corresponding elements of se��	 by triplets ��x� �y� ��	
 If � �
��x� �y� ��	 � � � ��x� �y� ��	 � se��	� then

��� �� � ��y�� � ���y � ���x � �x��� �	 � ��
�	



��

The exponential map exp � se��	� SE��	 is given by

exp � �



�

��
���y � �y cos �� � �x sin ��	 �

�

��
��x � �x cos �� � �y sin ��	 � ��

�

if �� �� �� and by the Abelian exponential map ��x� �y� �	 �� ��x� �y� �	 if �� � �
 It
follows that the in�nitesimal generator of left translation corresponding to � � se��	
is given by

�SE��� � ��x � y��� �y � x�� � ��	 � ��
�	

The adjoint action of SE��	 on se��	 is given by

Adg � � ��x cos � � �y sin � � ��y� �x sin � � �y cos � � ��x� ��	 � ��
�	

If g �t	 � �x �t	 � y �t	 � � �t		 is a curve in SE��	� then

g�� $g �
�
$x cos � � $y sin �� $y cos � � $x sin �� $�

�
� ��
�	

��� The calculus of variations

The calculus of variations characterizes the extremals of real�valued functions on
in�nite�dimensional domains
 Functions of this sort are sometimes called function�
als
 Of particular interest are functionals on manifolds of curves joining points in
other manifolds
 Let % �q�� q�� �a� b�	 denote the manifold of curves c � �a� b� � Q �
t �� c �t	 such that c �a	 � q� and c �b	 � q�
 The tangent space Tc% �q�� q�� �a� b�	
may be thought of to comprise the restrictions to the curve c � Q of vector �elds
on Q which vanish at q� and q�


Consider a curve cs � R� % �q�� q�� �a� b�	
 Each point along cs is� itself� a curve
in Q
 We refer to any such one�parameter family of curves in Q as a variation of
the curve c � c� � Q
 For any variation cs� we de�ne


c �
dcs
ds

����
s��

� Tc% �q�� q�� �a� b�	 �

We refer to 
c as an in�nitesimal variation of c

A functional J � % �q�� q�� �a� b�	� R has a critical point at c � % �q�� q�� �a� b�	 if

and only if

dJ�c	 � 
c �
dJ�cs	

ds

����
s��

� �

for all variations cs of the curve c � c�
 We abbreviate this requirement as 
J� �




��

��� Principal bundles and related objects

Let M be a manifold and G a Lie group
 A �left	 principal �ber bundle with base
space M and structure group G comprises a manifold Q and a free �left	 action #
of G on Q such that

�
 M � Q�G�

�
 The canonical projection �M � Q�M is di
erentiable�

�
 Q � M �G locally


We denote the image of the point q under the action of h � G by hq
 If Q � M �G
globally� the bundle is said to be trivial� and the action in question corresponds to
left translation in G
 We denote the image of the point �r� g	 � M � G under the
action of h � G by �r� hg	
 We use the symbol Q to denote both the bundle space
or total space and the bundle itself


The point q � Q is said to lie in the �ber over �M �q	 � M 
 A vector vq � TqQ

tangent to the �ber through q is said to be vertical � we denote the space of all
such vectors by VqQ
 A connection on the principal bundle Q is an assignment of a
complement HqQ to VqQ � TqQ at each q � Q such that

�
 HhqQ � Tq#hHqQ�

�
 HqQ depends di
erentiably on q � Q


Vectors in HqQ are said to be horizontal
 Given a connection on Q� any tangent
vector vq � TqQ may be uniquely decomposed into its corresponding horizontal and
vertical components

vq � hor vq � ver vq�

where hor vq � HqQ and ver vq � VqQ

A connection may be speci�ed on the principal bundle Q by its unique connection

one form & � TQ � g� where g is the Lie algebra corresponding to the structure
group G
 The connection one form satis�es

�
 & ��Q	 � ��

�
 & �Tq#g �vq		 � Adg & �vq	�

and operates on generic vectors tangent to Q such that

�& �vq		Q �q	 � ver vq� ��
��	

The one form & � TQ� g thus speci�es the horizontal subspace of TqQ to comprise
those vectors which it annihilates


Given a connection on the bundle Q� the tangent map Tq�M � TqQ� T�M �q�M
maps the horizontal subspace at each q � Q isomorphically onto T�M �q�M 
 Given a
vector ur � TrM and a point q in the �ber over r� there is a unique vector in HqQ



��

��� �r	

c �t	

M

�
�

T�

v

hor v

r

q

ch �t	

h � H �q	

Figure ��� Constructions on a principal bundle�

which projects via Tq�M onto ur
 Given a vector �eld X on M � there is a unique
horizontal vector �eld Xh on Q which projects via T�M onto X 
 We refer to Xh as
the horizontal lift of X 
 If Y and Z are two vector �elds on M � it is straightforward
to show that

hor�Y h� Zh� � �Y� Z�h� ��
��	

where ��� �� denotes the Jacobi�Lie bracket on the appropriate manifold in each case

The following result is proven in ���� from the equivalence of the Jacobi�Lie

bracket to a Lie derivative


Lemma ��� If Z is a horizontal vector �eld on Q and � � g� then �Z� �Q� is a
horizontal vector �eld on Q�

Now consider a curve c �t	 in M passing through c ��	 � r �M 
 For each point
q in the �ber over r� there is a unique curve ch �t	 in Q� called the horizontal lift
of c� which passes through q� projects to c �t	� and satis�es d

dtc
h �t	 � HqQ for all

q � ch �t	
 If c �t�	 � r� and c �t�	 � r�� each point q� in the �ber over r� is connected
by a unique horizontal lift of c �t	 to a point q� in the �ber over r�
 We refer to this
map from q� to q� as parallel translation along c �t	




��

Given a di
erential form � � �TQ	n � g� we de�ne its covariant exterior deriva�
tive D� � �TQ	n�� � g with respect to a connection such that

D� �X�� � � � � Xn��	 � d� �horX�� � � � � horXn��	 �

The curvature form D& � TQ� TQ� g corresponding to the connection form & is
given by its covariant exterior derivative

D& �X� Y 	 � d& �horX� horY 	 � ��
��	

Note that ��
�	 applied to the connection form & implies that

& ��Y� Z�	 � Y & �Z	� Z& �Y 	� d& �Y� Z	 � ��
��	

In practice� we often compute the curvature of a connection using the following
result� known as Cartan�s structure equation


Theorem ��� If & � TQ � g is a connection form and D& � TQ � TQ � g the
corresponding curvature form� then

D& �X� Y 	 � d& �X� Y 	� �& �X	 �& �Y 	�� ��
��	

Proof� We prove the structure equation at an arbitrary point q � Q
 We de�ne
�� � � g such that � � & �X	 and � � & �Y 	 at q� then �Q � verX and �Q � verY
at q
 Since d& is linear�

d& �X� Y 	 � d& �horX � verX� horY � verY 	

� d& �horX� horY 	 � d& �horX� verY 	 � d& �verX� horY 	

� d& �verX� verY 	

� d& �horX� horY 	 � d& �horX� �Q	 � d& ��Q� horY 	 � d& ��Q� �Q	 �

Using ��
��	� the fact that & �hor �	 � �� and ��
�	� then

d& �X� Y 	 � �& ��horX� horY �	 � horX& ��Q	� & ��horX� �Q�	� hor Y & ��Q	

� & ���Q� horY �	 � �Q& ��Q	� �Q& ��Q	� & ���Q� �Q�	

� �& ��horX� horY �	 � horX�� & ��horX� �Q�	� hor Y �

� & ���hor Y� �Q�	 � �Q�� �Q� � & ����� ��Q	

� �& ��horX� horY �	� & ��horX� �Q�	 � & ��horY� �Q�	 � & ���� ��Q	 �

Applying ��
��	 and & �hor �	 � � together with ��
��	�

D& �X� Y 	 � d& �horX� horY 	

� �& ��horX� horY �	

� d& �X� Y 	 � & ��horX� �Q�	� & ��horY� �Q�	� & ���� ��Q	 �



��

From the de�nition of the connection form�

& ���� ��Q	 � ��� �� � �& �X	 �& �Y 	��

from Lemma �
��

& ��horX� �Q�	 � & ��horY� �Q�	 � ��

Thus

D& �X� Y 	 � d& �X� Y 	� �& �X	 �& �Y 	��

�

The preceding result is often written in terms of a multiplicative operation de�
�ned for g�valued forms in the following way
 If �� � � TQ � R and �� � � g�
then

��	 �� � 	 �� � � 
 � 	 ��� ���

Using this notation� we may write ��
��	 as

D& �X� Y 	 � d& �X� Y 	�
�

�
�&�&� �X� Y 	 �

Indeed� Cartan�s structure equation is a consequence of the more general result

D� � d��
�

�
�&� ���

where � is any equivariant g�valued one form
 With the distinction between �&�&� ��� �	
and �& ��	 �& ��	� in mind� we note that di
erences among authors� de�nitions of the
wedge product add variety to the appearance of ��
��	 in the literature


A local trivialization Q � M � G allows us to express the connection form & �
TQ� g in terms of coordinates around r �M and g � G
 Since ��� v	 � TrM�TgG
is vertical�

& �r� g	��� v	 � vg��

so that

�& �r� g	��� v		Q �r� g	 �
�
vg��

�
Q
�r� g	

�
�
��
�
vg��

�
g
�

� ��� v	 �



��

Thus

& �r� g	�u� v	 � & �r� g	 ���� v	 � �u� �		

� & �r� g	 ��� v	 � & �r� g	�u� �	

� vg�� � '�r� g	�u	 �

Similarly�

& �r� hg	�u� hv	 � hvg��h�� � '�r� hg	�u	 �

But

& �r� hg	 �u� hv	 � Adh & �r� g	�u� v	

� Adh
�
vg�� �'�r� g	�u	

�
� h

�
vg�� � '�r� g	�u	

�
h��

� hvg��h�� � h'�r� g	�u	h���

so

' �r� hg	�u	 � h'�r� g	�u	h��

� Adh'�r� g	�u	 �

Setting h � g��� we obtain

' �r� e	�u	 � Adg�� '�r� g	�u	 �

Setting A �r	 � ' �r� e	� then

& �r� g	�u� v	 � vg�� � Adg A �r	 �u	

� Adg
�
g��v � A �r	 �u	

�
�

We call the map A � TM � g the local connection one form
 If �r �t	 � g �t		 deter�
mines a curve in Q locally� it follows that

& � $r� $g	 � Adg
�
g�� $g �A �r	 $r

�
� ��
��	

We de�ne DA � TM � TM � g to be the local curvature form which satis�es

D& �r� g	
�
Xh� Y h

�
� AdgDA �r	 �X� Y 	 ��
��	

for X� Y � X �M	
 Note that DA isn�t really a covariant exterior derivative
 In
terms of the Lie bracket on g�

DA �X� Y 	 � dA �X� Y 	� �A �X	 � A �Y 	� ��
��	

for X� Y � X �M	




��

��� Geometric phases

����� Holonomy groups and bundles

Let c �t	 be an oriented closed curve in M passing through the point r � �M �q	

Parallel translation along c �t	 maps the point q � ���M �r	 to some �possibly di
erent	
point p � ���M �r	
 Since q and p lie along the same �ber over M � there exists some
g � G such that p � gq
 We refer to g as the geometric phase� or holonomy�
associated with the curve c �t	
 The holonomy group with reference point q contains
all g � G such that gq is reachable from q via parallel translation along a closed
curve in M � and is denoted by H �q	
 The holonomy bundle with reference point q
comprises the points in Q which are joined to q by horizontal curves� and is denoted
by QH �q	


If we restrict the construction of H �q	 to permit parallel translation only along
contractible closed curves in M � we obtain the restricted holonomy group Hrest �q	

If we further con�ne this construction to consider only closed curves lying entirely
within some neighborhood U �M of r � �M �q	� and denote the resulting subgroup
of H �q	 by HU �q	� we de�ne the local holonomy group Hloc �q	 to be the intersection
of all such HU �q	


The Lie algebra associated with H �q	 is related to & and QH �q	 as follows


Theorem ��� �Ambrose�Singer
 LetQ be a principal bundle with structure group
G over a connected manifold M � Let & be a connection form on Q� D& its curva�
ture� H �q	 the holonomy group with reference point q � Q� and QH �q	 the holonomy
bundle with reference point q� Then the Lie algebra h �q	 associated with H �q	 is
equal to the subalgebra of g� the Lie algebra associated with G� spanned by elements
of the form D& �p	 �u� v	� where u� v � HpQ and p � QH �q	�

Let mk �q	� k � �� �� � � � � be the subspace of g spanned by elements of the form

Z� � � �ZkD& �q	 �X� Y 	 � ��
��	

where X� Y� Z�� � � � � Zk are horizontal vector �elds on Q
 The in�nitesimal holonomy
group Hinf �q	 with reference point q is generated by the union hinf �q	 of all mk �q	

The in�nitesimal holonomy group Hinf �q	 is a subgroup of the local holonomy group
Hloc �q	 at any q � Q
 If the dimension of Hinf �q	 is constant throughout a neigh�
borhood of q � Q� then Hinf �q	 and Hloc �q	 are equal� if the dimension of Hinf �q	
is constant throughout Q� then Hinf �q	 � Hloc �q	 � Hrest �q	 for all q � Q
 These
facts are proven in ����


����� Abelian bundles

Along a curve in Q which is everywhere horizontal� ��
��	 implies that

$g � �gA �r	 $r



�	

in local coordinates
 In general� the geometric phase associated with a closed curve
c � ��� T ��M is given by

g �T 	 � g ��	 exp � �c	 �

where

� �c	 � �A �
�

�
�A�A��

�

�
��A�A�� A��

�

��
�A� �A�A�� � � � � ��
��	

and

A �

Z T

�
A �c �t		 $c �t	 dt�

�A�A� �

Z T

�

�Z t

�
A �c ��		 $c ��	d�� A �c �t		 $c �t	



dt�






�

This formula appears in modi�ed form in ����
 If G is Abelian� only the �rst term
in this expansion is nonzero� so that

g �T 	 � g ��	 exp



�

Z T

�
A �c �t		 $c �t	 dt

�
�

By Stokes� theorem� then

g �T 	 � g ��	 exp



�

Z
S
dA �r	

�

� exp



�

Z
S
dA �r	

�
g ��	 �

where S is any oriented submanifold of M whose boundary is traced by c �t	 as t
increases from � to T 
 This result is the area rule for Abelian bundles


If G is Abelian� then the local curvature form satis�es

DA �X� Y 	 � D&
�
Xh� Y h

�
for X� Y � X �M	 by ��
��	
 But

DA �X� Y 	 � dA �X� Y 	

by ��
��	
 Thus we have

Corollary ��� �Abelian Ambrose�Singer
 If G is Abelian� the Lie algebra h �q	
is equal to the subalgebra of g spanned by elements of the form dA �u� v	� where
u� v � TrM for any r �M �



�




��

Chapter �

Lagrangian Mechanics

��� Fundamentals

����� The Euler�Lagrange equations

The Lagrangian description of a mechanical system whose con�guration is speci�ed
by a point q � Q begins with a function L � TQ � R
 This function� termed the
Lagrangian� represents the di
erence between the system�s kinetic energy and its
potential energy
 We de�ne the �ber derivative FL � TQ� T �Q of the Lagrangian
L � TQ� R such that

hFL �u	 � vi �
d

dt

����
t��

L �u� tv	 for u� v � TqQ

at every q � Q
 Thus hFL �u	 � vi is the derivative of L at the point u � TqQ
in the direction v
 The Lagrangian L is said to be regular� or nondegenerate� if
FL is regular at all �q� u	 � TQ
 It is proven in ��� that L is regular if and only
if FL � TQ � T �Q is a local di
eomorphism
 The Lagrangian L is said to be
hyperregular if FL � TQ� T �Q is a global di
eomorphism


We de�ne the one form �L � T �TQ	� R such that

�L �w	 � hFL ��TQw	 � T�Q �w	i�

and the two form �L � T �TQ	� T �TQ	� R such that

�L � �d�L�

We refer to �L as the Lagrange two form
 We de�ne the action A � TQ � R such
that

A �u	 � hFL �u	 � ui for u � TqQ�

and refer to the di
erence E � A� L as the energy
 A Lagrangian vector �eld XE



��

on TQ satis�es

XE �L � dE�

A second order equation on Q is a vector �eld X on TQ such that T�Q �X is the
identity map on TQ
 If L � TQ� R is regular� then XE exists and is second order


History instructs us to regard Newton�s law F � d �mv	 �dt as axiomatic in the
study of mechanical systems
 For conservative� unconstrained systems� this relation
is rooted in the extremization of the functional

J�

Z
Ldt�

For �nite dimensional systems� we may therefore realize equations of motion accord�
ing to the following result


Theorem ��� �Hamilton�s Principle
 Let L � TQ� R be a regular Lagrangian�
and let q� and q� be points �xed in Q� Then the curve c � �a� b� � Q represents a
critical point of the functional

J � % �q�� q�� �a� b�	� R � c ��

Z b

a
L
�
c �t	 � c� �t	

�
dt

if and only if

d

dt

	L

	 $qi
�
	L

	qi
� ��

where qi are local coordinates on Q�

Proof� Recall that J has a critical point at c if and only if

dJ�c	 � 
c �
dJ�cs	

ds

����
s��

� �

for all variations cs of c � c�
 Since

d

ds

����
s��

Z b

a

L
�
cs �t	 � c

�
s �t	

�
dt �

Z b

a



	L

	qi
	

	s
qi �s� t	 �

	L

	 $qi
	

	s
$qi �s� t	

�����
s��

dt

�

Z b

a

	L

	qi

qidt�

	L

	 $qi

qi
����
t�b

t�a

�

Z b

a

qi

d

dt

	L

	 $qi
dt

� �

Z b

a



d

dt

	L

	 $qi
�
	L

	qi

�

qidt�

dJ�c	 � 
c vanishes for all variations of c if and only if

Z b

a



d

dt

	L

	 $qi
�
	L

	qi

�

qidt



��

vanishes for all 
qi
 Thus Jhas a critical point at c if and only if

d

dt

	L

	 $qi
�
	L

	qi
� � ��
�	

along c
 �

Equations ��
�	 are the classical Euler�Lagrange equations in coordinate form

Their generalization to in�nite dimensions is presented in ��� as follows


Theorem ��� Let XE be a second order Lagrangian vector �eld on TQ correspond�
ing to L � TQ � R� If �q �t	 � $q �t		 represents an integral curve of XE in a local
chart� then

d

dt
D�L �q �t	 � $q �t		�D�L �q �t	 � $q �t		 � ��

Here DiL ��� �	 refers to the G ateaux derivative of L with respect to its ith argument


����� Symmetries and momentum maps

The Lagrangian L � TQ � R determines a kinetic energy metric hh�� �iiKE � TqQ �
TqQ� R at each q � Q such that

hhu� viiKE � hFL �u	 � vi�

Let # � G � Q � Q be an action of the Lie group G on the manifold Q
 The
Lagrangian L � TQ� R is said to be G invariant if

L �#gq� Tq#gvq	 � L �q� vq	

for all q � Q� vq � TqQ� and g � G
 Given such a Lagrangian� we de�ne the
momentum map J � TQ� g� such that

hJ �vq	 � �i � hFL �vq	 � �Q �q	i

� hhvq� �Q �q	iiKE

for vq � TqQ and � � g
 If L is G invariant� then G is said to determine a symmetry
of the system given by the Euler�Lagrange equations
 The relationship between
symmetries and conservation laws is speci�ed by the following result� proven in ����


Theorem ��� �Noether
 If L � TQ � R is G invariant� then the momentum
J � TQ � g� is conserved along integral curves of the Euler�Lagrange equations
corresponding to L�

����� The Lagrange�d�Alembert principle

We refer to a �ber preserving map F � TQ� T �Q over the identity as a force �eld

In the presence of a force �eld F � TQ � T �Q� the integral Lagrange�d	Alembert



��

principle for a curve q �t	 in Q states that




Z b

a
L �q �t	 � $q �t		dt�

Z b

a
F �q �t	 � $q �t		 � 
q dt � �� ��
�	

where




Z b

a

L �q �t	 � $q �t		dt �

Z b

a



	L

	qi

qi �

	L

	 $qi
d

dt

qi
�
dt

�

Z b

a



	L

	qi
�

d

dt

	L

	 $qi

�

qidt�

A force �eld F � TQ� T �Q determines a one form (F � T �TQ	� R such that

(F �v	W � hF �v	 � Tv�QW i

for v � TQ and W � Tv �TQ	
 If L is regular� this one form determines a vector
�eld YF on TQ such that

T�QYF � �

and

(F � �YF �L�

The vector �eld YF is said to be weakly dissipative if

hdE� YF i 
 �

throughout TQ� and dissipative if

hdE� YF i � �

o
 the zero section Q� f�g
 The force �eld F is dissipative if and only if

hF �v	 � vi � �

for all nonzero v � TQ
 In Chapter �� we will encounter dissipative force �elds of the
form F � F ��R	� where R � TQ� R
 A function R which generates a dissipative
force �eld in this way is called a Rayleigh dissipation function


��� Reduction on Cartesian products

In Chapter �� we will appeal to the following result regarding Lagrangian reduction
on the Cartesian product of two Lie groups
 The proposition and its proof mimic
those appearing in ����


Proposition ��� Let G and ) be Lie groups and Q � G � ) their Cartesian



��

product� Let L � TQ � R be invariant with respect to both the left action �g� �	 ��
�hg� �	 of G on Q and the right action �g� �	 �� �g� ��	 of ) on Q� Let l � g�� � R

be the restriction of L to the space tangent to Q at the identity �e� e	 � G� )� For
a curve q �t	 � �g �t	 � � �t		 in Q� let � �t	 � g�� $g and u �t	 � $� � ���� Then the
following four statements are equivalent�


i� The curve q �t	 satis�es the Euler�Lagrange equations for L on Q�


ii� The variational principle 

R b
a L �q �t	 � $q �t		 dt � � holds for variations with

�xed endpoints�


iii� The reduced Euler�Lagrange equations

d

dt

	l

	�
� ad��

	l

	�

d

dt

	l

	u
� ad�u

	l

	u

��
�	

hold�


iv� The variational principle 

R
l �� �t	 � u �t		dt � � holds on g�� for variations

of the form 
q � 
g � 
u �
�
$� � ��� ��

�
� � $w� �u� w�	�

Proof� We will apply this theorem to the case in which G is a matrix Lie group
but ) is not� the proof presented here makes these assumptions
 We acknowledge�
furthermore� that di
erent Lie brackets in �iv	 can give rise to di
erent signs in ��
�	�
we have stated the result in a manner consistent with its application in Chapter �


We addressed the equivalence of �i	 and �ii	 in Section �
�
 To demonstrate the
equivalence of �ii	 and �iv	� we compute the in�nitesimal variation 
� � 
u induced
by an in�nitesimal variation 
q� beginning with the variation 
u alone
 From the
de�nitions above�


u �
	

	�

����
���

�
$� ��� t	 � ��� ��� t	

�
�



	

	�

����
���

$� ��� t	

�
� ��� ��� t	 �



	

	t
T� ��� t	

�
	

	�

����
���

��� ��� t	

�



	

	t

�

�
� ��� ��� t	�



	

	t
T� ��� t	

��
T��� ��� t	

�

� � ��� ��� t	 �

We de�ne

w ��� t	 � 
� � ��� ��� t	 �



��

then

	

	t
w ��� t	

�



	

	t

�

�
� ��� ��� t	�



	

	�

����
���

T� ��� t	

��
T��� ��� t	

�
 	

	t
� ��� t	

�
� ��� ��� t	 �

It follows that


u� $w �



	

	�

����
���

T� ��� t	

��
T��� ��� t	

�
 	

	t
� ��� t	

�
� ��� ��� t	

�



	

	t
T� ��� t	

��
T��� ��� t	

�

� � ��� ��� t	

� � $� ��� t	 � ��� ��� t	 � 
� � ��� ��� t	�

� �u� w��

so


u � $w � �u� w��

The determination of 
� proceeds analogously� and appears explicitly in ����
 Since
� and w vanish at the endpoints a and b but are otherwise arbitrary�




Z b

a
l �� ��� t	 � u ��� t		dt �

	

	�

����
���

Z b

a
l �� ��� t	 � u ��� t		 dt

�

Z b

a



	l

	�

� �

	l

	u

u

�
dt

�

Z b

a



	l

	�

�
$� � ad� �

�
�

	l

	u
� $w� adu w	

�
dt

�

Z b

a




�
d

dt

	l

	�
� ad��

	l

	�

�
� �



�
d

dt

	l

	u
� ad�u

	l

	u

�
w

�
dt�

Thus




Z b

a
l �� ��� t	 � u ��� t		dt � �

if and only if �
� holds� and �iii	 and �iv	 are equivalent
 �
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Chapter �

The Geometry of Locomotion

��� Locomotion and principal bundles

����� Connections on con�guration bundles

In the context of locomotion� we regard the shape of a deformable body as a point in
a shape manifold M 
 A point in the con�guration manifold Q � M � G represents
this shape together with the body�s position and orientation in ambient space
 The
Lie group G corresponds� for a particular �xed shape� to the space of rigid motions
of the body with respect to a reference position
 We think of Q � M�G as a trivial
principal bundle over M with structure group G� the action of G on Q is given by
#h �r� g	 � �r� hg	 for �r� g	 � Q and h � G


A connection on the con�guration bundle Q over M provides a unique corre�
spondence between sequential changes in shape� represented by curves in M which
begin at r �M � and trajectories of the system in Q which begin at a con�guration
q � ���M �r	
 We are particularly interested in the self�propulsion of deformable bod�
ies undergoing cyclic changes in shape� represented by closed loops in M 
 Parallel
translation along a closed curve in M which begins and ends at r maps each point
q � ���M �r	 to another point p � ���M �r	
 In other words� a cyclic change in shape
may result in the net displacement or reorientation of a deforming body in space

The element of G representing this net motion is the geometric phase corresponding
to the closed curve in M 


It should be clear that if the self�propulsion of a deformable body is governed
by a single principal connection� at least two modes of deformation are needed
to e
ect �berwise motion
 To negotiate a closed loop in a one�dimensional shape
space� a propulsor must undo any sequence of deformations it has completed� thereby
generating zero geometric phase
 This fact constitutes the scallop theorem� so named
in ���� for a biomimetic propulsor with a single internal degree of freedom


In Section �
�� we will encounter systems for which single connections cannot
provide accurate models
 It will prove to be the case� however� that the notion of
a connection can still contribute to the geometrization of the equations governing
such systems
 In Chapters � and �� we will model a class of systems for which the
relevance of principal connections has yet to be established
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Figure ��� The kinematic car on the plane�

����� Kinematic and nonholonomic connections

Much terrestrial locomotion is essentially tractional
 In order to pull itself along� a
propulsor must establish contact with the ground in a manner which can support
shear
 The robot to be considered in Section �
�
� exempli�es systems for which
this contact is viscous
 In many instances� however� it is reasonable to assume that
a foot or wheel makes slipless contact with the ground
 A wheel which cannot slip
may still roll freely� from this idealization we distill nonholonomic constraints which
govern the motion of wheeled vehicles


We realize a set of rolling constraints as the distribution on Q comprising al�
lowable velocities $q � � $r� $g	
 If such a distribution coincides with the horizontal
subbundle of TQ determined by a connection &� we refer to this connection as
kinematic
 We will construct a kinematic connection explicitly in Section �
�
�

In general� we refer to a system which evolves along curves which are horizontal
with respect to any connection as kinematic
 This semiotic subtlety is intended to
acknowledge the geometric equivalence of all such systems


It need not be the case that a set of nonholonomic constraints determines a
connection in the sense of Section �
�
 For certain systems� constraints break the
symmetries which foster traditional conservation laws without proscribing �berwise
drift
 Given a G invariant distribution of constraints� one may study the evolution of
a G invariant generalized momentum in terms of a nonholonomic connection
 This
perspective is explored in ���� and ����


����� The kinematic car

The equations governing the planar motion of the simpli�ed automobile depicted
in Figure �
� are equivalent to a kinematic connection on the con�guration bundle
Q � M �G � T�� SE��	
 We treat the front and rear wheel pairs as single wheels
a�xed at the midpoints of their respective axles� and parametrize the shape space
M � T� � S�� S� by the steering angle � and the angle of rotation � of the rear



�	

wheel
 The car�s trajectory in the plane is determined by the variation of these
angles with time� we need not consider the angle of rotation of the front wheel
 We
de�ne � to increase as the car moves forward
 We denote the radius of the wheels
by � and the distance between their centers by l


The car�s movement is restricted at any moment by the speci�cation that the
wheels can roll but not slip on the plane
 Since neither wheel can slip transverse to
its rolling direction�

$x sin � � $y cos � � �

and

$x sin �� � �	� $y cos �� � �	� l $� cos� � ��

Since the rear wheel cannot slip along its rolling direction�

$x cos � � $y sin � � � $� � ��

We decompose the arbitrary velocity vector

vq �

�
�����

$�
$�
$x
$y
$�

�
����	 �

�
������

$�
$�

� $� cos �

� $� sin �

���l	 $� tan�

�
�����	 �

�
�����

�
�

$x� � $� cos �

$y � � $� sin �
$� � ���l	 $� tan�

�
����	 � hor vq � ver vq

such that the component termed horizontal satis�es the constraints and that termed
vertical lies in the �ber direction
 Since

�& �vq		Q �q	 � ver �vq	 �

�
�����

�
�

$x� � $� cos �

$y � � $� sin �
$� � ���l	 $� tan�

�
����	 �

��
�	 implies that the connection one�form & returns

& �vq	 �

�
� $x� �� cos� � ���l	y tan�	 $� � y $�

$y � ����l	x tan�� � sin �	 $� � x $�
$� � ���l	 $� tan�

�
	 �



�


or� using ��
�	 and ��
�	�

& � $r� $g	 �

�
�cos � � sin � y
sin � cos � �x
� � �

�
	
�
� $x cos � � $y sin � � � $�

$y cos � � $x sin �
$� � ���l	 $� tan�

�
	

�

�
�cos � � sin � y

sin � cos � �x
� � �

�
	
�
�
�
� $x cos � � $y sin �
$y cos � � $x sin �

$�

�
	 �

�
� �� $�

�

� ���l	 $� tan�

�
	
�
A

� Adg
�
g�� $g �A �r	 $r

�
�

The local connection form is therefore given by

A �r	 � A ��� �	 �

�
� ��d�

�
� ���l	 tan�d�

�
	 �

����� Mechanical connections

Principal connections may also be de�ned to represent conservation laws and force
balances
 Suppose that G acts on Q to de�ne a principal bundle over M 
 If L �
TQ� R is G invariant� we de�ne the locked inertia tensor I� g� g� at each q � Q

such that

hI�q	 �� �i � hh�Q �q	 � �Q �q	iiKE� ��
�	

The locked inertia tensor may be written locally as

I�r� g	 � Ad�g�� Iloc �r	Adg�� � ��
�	

The mechanical connection &mech � TQ� g is given by

&mech � �q� $q	 �� I�� �q	J �q� $q	 � ��
�	

where J � TQ� g� is the momentum map from Section �
�
�
 As a system evolves
along a trajectory in Q which is horizontal with respect to a mechanical connection�
the momentum

J �q� $q	 � �

is conserved

We de�ned a principal connection in terms of a choice of horizontal subbundle

HQ to complement the vertical subbundle V Q of TQ
 A connection derived from
a G invariant Lagrangian determines HqQ to be orthogonal to VqQ with respect to
hh�� �iiKE at each q � Q


The de�nition of the mechanical connection supposes the Lagrangian in question
to correspond to kinetic energy ����� but neither ��
�	 nor ��
�	 restricts the physical



��

signi�cance of L
 Given a dissipative force �eld F � TQ� T �Q� the equation

hF �q� $q	 � �Q �q	i � � �� � g ��
�	

represents a balance of �berwise dissipative forces
 The G invariance of a Rayleigh
dissipation function R such that F � F ��R	 allows us to de�ne a momentum map
K � TQ� g� such that

hK �q� $q	 � �i � hF �q� $q	 � �Q �q	i

and a viscosity tensor V� g� g� such that

hV�q	 �� �i � hF ��Q �q		 � �Q �q	i

and

V�r� g	 � Ad�g��Vloc �r	Adg�� � ��
�	

A trajectory in Q which is horizontal with respect to the Stokes connection

&Stokes � �q� $q	 �� V�� �q	K �q� $q	

is a trajectory which observes the force balance ��
�	


��� Interpolation for Rayleigh systems

����� The interpolated equations

From ��
��	� ��
�	� and ��
�	� we obtain the local expressions

&mech � I
��J

� Adg I
��
locAd

�
g J

� Adg
�
g�� $g �Amech $r

�
and

&Stokes � V
��K

� AdgV
��
locAd

�
gK

� Adg
�
g�� $g �AStokes $r

�
�

Thus

g�� $g �Amech $r � I
��
loc p�

where

p � Ad�g J



��

is the body momentum� and

g�� $g �AStokes $r � V
��
locAd

�
gK�

Recall the integral Lagrange�d�Alembert principle from Section �
�
�
 Choose a
function � �t� s	 such that � �a� s	 � � �b� s	 � � �t� �	 � �� and consider the variation

q �t� s	 � exp �� �t� s	 �	 q �t	 �

where � � g
 Substituting the corresponding in�nitesimal variation


q �t	 �
	�

	s

����
s��

�Q �q �t		

into ��
�	� we obtain

hF �q� $q	 � �Q �q	i �
d

dt
hFL �q� $q	 � �Q �q	i

�
d

dt
hJ �q� $q	 � �i

� h
d

dt
J �q� $q	 � �i�

Thus K �q� $q	 � $J �q� $q	 under the natural identi�cation of g� with TJg
�� and

g�� $g �AStokes $r � V
��
locAd

�
g
$J�

It follows from ��
�	 that

Ad�g $J � Ad�g
d

dt

�
Ad�g�� p

�
� Ad�g

�
Ad�g�� $p� ad�

g d
dt
�g���

Ad�g�� p
�

� $p�Ad�g ad
�

g��g�� �gg���Ad
�

g�� p

� $p�Ad�g ad
�

� �gg�� Ad
�

g�� p�



��

Since

hAd�g ad
�

� �gg�� Ad�g�� p� �i � had�
� �gg�� Ad�g�� p�Adg �i

� hAd�g�� p� ad� �gg�� Adg �i

� hAd�g�� p� �� $gg��� g�g���i

� hAd�g�� p� �� $g� g��g��i

� �hAd�g�� p� � $g� g��g
��i

� �hp�Adg��

�
� $g� g��g��

�
i

� �hp� g��� $g� g��g��gi

� �hp� �g�� $g� ��i

� �hp� adg�� �g �i

� �had�g�� �g p� �i

for any � � g�

Ad�g ad
�
� �gg�� Ad�g�� p � � ad�g�� �g p

and

Ad�g $J � $p� ad�g�� �g p

� Vloc

�
g�� $g � AStokes $r

�
�

Rearranging terms� we obtain

g�� $g � �Amech $r � I
��
loc p�

$p � Vloc �AStokes� Amech	 $r�VlocI
��
loc p� ad�g�� �g p�

��
�	

These equations describe the evolution of a system to which inertial e
ects and
dissipative e
ects both pertain
 We refer to such systems as Rayleigh systems to
distinguish them from Lagrangian systems� which are conservative� and Stokesian
systems� for which inertial e
ects are completely overwhelmed by dissipative forces


In the inviscid limit� V� � above and ��
�	 reduces to

g�� $g � �Amech $r � I
��
loc p�

$p � ad�g�� �g p�

The latter equality is simply the conservation law $J � �� if the momentum is zero
initially it remains zero and the mechanical connection completely describes the
evolution of the system

g�� $g � �Amech $r�

Premultiply the latter equality in ��
�	 by IlocV
��
loc
 The classical Reynolds number

represents the ratio of inertial forces to viscous forces in a �uid system� the tensor
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Figure ��� An inchworm robot on a viscous �lm�

IlocV
��
loc extends this notion to the present situation
 In the low Reynolds number

limit� then� we allow IlocV
��
loc � � to obtain

g�� $g � �Amech $r � I
��
loc p�

� � Iloc �AStokes �Amech	 $r � p�

or

g�� $g � �AStokes $r�

The Stokes connection completely describes the evolution of the system


����� The heavy inchworm

Consider the rectilinear motion of the inchworm�like robot depicted in Figure �
�

The variables lr� lh� and sh denote the lengths of the rear segment of the robot in
contact with the ground� the longitudinal span of the raised hump� and the arclength
of the hump� resprectively
 We assume the robot to have unit length overall
 The
variable x denotes the displacement of the trailing edge with respect to a point �xed
on the ground
 The con�guration of the system is speci�ed as a point in a trivial
�R��	 bundle over the space of shapes �lr� lh� sh	 � U � R	


If we assume the mass m of the robot to be concentrated at its trailing edge� its
kinetic energy is given by

L �
�

�
m $x��

The locked inertia tensor is constant and the local mechanical connection null� the
shape parameters �lr� lh� sh	 may vary freely in the absence of dissipation with no
e
ect on the displacement x
 If we assume a uniformly thin� laminar� Newtonian
�uid �lm between the robot and the ground� the horizontal sliding of a contact
segment will be opposed by a force proportional to both the sliding velocity and the
segment�s length
 The associated dissipation is captured �for a particular set of �lm



��

parameters	 by the Rayleigh dissipation function

R �
�

�
lr $x

� �
�

�
��� lr � sh	

�
$x� $lh � $sh

��
�

Thus

F � F ��R	 � � ��� sh	 $x� ��� lr � sh	
�
$lh � $sh

�
and

V� � ��� sh	 �

where each map from R to R is given by multiplication with the quantity shown
 It
follows that the local Stokes connection form is

AStokes �
��� lr � sh	

��� sh	
�dlh � dsh	 �

For this system� ��
�	 assumes the form

$x �
p

m
�

$p � ��� lr � sh	
�
$sh � $lh

�
� ��� sh	

p

m
�

or

m�x � ��� lr � sh	
�
$sh � $lh

�
� ��� sh	 $x�

This is precisely the statement that the robot�s momentum changes at a rate equal
to the sum of the viscous drag forces acting upon it
 We note that the viscous
interface between the robot and the ground could represent a set of wheels or tracks
exhibiting viscous damping


����� Extension to more general forces

Given any force �eld F � TQ� T �Q� we may de�ne a map V � g� g� by

hV��	 � �i � hF ��Q	 � �Qi� ��
�	

The addition of this force �eld to a system governed by a mechanical connection
leads to equations of the form

g�� $g � �Amech $r � I��loc p�

$p � *�VlocI
��
loc p� ad�g�� �g p�

If F is not the derivative of a Rayleigh dissipation function� however� then ��
�	 need
not determine a tensorial map
 The de�nition of the Stokes connection requires the
invertibility of this map
 It is not clear that a system which evolves according to a



��

general force balance may be described by a principal connection

In Section �
�
�� our model for the generation of lift on a moving hydrofoil will

yield a force �eld F � T
�
T��R

�
� T �

�
T��R

�
of the form

F
�
�� �� $�� $�� $xm

�
� C

�
�B $� cos� �D $� cos�

��
D $� � �B $� cos ��� �	� � $xm sin�

�
�

Here B� C� and D are constants� ��� �	 � T� parametrizes the shape of a propulsor�
and F is invariant with respect to translation in the �ber variable xm � �R��	
 The
system�s kinetic energy

L � $xm	 �
�

�
m $x�m

is also invariant with respect to translations in xm
 The map V� R� R given by

V��	 � � �� � R

is clearly not invertible
 The term in which the local Stokes connection appears
in ��
�	 is replaced� uninformatively� by F 




��

Chapter �

Controllability and Related Issues

��� De�nitions and tests

Given a �nite�dimensional control system

$x � f�x� u�� � � � � um	� x �M� ��
�	

and a particular point x� � M � we de�ne RV
T �x�	 to be the set of points in M

which are reachable from x� in time t 
 T along trajectories which remain in the
neighborhood V �M of x�
 The system ��
�	 is said to be locally accessible if� for
all x� � M � RV

T �x�	 contains a non�empty open subset of M for every choice of
T � � and V 
 The system ��
�	 is said to be locally controllable if� for all x� � M �
x� is interior to RV

T �x�	 for every choice of T � � and V 

Given a control�a�ne system with drift

$x � f�x	 � h��x	u
� � � � �� hm�x	um� ��
�	

we de�ne the accessibility algebra C to be the smallest subalgebra of X�M	 contain�
ing f� h�� � � � � hm
 The accessibility distribution C on M is then de�ned by

C�x	 � spanfX�x	jX � Cg� x �M�

Theorem ��� If dimC�x	 � dim TxM for all x � M � then the system ��
�	 is
locally accessible�

This result� a consequence of Frobenius� theorem� is proved in ���� as the Lie algebra
rank condition for accessibility


Now suppose that M � M� � M�� and let � � M � M� and T� � TM �
TM� denote the projection onto the �rst component of M and its tangent map�
respectively
 De�ne the restricted accessibility distribution T�C at x� �M� by

T�C�x�	 � spanfT�X�x	jX � C� x� � ��x	g�

If dim T�C�x�	 � dim Tx�M� for all x� � M � we will refer to ��
�	 as locally M�

accessible
 Loosely speaking� this property corresponds to accessibility of the system



��

on M� without regard for the evolution of the system on M�
 Clearly� if the system
on M� �M� is locally accessible� it is locally M� accessible


If f � � in ��
�	� we are left with the driftless system

$x � h��x	u
� � � � �� hm�x	u

m� ��
�	

Local controllability and local accessibility are equivalent notions in the absence of
drift� in which case Theorem �
� is equivalent to Chow	s theorem ����
 A driftless
system on M � M� �M� which is locally M� accessible is said to be locally M�

controllable


��� Controllability for kinematic systems

����� Principal connections and Chow�s theorem

Suppose that the locomotion of a robotic propulsor is governed by a single principal
connection on the �nite�dimensional trivial principal bundle Q � M � G� and that
this propulsor has complete authority over the rate at which it deforms
 We may
then write the equations of motion as the driftless control system

$q � Xh
i u

i� Xi �
	

	ri
� i � �� � � � � m� ��
�	

In practice� we are often concerned with a robot�s ability to position some end
e
ector in its environment without regard for its internal con�guration
 We refer
to a system on Q � M �G as totally controllable if it is locally Q controllable� and
�ber controllable if it is locally G controllable
 The special form of ��
�	 allows us to
restate Chow�s theorem in terms of the local connection form A and its curvature

Thus we de�ne

h� � spanfA�Xi	g�

h� � spanfDA�Xi� Xj	g�

h	 � spanfXkDA�Xi� Xj	� �A�Xk	� DA�Xi� Xj	�g�






hk � spanfXi� � �A�Xi	� ��� ��� ��� � � hk��� � � h� � � � �� hk��g

��
�	

and realize the following result


Proposition ��� The driftless system ��
�	 is �ber controllable near q � �r� g	 � Q

if and only if

g � h� � h� � � � �

there� and totally controllable near q � Q if and only if

g � h� � h	 � � � �



�	

there�

Proof� The proof amounts to computing the �ber components of the elements of
C at each level of Jacobi�Lie bracketing
 If the projections onto TgG of the ele�
ments of C�q	 span TgG� the system is �ber controllable
 The base components of
the input vector �elds Xi will not survive the �rst level of bracketing
 Total con�
trollability therefore requires �ber controllability in the absence of the unbracketed
contributions to C�q	


Note� �rst of all� that the Jacobi�Lie bracket

�Xi� Xj� �

�
	

	xi
�
	

	xj




of any two input vector �elds on M is null
 By ��
��	� then

hor�Xh
i � X

h
j � � �Xi� Xj�

h � ��

so �Xh
i � X

h
j � is vertical
 By ��
��	� then

�Xh
i � X

h
j � � &Q

�
�Xh

i � X
h
j �
�
�

it follows from ��
�	� ��
��	� ��
��	� and ��
��	 that

T�G�X
h
i � X

h
j � �

�
&�Xh

i � X
h
j �
�
g

�
�
Xh
i &�X

h
j 	�Xh

j &�X
h
i 	� d&�Xh

i � X
h
j 	
�
g

� �
�
d&�Xh

i � X
h
j 	
�
g

� �gAdg�� d&�Xh
i � X

h
j 	

� �gAdg�� D&�Xh
i � X

h
j 	

� �gAdg�� AdgDA�Xi� Xj	

� �gDA�Xi� Xj	�

The Jacobi�Lie brackets of control vector �elds Xh
i with one another thus contribute

vertical vector �elds to the accessibility algebra C whose �ber projections correspond
to elements in the range of the local curvature form


If Z is a vertical vector �eld such that T�GZ � �g� for some � � ��r	 � g� then

T�G�X
h
i � Z� � Xi��g�	 � �gAXi� g��JLG

� �g�Xi� � �AXi� ��	�

where ��� ��JLG denotes the Jacobi�Lie bracket on X�G	
 If W is also a vertical vector
�eld such that T�GW � �g� for � � ��r	 � g� then

T�G�Z�W � � �g�� g��JLG � g��� ���



�
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Figure ��� A wheelchair on the plane�

We invoke the group invariance underlying ��
�	 by assuming� without loss of
generality� that g � e
 Thus T�G maps elements of T�r�e�Q to g� and the ith level
of Jacobi�Lie bracketing in the construction of C�r� e	 amounts to the construction
of hi�� � g
 �

����� Local and global controllability of a wheelchair

Figure �
� depicts a wheelchair on a �at surface
 The two wheels of radius � are
separated by a distance w and rotate independently through angles �� and ��
 The
midpoint of the axle connecting the wheels de�nes the point �x� y	 in the plane�
the angle � measures the net rotation of the wheelchair with respect to a �xed axis

The castors which support a real wheelchair contribute nothing to our planar model

This system is referred to in ���� and elsewhere as the Hilare robot


We assume the wheels to roll on the plane without slipping
 Since the velocity
of the point �x� y	 must remain parallel to the wheels�

$x sin � � $y cos � � ��

Since neither wheel slips as it rotates�

$x cos � � $y sin � �
�

�
� $�� � $��	

and

�� $�� � $��	 � w $��

We derive a connection from these constraints as we derived the connection govern�
ing the motion of the car in Section �
�
�
 The local connection form A � TM �



��

se��	 � R	 is given by

A �

�
���

� �d�
�� d��	
�

�
w �d�

�� d��	

�
	 �

where M � T� is covered globally by coordinate pairs ���� ��	
 Its range is

h� � span

��
�A� �

�
���

�
�
�
w

�
	 � A� �

�
���

�
�
� �

w

�
	
��
� �

The range of the local curvature form

DA �

�
� �
��

w d�
� 
 d��

�

�
	

is

h� � span

��
�DA�� �

�
� �
��

w
�

�
	
��
� �

Since h��h� � R
	� the wheelchair is �ber controllable by Proposition �
�
 Since

A�� A�� and DA�� are all constant� ��
�	 implies that no element of h��h	�h
� � � �
can have a nonzero third component
 The wheelchair cannot� therefore� be totally
controllable
 Suppose that the wheelchair were to describe a circle in the plane such
that the point �x� y	 travelled a distance ���
 We de�ne � to assume positive values
for clockwise rotation
 Such a maneuver would rotate the wheels through angles

'�� �
��

�

�
��

w

�

�
� '�� �

��

�

�
��

w

�

�
�

It is tempting to think that one could reorient the wheels arbitrarily using a sequence
of similar motions
 At the completion of n such maneuvers� however� it will always
be the case that

'�� �'�� �
��

�
nw�

We shall see in Chapter � that noncontractible loops in shape space can make only
limited contributions to locomotion on an Abelian bundle




��

��� Accessibility for Rayleigh systems

����� Accessibility modulo momentum

The introduction of viscous dissipation to ��
�	 yields the control�a�ne system with
drift �

���
$r
�r
$g
$p

�
��	 �

�
���
�
e�
�
�

�
��	 u� � � � ��

�
���

�
em
�
�

�
��	 um

�

�
���

$r
�

g��Amech $r� I
��
loc p	

Vloc�AStokes�Amech	 $r�VlocI
��
loc p� ad�g�� �g p

�
��	

� h�u
� � � � �� hmu

m � f�r� $r� g� p	� ��
�	

The expression ei refers to the ith vector in the standard basis forRm
 The inputs ui

to the system are accelerations in the shape variables� we assume su�cient control
of any base dynamics through internal forces to justify this model


In the absence of dissipation� this system reduces to the driftless system�
$r

g�� $g



�

�
e� v

�

�Ameche�v
�



� � � ��

�
em vm

�Amechemv
m



��
�	

as described in Section �
�
 Here we view the controls vi as entering at the level
of velocities in the shape variables� integrating the controls ui once with respect to
time


Proposition ��� If the system without dissipation ��
�	 on M � G is totally con�
trollable� the system with dissipation ��
�	 on TM � G � g� is locally TM � G

accessible� or accessible modulo momentum�

Proof� This result follows from direct examination of the algebra generated by the
vectors f� h�� � � � � hm in ��
�	 and the projections of its elements from T �TM�G�g�	
to T �TM �G	
 Note� �rst of all� that the hi have nonzero components only in the
�ri directions
 The m vectors �i � �f� hi� take the form

�i � �f� hi� �

�
���

ei
�

�gAmech
�
�ri

�

�
��	 �

All additional elements of the subalgebra generated by the �i� furthermore� take the



��

form �
���
�
�
�
��

�
��	 �

where the group velocities � are precisely those corresponding to the Lie algebra
elements in h��h	� � � � 
 Let C be the accessibility algebra for the system ��
�	
 We
de�ne Cmech to be the subalgebra of C spanned by f � h�� � � � � hm� and the algebra
generated by ��� � � � � �m� we de�ne Cmech�r� $r� g� p	 by

Cmech�r� $r� g� p	 � spanfX�r� $r� g� p	jX � Cmechg�

If � �M �G� g� � M �G� clearly T�Cmech�r� $r� g	 � T�C�r� $r� g	 for all �r� $r� g	 �
TM � G
 If ��
�	 is totally controllable� g � h� � h	 � � � � and

dim T�Cmech�r� $r� g	 � dimT�r� �r�g��TM � G	�

Then

dimT�C�r� $r� g	 � dimT�r� �r�g��TM � G	

and ��
�	 is locally TM � G accessible
 �

����� A vehicle with two internal rotors

Consider a rigid satellite in space with internal rotors about two of its principal
axes
 The orientations of the rotors with respect to the satellite body may be taken
together as a pair ���� ��	 � T�� the full con�guration of the satellite is speci�ed as
a point in a trivial SO��	 bundle over the torus
 We think of this as a locomotion
system in which the angular velocities of the rotors relative to the satellite are spec�
i�ed to e
ect desired satellite reorientations
 The angular momentum of the system
is invariant under reorientation� conservation of momentum provides a mechanical
connection on the con�guration bundle
 This system is considered in this context
in ����


Identifying so��	 with R	 in the usual way� we may represent the span of the
range of the local connection form Amech � T �T�	� R	 as

h� � spanfe�� e�g�

where fe�� e�� e	g is the standard basis for R	
 The range of A is independent of ��

and �� because the satellite�s inertia is unchanged by the motion of the rotors
 The
Lie bracket on so��	 is equivalent to the cross product on R	� and the range of the
local curvature form is given by

h� � spanfe� � e�g � spanfe	g�



��

similarly

h	 � spanfe� � e	� e� � e	g

� spanfe�� e�g�

Since g � h� � h	� the system is totally controllable according to Proposition �
�

A device similar to this satellite might be implemented as an underwater vehicle

with torque control of the rotors
 It follows from Proposition �
� that any model
for its behavior which assumes linear drag will be accessible modulo momentum

Standard models for underwater vehicles incorporate drag of this sort
 Note also
that the attitude of an underwater vehicle has been adjusted about one principal
axis experimentally using thrusters to provide torque about the other two ����


����� The heavy inchworm revisited

In order to emphasize that the conditions of Proposition �
� are su�cient but not
necessary for accessibility modulo momentum� we return to the inchworm robot from
Section �
�
�
 Since Amech � �� this system clearly fails to satisfy the conditions
of Propositions �
� and �
�
 Straightforward application of Theorem �
�� however�
reveals that the system is actually locally accessible� and thus accessible modulo
momentum� near any con�guration for which ��� lr � sh	 �� �




��

Chapter �

Gaits for Kinematic Systems

	�� De�nitions

Propulsors which deform themselves in order to move often do so cyclically
 Indeed�
it is dubious motile progress which requires a permanent change in body shape
 We
de�ne a gait to be a time�parametrized cyclic shape change� or a map 
 � I �M �
t �� r�t	 from some interval I � R into a shape manifold M 
 Reparametrization
with respect to time constitutes an equivalence relation on a set of gaits� a gait class
�
� contains all gaits which determine the same loop in M 


In Chapter � we observed the parametrization invariance of the geometric phase
associated with a closed loop in the base space of a principal bundle
 We use the
terms �gait� and �gait class� interchangeably in discussing kinematic systems


Two gaits 
�� 
� � I �M are said to be homotopic if there exists a smooth map
H � I � ��� �� � M such that H�t� �	 � 
��t	 and H�t� �	 � 
��t	 for all t � I 

Homotopy determines an equivalence relation ����� the set of equivalence classes of
loops passing through r �M constitutes the fundamental group of M with respect
to r under composition
 A gait 
 is said to be null homotopic if it is homotopic to
a null gait g� � I �M � t �� r�� where r� �M is �xed


	�� Systems on Abelian bundles

Recall from Section �
�
� that if the dimension of the in�nitesimal holonomy group
Hinf�q	 corresponding to a connection on a principal bundle is constant throughout
the total space Q� then the holonomy groups Hinf�q	� Hloc�q	� and Hrest�q	 are equal
throughout Q
 Comparing ��
��	 to ��
�	� we see that

hinf � h� � h	 � � � �

if g is Abelian� and we recognize the following


Corollary ��� If the in�nitesimal holonomy group Hinf�q	 corresponding to a con�
nection on a principal bundle has constant dimension throughout the total space
Q � M � G� and the Lie algebra g is Abelian� then the associated locomotion sys�
tem ��
�	 is totally controllable near q � �r� g	 if and only if hrest�r� e	 � g�



��

constant lr constant lh

Figure ��� Two types of gaits for the inchworm�

In other words� we need only consider null homotopic gaits in steering a system on
an Abelian bundle


	�� Inchworm gaits

We now return to the inchworm robot from Section �
�
�
 If we assumem to be zero�
self�propulsion of the robot in the x direction is governed by the Stokes connection

&Stokes � dx� AStokes

� dx�
��� lr � sh	

��� sh	
�dlh � dsh	�

Three qualitatively distinct families of gaits for this robot correspond to holding
�xed each of the shape parameters lr� lh� and sh
 Figure �
� depicts gaits corre�
sponding to constant lr and constant lh


Figure �
� depicts a �caterpillar� gait corresponding to constant sh
 The robot
lifts and buckles its trailing end� replacing its hind tip with some forward displace�
ment
 The arched segment then passes the length of the robot�s body to its forward
tip� and the robot re�extends in its new location
 At no point does any portion
of the robot drag along or exert a tangential force upon the ground
 Because our
parametrization of the robot�s shape suggests constant contact with the ground at
both ends� we regard the lifted buckling and unbuckling motions as if segments of
zero length were being dragged
 We demonstrate the utility of the area rule from
Section �
�
� in computing the associated geometric phase


If x��	 � � and the robot assumes the sequence of con�gurations represented in



��

lr

lh

sh

�
�

�
�

�
	

�
	

a

a

b

b

c

c

d

d

Figure ��� The caterpillar gait�

Figure �
� in time T � the net linear displacement of its rearmost point is

x�T 	 � exp



�

Z
	

AStokes

�
�

Since Z
	
AStokes �

Z
	

��� lr � sh	

��� sh	
�dlh � dsh	

�

Z �
�

�
	
dlh

� �
�

�

and the exponential map on �R��	 is the identity�

x�T 	 �
�

�
�

Since we measure the robot�s progress in terms of the displacement of its hind tip�
the integrals corresponding to three of this maneuver�s four stages evaluate to zero
identically


Since �R��	 is Abelian� the local curvature form is equal to the exterior deriva�



��

tive

dAStokes � d



��� lr � sh	

��� sh	

�

 �dlh � dsh	

�
�

�� sh



�dlr 
 dlh � dlr 
 dsh �

lr
�� sh

dlh 
 dsh

�
�

and the geometric phase corresponding to the path shown in Figure �
� is indeed

x�T 	 � exp


Z
S

�

�� sh
dlr 
 dlh

�

� exp

�Z �
	

�
�

Z �
	

�

�

�
dlrdlh

�

� exp



�

�

�

�
�

�
�

	�� Local expansion of holonomy

If 
 � ��� T ��M � the corresponding geometric phase may be approximated by

g�T 	 � g��	 exp ��
	�

where

��
	 � �
�

�
DAij

Z
	
dridrj �

�

�
�DAij�k � �DAij � Ak�	

Z
	
dridrjdrk� ��
�	

This formula is developed from ��
��	 in ����
 Here

Z
	
dridrj �

Z T

�


Z tj

�
$ri�ti	dti

�
$rj�tj	dtj ��
�	

and Z
	
dridrjdrk �

Z T

�


Z tk

�


Z tj

�
$ri�ti	dti

�
$rj�tj	dtj

�
$rk�tk	dtk� ��
�	

A system�s full complement of gaits is often well represented� at least qualita�
tively� by those gaits which correspond to Lissajous �gures in shape space
 Such
a �gure may be characterized by its number of lobes
 This number corresponds
loosely to the degree of the Lie bracket of input vector �elds capturing the gait�s
in�nitesmal character




�	

If we con�ne ourselves to shape changes of the form

ri�t	 � ri��	 �Ri sinnit

rj�t	 � rj��	 �Rj sinnj t

rk�t	 � rk��	 �Rk sinnkt

and set T � ��� we compute the integrals in ��
�	 and ��
�	 to beZ
	

dridrj � �

and

Z
	
dridrjdrk �

�������������
������������

�RiRjRk �ni
� �ni �� nj � ni � nj � nk or nk � ni � nj	

RiRjRk �nj
� �ni �� nj � nj � nk � ni	

�RiRjRk �ni
� �ni � nj � nk � �ni	 �

� otherwise

If� instead�

ri�t	 � ri��	 � Ri cosnit �Ri

rj�t	 � rj��	 � Rj sinnjt �

rk�t	 � rk��	 � Rk sinnkt

we obtain Z
	
dridrj �

�
� ni �� nj

RiRjni� ni � nj

and Z
	
dridrjdrk � ��

We compute the remaining possibilities for the case ni � nj � nk to be

SS � � CS � RiRj�

SC � �RiRj� CC � �



�


and

SSS � � CSS � �

SSC � � CSC � �RiRjRk�

SCS � � CCS � �RiRjRk�

SCC � �RiRjRk� CCC � � �

Here the acronyms are constructed such that SS� SSS� CS� and CSS refer to the
cases already addressed


	�� Two
input systems

If we restrict ourselves to systems with only two shape variables� the e
ects of si�
nusoidal shape changes on ��
	 may be elucidated by a gait table
 The six columns
on the right of Table �
� present data generic to two�input systems� the leftmost
column speci�es the terms appearing in ��
	 for the wheelchair introduced in Sec�
tion �
�
�
 We note that the top two rows in the table do not really correspond to
terms appearing in ��
	� but their inclusion completes the utility of the table for
approximating the e
ects of noncyclic deformations


We illustrate the use of Table �
� by estimating the holonomy associated with
two wheelchair gaits
 Suppose the system satis�es �x� y� �	 � ��� �� �	 initially� and
assume the wheels of radius � � ��� to be separated by a distance w � �
 If the
wheel angles vary as �

���t	
���t	



�

�
�
�
�t



� constant terms�

Table �
� predicts a net motion in the plane�
�x���	y���	
����	

�
	 � exp

�
�� �

�

�
� � �

�
�����
���

�
	
�
A

�

�
� �

� sin
�
�

�
���� cos �� 	

���

�
	

�

�
� �����������
�����

�
	 �

If we simulate the evolution of the system numerically� we obtain these same results
with the precision shown
 If� instead��

���t	
���t	



�

�
�
�� sin �t



����cos �t� �	



�



��

wheelchair terms R�t � R� sin nt R� cos nt R� cos nt

example in ���� � R�t R� cos nt R� sin nt R� sin �nt

�
�

���
�

���w

�
�

�A� �R�� � � � �

�
�
���
�

��w

�
�

�A� � �R�� � � �

�
�

�
�����w

�

�
�

�

�
�DA�� � � �R�R�n� R�R�n� �

�
�

�
����w

�

�
�

�

�
�DA�� � � R�R�n� �R�R�n� �

�
�
����w�

�
�

�
� �

�
�DA�����

�DA���A���
� � � �R�R�R�n� �R�R�R�n�

�
�
�����w�

�
�

�
� �

� �DA�����
�DA���A���

� � �R�R�R�n� � �

�
�
�����w�

�
�

�
� �

�
�DA�����

�DA���A���
� � � �R�R�R�n� �

�
�
����w�

�
�

�
� �

� �DA�����
�DA���A���

� � �R�R�R�n� � �

Table ��� Gait table for two�input systems� T � ���
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Table �
� predicts a net motion�
�x���	y���	
����	

�
	 � exp

�
�� �

��
�

�

���
� � � � �

�
� �
����
�

�
	�

�

���
�
�

��
� � � � �

�
� �
���
�

�
	

�
�

��
�

�

���
�

�

���
� � � � �

�
�������

�

�
	 � � �

�

���
�
�

��
�

�

���
� � � � �

�
������

�

�
	
�
A

� exp

�
�������������������

�

�
	

�

�
��������������
�����

�
	 �

while simulation returns �
�x���	y���	
����	

�
	 �

�
��������������
�����

�
	 �



��

Chapter �

Principal Connections and Swimming

��� Ideal �ow and the hydromechanical connection


���� Potential �ow

Though we deviate from certain sign conventions therein� we are guided by the
development of potential �ow theory in ����
 We realize the equations for potential
�ow as a simpli�cation of Euler�s equations for the motion of an inviscid �uid
 We
will derive Euler�s equations in a moving frame as reduced Euler�Lagrange equations
in Chapter �


Suppose a �uid with density ��x� t	 to occupy a region F
 We denote the spatial
velocity �eld describing the �uid�s instantaneous motion by u�x� t	
 Continuity of
the �uid requires that

	�

	t
�r � �� u	 � � ��
�	

at every point x � F
 Equation ��
�	 is often derived from the balance of mass �ux
through an arbitrary control volume
 We consider only �uids of constant density
 It
is worth noting that the term incompressible is applied to any �uid which satis�es

	�

	t
� u � r� � ��

This is true identically if � is constant
 The operator

	

	t
� u � r

is called the Lagrangian derivative or material derivative in the classical �uids lit�
erature
 Intuitively� it returns the rate at which a particular �uid element �rather
than a spatial point	 experiences a change in some property
 The classical shift from
a Lagrangian perspective to an Eulerian perspective corresponds� in the setting of
Chapter �� to reduction with respect to a particle�relabelling symmetry




��

For an incompressible �uid� continuity implies that

	�

	t
�r � �� u	 �

	�

	t
� �r � u� u � r�

� �r � u

� ��

��
�	

Thus u is divergence free� or solenoidal
 In a region occupied by an inviscid� incom�
pressible �uid� the net force on an arbitrary control volume must equal the rate of
change of the linear momentum contained therein
 In the absence of external forces�
this requires that

	u

	t
� u � ru � �

�

�
rp� ��
�	

here p�x� t	 is the scalar pressure
 We refer to ��
�	 and ��
�	 together as Euler	s
equations for inviscid �ow


A velocity �eld is said to be irrotational if

r� u � ��

Using the vector identity

u � ru �
�

�
r�u � u	� u� �r� u	�

we may rewrite ��
�	 as

	u

	t
� � u � ru�

�

�
rp

� �
�

�
r�u � u	 � u� �r� u	�

�

�
rp

� �
�

�
r�u � u	�

�

�
rp

� �r



�

�
u � u�

�

�
p

�
��
�	

in the case of irrotational �ow

Let A be a �xed point� and C an arbitrary point� in a simply connected region

F containing an irrotational �uid
 Join A to C along two di
erent paths in F� as
shown in Figure �
�
 At any point in time� by Stokes� Theorem�Z

ABC
u ds�

Z
CDA

u ds �

Z
S
�r� u	n dS�

where S is any surface in F with ABCDA as its rim and n as its unit normal
 If



��

A

B
C

D

E

�

Figure ��� Derivation of the potential function�

the motion of the �uid is irrotational� thenZ
ABC

u ds �

Z
ADC

u ds � �C�t	�

where �C�t	 is a function of the position of C but not of the choice of path from A
to C
 Now consider a point E whose position relative to C is given by the vector
�
 In the limit as E approaches C�

�r�C�t	 �

Z
CE

u ds � �u�

The velocity �eld may therefore be written at any point in time as

u � r��x� t	� ��
�	

where ��x� t	 is called the velocity potential
 Conversely� any velocity �eld which is
the gradient of a potential function must be irrotational� since

r� �rf	 � �

for any function f � F� R

We combine ��
�	 and ��
�	 to obtain

r



	�

	t
�

�

�
u � u�

�

�
p

�
� ��

or

	�

	t
�

�

�
u � u�

�

�
p � C�t	� ��
�	

This is called the pressure equation
 Bernoulli	s theorem ���� requires this relation
to hold along each streamline in an inviscid �ow� we have shown that it holds



��

throughout an irrotational �ow

Equations ��
�	 and ��
�	 combine to recover Laplace	s equation

r�� � �� ��
�	

Thus� plausable instantaneous irrotational motions of an inviscid �uid correspond to
harmonic potential functions
 If the �uid evolves in the presence of solid boundaries�
it is furthermore the case that the velocity normal to any boundary must coincide
with the normal velocity of the boundary itself
 In this way we rule out cavitation
in potential �ow� although the theory may be adjusted to accommodate such phe�
nomena
 We allow an inviscid �uid to slip along a solid boundary� in Section �
�
�
we will impose an adherence condition upon the �ow of a viscous �uid


So far� we have considered irrotational �ow in simply connected domains
 Simple
connectedness guarantees the uniqueness of the velocity potential �� when � is
unique the corresponding potential �ow is said to be acyclic
 Though a �ow �eld
u must itself be single�valued in a multiply connected domain� the corresponding
potential function satisfying ��
�	 need be unique only up to an additive scalar
� satisfying r� � �
 Multiple connectedness of a domain F corresponds to the
existence of closed paths within F which are not null homotopic
 The scalar �
corresponding to a particular cyclic �ow in a multiply connected domain may be
identi�ed with the circulation & along any of a family of mutually homotopic closed
paths in F which are not null homotopic
 The circulation along an oriented closed
path � is de�ned to be

& �

Z
�
u ds�

In considering the self�propulsion of deformable bodies in planar irrotational
�ow� we often encounter periphractic regions� so called because they are bounded
internally by closed surfaces
 We restrict our discussion to acyclic �ow in such
regions by specifying the circulation to be zero around any contour which is not null
homotopic
 In Chapter � we will discuss the forces experienced by a hydrofoil about
which the circulation changes with time


The total kinetic energy of the �uid with constant density � and velocity u in a
domain F is given by

KE �
�

�
�

Z
F
u � u dx

when this integral converges
 If the domain F is bounded by a surface S and the
�uid moves irrotationally and acyclicly� Stokes� theorem implies that

KE �
�

�
�

Z
F
r� � r� dx

� �
�

�
�

Z
S
�
	�

	n
dS�

��
�	



��

where 	��	n is the velocity of the �uid normal to S on S
 Several consequences
of this result are outlined in ����
 We note� in particular� that the acyclic irro�
tational motion of a �uid which is bounded internally by an immersed solid and
quiescent at in�nity is determined uniquely by the motion of the solid
 The motion
of the �uid will cease instantly if the solid ceases to move� and is unchanged by
reparametrizations of time



���� Fluid momentum and Kelvin impluse

Suppose that a �nite body with surface S moves through a �uid such that u � r�
is acyclic
 We de�ne the Kelvin impulse of the �uid to be the vector quantity

I �

Z
S
�n dS�

where n is the outward unit vector normal to S on S
 This quantity is often de�
scribed as the impulsive force which would set the surface from rest into its present
motion ���� ���
 We will see that it behaves as the e
ective momentum of the
surface


It is tempting to assume that the total �uid momentum

�

Z
F
u dx

would serve as the e
ective momentum of a translating surface
 This momentum
is ill�de�ned� however� when the �uid �lls a region of in�nite extent
 Consider the
�uid occupying a region V � F bounded by a surface + with outward unit normal
� 
 In three dimensions� we may invoke the vector identityZ

V
u dx �

�

�

Z
V
x� � dx�

�

�

Z
�
�u�� � x	� ��u � x		 dS�

The surface integral is bounded generically as + becomes in�nitely large� but con�
tinues in this limit to depend upon the shape of +




��

Using ��
�	 and an identity from ����� however� we see that

dI

dt
�

d

dt

Z
S
�n dS

�

Z
S

	�

	t
n dS �

Z
S
�u � n	r� dS

�

Z
S



C�t	�

�

�
u � u�

�

�
p

�
n dS �

Z
S
�u � n	 u dS

�

Z
S
C�t	n dS �

�

�

Z
S
p n dS �

Z
S



�u � n	 u� �

�

�
u � u	n

�
dS

� ��
�

�

Z
S
p n dS �

Z
F
u� � dx

� �
�

�

Z
S
p n dS

for irrotational �ow
 The integral on the right side of this equality represents the
total force applied to the surface S by the �uid


The Kelvin impulse couple is given by

IC �

Z
S
� x� n dS�

and behaves as the apparent angular momentum of the surface S
 The Kelvin
impulse and impulse couple are conserved as a closed surface moves through an
irrotational �uid in the absence of external forces ����
 We note that certain authors
de�ne I and IC to di
er in sign from the integrals above
 We will use the symbol I
below to denote the impulse and impulse couple together



���� The hydromechanical connection

Suppose that the points in an n�dimensional manifoldM correspond to deformations
of a closed �exible surface� and that this surface is immersed in an inviscid �uid
which is initially at rest
 As the surface deforms� tracing a path in M � it may
displace and reorient itself with respect to its initial situation in the �uid
 By
a�xing a frame of reference to each deformation represented in M � we identify the
motion of the surface through its environment with a trajectory in SE��	


If we suppose the interior of the swimming surface to be evacuated� the kinetic
energy shared by the swimmer and its environment is entirely contained in the �uid

We make this assumption for simplicity�s sake� it is of little conceptual consequence
to a
ord a swimming body some mass of its own
 Since there exists no mechanism
for the creation of vorticity in an inviscid �uid� the �ow around the surface will
remain irrotational and acyclic
 The spatial velocity �eld u will therefore constitute
the gradient of a time�varying potential function �
 The motion of the �uid must
be determined uniquely by the motion of the surface
 If r�t	 �M denotes the shape
of the surface at any point in time and g�t	 � SE��	 its position and orientation� we



�	

may write

� � � �r� $r� g� $g	�

The potential function � must satisfy Laplace�s equation together with two
boundary conditions
 The �rst� imposed by the impenetrability of the surface�
requires agreement of the velocity of the �uid normal to the surface with that of
the surface itself where they meet
 The second� a consequence of the �nite energy
introduced to the �uid by the swimming surface� requires that the �uid remain at
rest in�nitely far away
 The linearity of Laplace�s equation allows us to superpose
solutions to satisfy Neumann boundary conditions
 The distribution of velocity on a
swimming surface constitutes the sum of its deformation velocity and the velocities
of its displacement
 It follows that

� � �d�r� $r	 � �i�r	
�
g�� $g

�i
�

where g�� $g is the velocity of displacement in a body��xed frame
 The function �d
is called the deformation potential and the functions �i the Kirchho� potentials


The total kinetic energy

KE �
�

�
�

Z
F
r� �r� $r� g�� $g	 � r� �r� $r� g�� $g	 dx

determines a function L � TQ � R� where Q � M � SE��	� which is invariant
with respect to left translation in SE��	
 The Kelvin impulse and impulse couple
comprise the components of the corresponding momentum map� which takes values
in se��	� � R�
 Their conservation is thus a consequence of Noether�s theorem
 The
locked inertia tensor represents the virtual inertia of the swimming surface
 Were
the surface replaced by a body with nonzero inertia of its own� this inertia would
combine with its virtual counterpart to constitute the body�s apparent inertia


The connection

&mech � I��I

is a true mechanical connection since it is derived from the total kinetic energy

In considering the swimming of a body with nonzero mass� however� one must take
care not to confuse the mechanical connection obtained from the total kinetic energy
with that obtained from the kinetic energy of the body alone
 It is the latter which
arose in the control analysis of the vehicle in Section �
�
�
 When there is danger
of confusion� we refer to the former as the hydromechanical connection




�


��� Creeping �ow and the Stokes connection


���� Stokes �ow

The evolution of an incompressible� viscous �uid is governed by the Navier�Stokes
equations

	u

	t
� u � ru�

�

�
rp� �r�u � �� r � u � �� ��
�	

which are derived in ���� and elsewhere
 The absolute viscosity of the �uid is given
by � � ��� where � denotes its kinematic viscosity and � its density
 The vector
Laplacian is given by

r�u � r�r � u	� r� �r� u	�

Energy is dissipated from the �ow of a viscous �uid in a domain F at a rate

R �
�

�
�

Z
F
# dx� ��
��	

where the quantity

# � �r� u	 � �r� u	 � �r �



�

�
rjuj� � u� r� u

�

is integrated over the entire �uid
 We restrict a viscous �uid in contact with a solid
boundary to move with the boundary tangentially as well as normally
 In general�
Navier slip boundary conditions ���� permit some tangential motion between a vis�
cous �uid and a solid boundary
 We adopt the most common� �no slip� convention


If we allow � � � in ��
�	� we recover Euler�s equations
 If� instead� we multi�
ply ��
�	 by � and neglect inertial terms� we obtain Stokes� equations

rp � �r�u� r � u � � ��
��	

for creeping �ow
 This simpli�cation is equivalent to nondimensionalizing ��
�	 and
taking the formal limit as Re � �� where the Reynolds number Re � UL�� is
de�ned in terms of a characteristic velocity U and length L ����
 The left�hand
equality in ��
��	 represents the balance of pressure forces and viscous forces on
every �uid element
 Note that ��
��	 imply that

r�p � ��

the distribution of pressure in an inertialess �ow is harmonic
 Like potential �ow�
Stokes �ow is characterized by the instantaneous di
usion of momentum ����
 The
applicability of Stokesian analysis to the swimming of aquatic microorganisms is
demonstrated in ����


We often consider problems in which creeping �ows exhibit one�dimensional
symmetries
 A problem in which no more than two spatial variables are needed to



��

describe the velocity �eld can be solved using an appropriate stream function ����

For planar �ow� we introduce the Lagrange stream function ��t	 such that �in polar
coordinates	

ur � �
�

r

	�

	�
� u� �

	�

	r
�

This velocity �eld will correspond to a solution of Stokes� equations provided

r
� � �� ��
��	

For axisymmetric �ow� we introduce the Stokes stream function )�t	 such that �in
cylindrical coordinates� where the z axis is the axis of symmetry	

ur �
�

r

	)

	z
� uz � �

�

r

	)

	r
�

This �ow �eld will satisfy Stokes� equations provided

E
) � ��

where

E
 �



	�

	r�
�

�

r

	

	r
�

	�

	z�

��

�

We note that not all solutions to Stokes� equations may be obtained from stream
functions ����
 We note� also� that these equations represent only the simplest model
for real creeping �ow
 A good discussion of Oseen�s improvement to this model� itself
fettered by some practical shortcomings� appears in ����



���� The Stokes connection

Just as the �ow around a surface in an irrotational �uid is determined uniquely by
the deformation and displacement of the surface� so too is the Stokes �ow around
such a surface recaptured by ��
��	
 If r �M again denotes the shape of the surface
and g � SE��	 its position and orientation� the dissipation function de�ned by ��
��	
may be written as

R�r� $r� g� $g	 �
�

�
�

Z
F
#�r� $r� g�� $g	 dx�

The �ber�preserving map F � F��R	 � TQ � T �Q� where Q � M � SE��	� is a
force �eld in the sense of Section �
�
�
 In the Stokesian limit� the absence of inertial
e
ects requires the net �berwise drag on a deforming surface to remain zero at every
instant


In two dimensions� we encounter some di�culty related to Stokes	 paradox� the
nonexistence of a planar Stokes �ow about a translating body which tends to zero at
in�nity
 In attempting to compute the drag on such a body� we consider the drag per



��

unit length on a long cylinder translating perpendicular to its axis through a three�
dimensional medium
 While this result is not well de�ned as the cylinder�s length
becomes in�nite� we �nd it to remain linear through successive approximations in
the �uid velocity persistant in�nitely far away ���� ���
 When studying the Stokesian
swimming of a surface in the plane� we therefore assume F � TQ� T �Q to take the
form

Fi�q� $q	 � Ci j�r	U
j
��

where U��r� $r� g�� $g	 is the �uid velocity at in�nity resulting from the body�s motion


��� Squirming circles

We illustrate the hydromechanical and Stokes connections with a pair of related
examples
 Consider the in�nitely long� approximately circular cylinder whose time�
varying cross�section is given in polar coordinates by

r�t� �	 � � � �
�
k��t	 cos �� � k��t	 cos ��

�
�

where � is a small parameter
 We imagine this cylinder to ��oat� freely in an
in�nite �uid medium with constant density � � �
 We may regard the �ow in
the periphractic region around such a cylinder as two�dimensional� and study its
evolution in any plane perpendicular to the cylinder�s longitudinal axis
 We assume
the interior of the cylinder to be massless� and consider the self�propulsion of the
cylinder due to appropriate time�variations in k� and k�


It is clear from the bilateral symmetry of the problem that any such swimming
motion will be rectilinear and parallel �or antiparallel	 to the ray � � �
 We de�ne
the coordinate x to measure the displacement in this direction of the �r� �	�origin�
as shown in Figure �
�
 We regard the con�guration �k�� k�� x	 of the system at any
moment as a point in the trivial principal bundle Q � M � �R��	� where M is the
submanifold of R� corresponding to physically reasonable pairs �k�� k�	


Suppose the cylinder to move with velocity $x through an incompressible� inviscid
�uid
 This velocity is determined by the mechanical connection on the bundle Q
derived from the total kinetic energy of the �uid
 We approximate this connection
using regular perturbation theory� seeking a solution of the form

� � �� � ��� � ���� � � � �

to the Neumann problem

r�� � ��

	�

	n

����
r�R

� � $x cos ��� $x sin �	 � n �
�
� $k� cos �� � � $k� cos ��� �

�
� n�



��

�
r

k� cos ��

k� cos ��

x

Figure ��� A squirming circle�

We obtain

� � �� � ��� � ���� � O
�
�	
�
�

where

�� � � $xr�� cos ��

�� � k� $xr�� cos � �
�

�

�
�k� $x� $k�

�
r�� cos �� �

�

�

�
�k� $x� $k�

�
r�	 cos ��

� k� $xr�
 cos ���

�� � c� log r � c�r
�� cos � � � � � �

c

�
r�
 cos ���

c� �
k� $k�

�
�
k� $k�

�
�

c� � k� $k� �
�k�k� $x

�
�

�k�k� $x

�
�

c� � �k�k� $x�

c	 � �
�k�k� $x

�
�



��

c
 �
�k� $k�

�
� �k�k� $x�

c� � �$k�k� � �k� $k� �
��k�k� $x

�
�

��k�k� $x

�
�

c� �
�k� $k�

�
� ��k�k� $x�

c
 �
��k�k� $x

�
�

The total kinetic energy is therefore given by

L �
�

�

Z ��

�

Z �

r
jr�j� r dr d�

�
�

�
� $x� � ��k� $x�

� ���

�
$k� $k�

�
�

$k� $k�

�
� $x

�
k� $k� � k� $k�

�
�

$x�

�

�
�k�k� � �k�k�

��
� O��		�

and is unchanged by displacement of the cylinder along its axis of propulsion
 The
momentum map J � TQ� R and the locked inertia tensor I� R� R are given by

J � � $x� ���k� $x� ���



k� $k� � k� $k� �

$x

�

�
�k�k� � �k�k�

��
� O

�
�	
�

and

I
�
k�� k�

�
� � �� ��



�� ��k� �

��

�

�
�k�k� � �k�k�

��
�O

�
�	
�
�

and the connection &mech � TQ� R by

&mech � I��J � dx� ��
�
k� dk� � k� dk�

�
�O

�
�	
�
�

Self�propulsion of the cylinder is governed by the requirement that its velocity on
con�guration space remain horizontal with respect to this connection
 Thus

$x � ��
�
k� $k� � k� $k�

�
�O

�
�	
�
�



��

We compute the x component of the Kelvin impulse to beZ
S

�nx dS � �� $x� ���k� $x� ���
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This quantity di
ers from the momentum J in sign only

We now replace the assumption of potential �ow with the assumption of Stokes

�ow
 The velocity �eld u and pressure pmust satisfy ��
��	 together with the no�slip
condition on the cylinder�s surface
 We therefore seek u � r� �� where

r
� � ��

ujr�R � �ur� u�	 �
�
� $k� cos �� � � $k� cos ��� �
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The solution to this Neumann problem is given to O
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by the biharmonic function
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As r��� the velocity �eld approaches
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These are the polar components of a uniform �ow with speed ��U � O
�
�	
�
in the

positive x �� � �	 direction
 If the cylinder translates with velocity $x� then K �
TQ� R and V � R� R are given by

K
�
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The Stokes connection &Stokes � TQ� R is then given by
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Figure ��� Geometric phase for a particular gait�

Along a trajectory in con�guration space which remains horizontal with respect to
this connection�

$x � ���


�

�
k� $k� �

�

�
k� $k�

�
� O

�
�	
�
�

Figure �
� illustrates the di
erence between &mech and &Stokes for the gait�
k�� k�

�
� ��� cos t� sin t	

with � � ���

We conclude this discussion with a comment on �conveyor�belt� locomotion

at low Reynolds number
 The example above illustrates the self�propulsion of a
surface undergoing radial deformation only
 Tangential surface velocities play no
role in self�propulsion through inviscid media� but the stricter boundary conditions
imposed upon creeping �ow allow a cylinder to propel itself while remaining circular
in cross section
 A tangential surface velocity

v�jr�� � �k �t	 sin ��
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for example� produces the connection

&Stokes � dx�
�

�
dk�

A cylinder which can e
ect such a surface velocity will move along the ray � � �
with velocity

$x �t	 �
�

�
k �t	 �

Tangential deformation will always prove O ����	 more e�cient than radial deforma�
tion at low Reynolds number
 There is evidence that a swimming amoeba converts
�uid endoplasm to jellylike ectoplasm at its forward end� reabsorbing ectoplasm at
its rear ���
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Chapter �

Rigid Bodies in Fluids


�� Modelling assumptions

We develop our model for carangiform locomotion in this chapter and the next
 We
begin by deriving the reduced Euler�Lagrange equations ��
�	 for the interaction of
the rigid body of a carangiform swimmer with an in�nite surrounding �uid
 This
derivation parallels the realization of unreduced Euler�Lagrange equations in ����
for a �uid��lled spacecraft
 We assume the densities of the body and �uid to be
constant and equal� both to simplify our development and to obviate the considera�
tion of buoyancy forces
 It is straightforward to relax this assumption
 A biological
carangid can regulate its buoyancy� and will remain approximately neutrally buoyant
when swimming in a plane perpendicular to the direction of gravity
 We also assume
the �uid to be inviscid
 The role of water�s viscosity in real carangiform swimming
is twofold
 Clearly� it accounts for the dissipation of energy introduced to the �uid
by an undulating swimmer
 More subtly� however� it enforces the Kutta condition
which prompts vortex shedding from the trailing edge of the swimmer�s caudal �n

We take these e
ects to be independent and disregard the former
 The predomi�
nant localization of vortex shedding to the caudal �n is a signature of carangiform
locomotion
 We note that the �ow around a streamlined aquatic vehicle is often
assumed to be inviscid ���� ���
 This assumption is consistent� in the large� with
boundary layer theory ����


In the �uid�s absence� we specify the position and orientation of a rigid body
relative to a �xed frame of reference with an element Y of SE��	
 We specify the
con�guration of a surrounding �uid relative to an initial state with an element of
the group of volume�preserving di
eomorphisms Di
vol �F	 of the region F occupied
by the �uid in the body frame
 Each con�guration of the body��uid system� then�
corresponds to an element of the Cartesian product SE��	�Di
vol �F	


In Section �
�� we demonstrate that the kinetic energy of the body and �uid
together exhibits the symmetry called for by Proposition �
�
 Speci�cally� we show
that we can write the total kinetic energy in terms of the body velocity � � Y �� $Y
and the spatial �uid velocity �eld u � $� � ��� in the body frame




�



�� The reduced Lagrangian

We use the symbol X to label material particles in the reference con�guration of
the body��uid system
 The total kinetic energy is given by

L
�
Y� $Y � �� $�

�
�

�

�

Z
body � �uid

� �� �X		

����
���� ddt �Y �	
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Z
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����� dX�

or

(L
�
R� $R� p� $p� �� $�

�
�
�
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Z
body � �uid

����
���� ddt


�
R p
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�
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�����
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dX
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Z
body � �uid

�
�T $RT $R� � �T $RT $p� $pT $R� � $pT $p� �T $RTR $�

� $pTR $� � $�TRT $R� � $�TRT $p� $�TRTR $�
�
dX

�
�

�

Z
body � �uid

�
�T  �T  �� � �T  �T v � vT  �� � vTv � �T  �T $�

� vT $� � $�T  �� � $�Tv � $�T $�
�
dX�

where v and � satisfy

v � R�� $p and  � � R�� $R�

De�ning

x � � �X	 and u �x	 � $x�

we may rewrite this integral in a body��xed frame as

(l �v� �� u �x		 �
�

�

Z
R�

�
xT  �T  �x� xT  �Tv � vT  �x� vTv � xT  �Tu �x	

� vTu �x	 � uT �x	  �x� uT �x	 v � uT �x	u �x	
�
dx

�
�

�

Z
R�

�
xT  �T  �x� �xT  �T �u� v	 � �u� v	T �u � v	

�
dx�

The quantity u �x	 represents the spatial velocity of particles with respect to the
body frame� u � � within the body
 In terms of the body velocity � � se��	� where

 � �

�
 � v

� �



�
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the reduced Lagrangian is thus

l ��� u �x		

�
�
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Z
R�
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�
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�
x
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� �
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�
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�
uT �x	 �

� �u �x	
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�
dx�


�� The reduced equations

We now obtain the reduced Euler�Lagrange equations explicitly� beginning with the
equation

d

dt

	l

	u
� ad�u

	l

	u
� ��
�	

We will summarize our results at the end of this section
 For notational convenience�
we introduce the L� inner product of vector �elds on R	 de�ned by

hha� bii �

Z
R�
�ha �x	 � b �x	idx � �

Z
R�
a �x	 � b �x	dx�

We may then write the kinetic energy as
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�
hh �x�  �xii� hh �x� vii�
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hhv� vii� hh �x� uii

� hhv� uii�
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�
hhu� uii�

Let z be a vector �eld on R	 such that

z � � in B � R	� F� zjj	F� and r � z � �� ��
�	

where the second expression of the three indicates that z is tangent to the boundary
between the body and �uid along that boundary
 Then
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Similarly �
d

dt
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dx

and �
ad�u

	l

	u
� z

 
�

�
	l

	u
� adu z

 
� h �x� v � u� �u� z�i

�

Z
R�
�h �x� v � u� �u� z�i dx

�

Z
R�
�h �x� v � u� u � rz � z � rui dx�

Thus ��
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	t
�� � x� v � u	 � z � �� � x� v � u	 � �u � rz � z � ru	
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dx � ��

We now consider the second component of this integral term by term
 We make
repeated use of of the identity from vector calculusZ

D

r � ��H	dV �

Z
D

�r �HdV �

Z
D

H � r� dV �

Z
�D

�H � n dS�

where H and � are vector�valued and scalar�valued functions� respectively
 We note�
furthermore� that since z � � in B� we need only integrate each term over the region
F occupied by the �uid
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Gathering terms� we are left withZ
F
� $� � x� $u� $v � u � ru� �� � u	 � z dx � ��

We now invoke the following result� which is proven in ����


Theorem ��� �Helmholtz�Hodge
 A vector �eld w on F has a unique decompo�
sition

w � wG � wS �

where wG is the gradient of a function on F and wS is solenoidal and parallel to 	F
on 	F�

Thus z � zS � zG � zS andZ
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We de�ne the pressure gradient
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We now turn to the equation
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Because of the independence of 
 � so��	 and � � R	� ��
�	 is therefore equivalent
to the independent equationsZ

R�

�
xT  
T $ �x� xT  
T $u� xT  
T $v � xT  
T  �T  �x� xT  �T  
T  �x� vT  
T  �x

� xT  
T  �Tv � xT  �T  
Tv � vT  
Tv � xT  
T  �Tu� xT  �T  
Tu� vT  
Tu
�
dx � �

��
�	

and Z
R�
�T
�
$ �x� $u� $v �  ��x�  �u�  �v

�
dx � �� ��
�	

We simplify the former of these equalities with the assistance of the following result�
easily obtained by direct calculation


Lemma ��� Let a �x	 � b �x	 � c �x	� and d �x	 be vector �elds on R	� ThenZ
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where the subscript A denotes projection onto the skew 
anti�� symmetric component
of its argument�

It follows that ��
�	 is equivalent toZ
R�

��
$ �xxT

�
A
�
�
� $u� $v	xT

�
A
�
�
 ��xxT

�
A
�
�
 � �u� v	xT

�
A

�
�
�u� v	xT  �T

�
A
�
�
 �xvT

�
A
�
�
uvT

�
A

�
dx � ��

��
�	

Since the terms appearing in the integrand are all skew�symmetric ��� matrices� we
may rewrite ��
�	 in terms of the integral of a vector quantity
 Up to a multiplicative
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Equations ��
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completely describe the interaction of a homogeneous rigid body and a surrounding
�uid of equal density



�� Special cases

We can readily verify the equations derived in Section �
� for certain limiting cases

Suppose that the rigid body in question were not surrounded by a �uid at all

Then ��
�	 would be replaced byZ
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where b � x� v� and ��
��	 byZ
B
� $� � x� $v � � � �� � x	 � � � v	dx � �� ��
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If we set v � � identically� we recover Euler�s equationZ
B
�I� � � � I $�	dx � � ��
��	

for the motion of a free rigid body from ��
��	
 Similarly� the assumption that � � �
returns Newton�s second law
 In ����� we represent ��
�	 and ��
��	 as the traditional
rigid body equations amended by the forces and moments due to the distribution
of �uid pressure on the body�s surface
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In a �xed frame �for which � � v � � identically	� ��
��	 is equivalent to Euler�s
equation ��
�	 for the motion of an incompressible �uid
 Taking the curl of ��
��	
and noting the identities

r� �a� b	 � a �r � b	� b �r � a	 � �b � r	 a� �a � r	 b
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we obtain

$� � u � r� � � � ru� � �� � ru� $�	 � ��
��	

where � � r � u is the vorticity
 In the absence of the terms involving �� this is
Helmholtz�s vorticity equation for an incompressible �uid ����
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Chapter 	

Planar Carangiform Locomotion

��� The unforced equations

We espouse a planar model for carangiform locomotion
 If we restrict ourselves to
the case x	 � �� ��
�	� ��
��	 and ��
��	 become
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�
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�
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���x
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�

�x�
� u� �u

�

�x�
� �u��	
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�

�x�
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�x�
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�
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�
��
�

�
�x�

�
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�
� �s

�x�

�
�

�
�x�

�
u�u� � u�u�

�
� �s

�x�

�
	 �
��
�	

respectively


��� The substitution vortex model

Figure �
� depicts a horizontal cross section of a louvar� a typical carangiform swim�
mer
 Away from the midline of the �sh� the body and caudal �n are disjoint
 The
force developed on a representative section of the caudal �n is transmitted to the
body of the swimmer� but the caudal peduncle which couples them has no hydro�
dynamic impact


The symbol & in Figure �
� represents the circulation about the caudal �n� which
we regard as a hydrofoil
 As the velocity and e
ective angle of attack of the caudal
�n vary� vorticity is shed from its trailing edge� changing the circulation &
 The lift



�


&

Figure 	�� Silhouette and cross section of a louvar�

on the �n� which is proportional in magnitude to & and directed according to the
�ow experienced by the �n� is transmitted to the body of the swimmer as thrust


Because the caudal section is small compared with the body and separated from
the body by a distance greater than one chord length� it is reasonable to approximate
its hydrodynamic e
ect on the body as that of a single point vortex of appropriate
strength
 We will justify this notion of a substitution vortex rigorously in Section �
��
following our overview in Section �
�
� of the role of complex variables in hydrofoil
theory
 At the most abstract level� then� we model a carangiform swimmer as a
planar rigid body coupled to a controlled vortex


We assume that a carangid�s authority over the position and shape of its caudal
�n a
ord e
ective control of the position xv of the substitution vortex and the
circulation & around it
 Equations ��
�	� ��
�	� and ��
�	 describe the drift behavior
of the paired body and �uid
 The controlled substitution vortex completes our
model for planar swimming


As it moves through the �uid� the substitution vortex experiences a �ow with
relative velocity uv e� � u�xv	� $xv 
 We will see in Section �
�
� that� as a result� it
transmits to the body a thrust equal in magnitude to �uv e�&
 In the absence of the
drift associated with equations ��
�	� ��
�	� and ��
�	� we can write the remaining
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dynamics as the control a�ne system

d

dt
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� f�q	 � h��q	�
� � h��q	�

� � h	�q	�
	�

��
�	

Here

m �

Z
B
� dx

is the mass of the body�

I�

Z
B
�Idx

its moment of inertia� and

�� � $x�v� �� � $x�v� and �	 � $&

the control inputs

The asterisks in h	 represent the e
ects of changes in & on the �ow �eld u�x� t	�

we do not specify them in this form here
 Since changes in & are most directly
related to the shedding of vorticity� it makes some sense to replace the velocity
�eld in our state vector with the vorticity �eld ��x� t	
 The unforced evolution of
the vorticity is determined by the planar version of ��
��	� in the presence of the
substitution vortex we have

$� � u � r� � � � ru� ��� � ru� $�	 � $&
�xv	�

In taking the curl of ��
�	� however� we lose information about the gradient compo�
nent of u
 The unforced gradient projection of ��
�	 then completes the forced �uid



��

system
 We explore this perspective in ����


��� Planar carangiform accessibility

We resume the discussion of gaits from Chapter � by interpreting the partial con�
struction of the accessibilty algebra associated with ��
�	
 We recognize that this
is only one component of the model we advance for carangiform locomotion
 We
assume that the drift associated with with the phenomena addressed in Section �
�
combines with the drift represented by the vector f�q	 in Section �
� without inter�
fering� qualitatively� with with the input vector �elds fh�� h�� h	g
 Note that we are
not concerned� in practice� with accessibility in the �uid velocity u


We compute� for example�

�h�� h	� �

�
�����������

�
�
�
� �

m
�

�
I
x�v
�
�

�
����������	
�

We infer that cyclic variations in the heave of the caudal �n and the circulation about
it� properly phased� will rotate the body and propel it forward
 The circulation
about the caudal �n� we recall� depends upon its e
ective angle of attack as well as
its velocity
 The rotation term is proportional to the lateral displacement x�v of the
susbstitution vortex� small excursions of a caudal �n extended straight back do not
generate rotation
 Furthermore�

�h�� h	� �

�
�����������

�
�
�
�
�
m
�
I
x�v
�
�

�
����������	
�

we infer that appropriate cyclic variations in the longitudinal extension of the caudal
�n and its e
ective angle of attack a
ord rotation and lateral motion in the body
frame
 Finally

�h�� h�� � ��

In�nitesimal cyclic variations in the thrust which involve no changes in & provide�
to our approximation� zero propulsive e
ect
 This result is reminiscent of the ob�



��

servation that a gliding kestral� maintaining constant circulation about its wings�
must alter their geometry to e
ect a change in course ����


��� The experiment

The substitution vortex model supposes a carangiform swimmer to control the posi�
tion of its caudal �n and the circulation about it
 In actuality� the swimmer controls
the �n�s position and orientation� the circulation depends upon the velocity and in�
clination of the �n relative to the �uid through which it moves
 We now examine
the development of hydrodynamic lift quantitatively� comparing the numerical pre�
dictions of a mathematical model with the actual behavior of a robotic propulsor


The �uid component of the substitution vortex model is in�uenced by the mo�
tion of the propulsor�s body as well as the evolution of the vortex itself
 We wish
to isolate the interaction of the �n and �uid
 It is an advantage rather than a
compromise� then� that our experimental �n propels a constant load with no hydro�
dynamic impact
 Indeed� the propulsive mechanism detailed below need not drive a
carangiform body� its adaptability to di
erent marine vehicle architectures remains
to explore


Figures �
� and �
� depict the main component of our experimental apparatus
from the top and side schematically
 Figures �
� and �
� provide photographic con�
trast
 The actuated mechanism is intended to exemplify the tail of a carangiform
swimmer with a �n of constant section� and is suspended from a carriage which is
free to translate along the length of either of two laboratory water tanks
 Figures �
�
and �
� depict a two meter tank� over which the carriage slides on pillow block bear�
ings
 Figures �
� and �
� depict a seven meter tank� over which the carriage slides
on wheels
 The peduncle and �n� each 
��� m in length� are submerged to a depth
of 
�� m in either tank
 The tank in which we collect our numerical data is 
�� m
wide


The apparatus permits independent� software�based control of the horizontal
angles � and � between the direction of translation� the peduncle� and the �n

The peduncle and �n are driven by PWM servomotors� while a Polhemus receiver
mounted on the carriage measures its displacement based on the low�frequency
magnetic �eld created by the stationary transmitter shown in Figure �
�


Figure �
� shows the measured displacement versus time corresponding to a
family of �n oscillations of the form

� �t	 � cos�t

� �t	 � � �t	 � cos�t�
��
�	

The apparatus begins at rest at t � �
 At lower frequencies� the plot clearly shows
the cyclic acceleration and deceleration of the carriage
 The �n acts as a brake as
it swings toward each extreme of its motion� assuming the role of a thruster only
as it swings back toward the midline of the tank
 As the frequency � increases� the
increased forward momentum of the carriage attenuates this e
ect
 In every case�
the motion of the carriage settles quickly about a steady mean velocity� this mean
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Figure 	�� The apparatus from above�
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Figure 	�� The apparatus from the side�
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Figure 	�� The apparatus from forward and above�

Figure 	�� The apparatus from the side�
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Figure 	�� The Polhemus transmitter�
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 Displacement with the peduncle and �n out of phase�

velocity increases with �

Figure �
� depicts oscillations of the form

� �t	 � cos�t

� �t	 � � �t	 � sin �t
��
�	

at four frequencies �
 At a given frequency� the gait given by ��
�	 generates greater
mean thrust than that given by ��
�	
 We take care not to infer the superiority of
gaits in which the peduncle and �n oscillate in phase� however
 The tip of the �n
enjoys a greater maximum excursion according to ��
�	 than according to ��
�	

Indeed� the peduncle of the Paci�c Whitesided Dolphin-an e�cient carangiform
swimmer-precedes its caudal �n by approximately ��� radians ����
 Overall� the
out�of�phase gaits shown in Figure �
� propel the platform more smoothly than
the in�phase gaits shown in Figure �
�
 The smoothness of out�of�phase gaits may
contribute to their prevalence in nature
 We omit the gait corresponding to � � ���
from Figure �
� because it exceeds the capacity of our servomotors


In Section �
�� we will assess our theoretical model for the experimental appa�
ratus by its ability to reproduce Figures �
� and �
�
 Although they illustrate only
seven gaits in all� these span the range of available frequencies at the extremes of



�	

practical phasing


��� Modelling and simulation

����� The steady �ow model

The �ow around the oscillating caudal �n of a carangiform propulsor is essentially
unsteady
 In modelling the hydrodynamic forces acting upon our robotic �n� how�
ever� we seek the simplest theory with which to explain our data
 We therefore
advance a model based on the assumption of steady �ow


We regard the thrust developed by a moving �n as a hydrodynamic lift
 A
hydrofoil subject to a steady ambient �ow experiences both a lift and a pitching
moment
 The lift may be considered to act at the center of pressure of the foil� about
which the pitching moment is zero
 The forces acting upon certain planar hydrofoils
are readily determined using complex analysis� we follow ���� in our exposition of
this approach and omit computational proofs contained therein


Continuity of two�dimensional incompressible �ow in the �x� y	 plane requires
that

	ux
	x

�
	uy
	y

� ��

we de�ne a continuous stream function � such that

ux �
	�

	y
and uy � �

	�

	x
� ��
�	

Note that ��
�	 and ��
�	 imply that the potential function � and the stream function
� satisfy the Cauchy�Riemann equations

	�

	x
�
	�

	y
and

	�

	y
� �

	�

	x
�

If � �z	 and � �z	 denote the velocity potential and stream function corresponding
to steady irrotational �ow about a cylinder with contour C in the complex z plane�
we refer to the function w �z	 � � �z	�i� �z	 as the corresponding complex potential
and apply the following result


Theorem 	�� �Blausius
 If z � x� iy� then the forces X and Y acting upon the
cylinder in the x and y directions are given by

X � iY �
�

�
i�

Z
C



dw

dz

��

dz

and the pitching moment about the origin z � � by

M � real part of �
�

�
i�

Z
C
z



dw

dz

��

dz�



	


The quantity

u� iv � �
dw

dz

is called the complex velocity corresponding to the complex potential w �z	
 If a
hydrofoil �about which there may be circulation	 is placed at an angle � to a uniform
�ow with speed U � we may expand the complex velocity for large jzj in the form

�
dw

dz
� �Uei� �

A

z
�
B

z�
� � � � �

The complex potential is then

w � Uei�z � A log z �
B

z
� � � �

and the circulation & must satisfy

�A �
i&

��
�

Choosing our contour of integration C to be a circle of su�ciently large radius� we
apply Blausius� theorem to obtain

X � iY � �U&ei�
��
� ��	

and

M � real part of ��i�BUei��

The �rst of these equations suggests the following result� discovered by its two
namesakes independently


Theorem 	�� �Kutta�Joukowski
 A hydrofoil subject to the uniform relative 
ow
of a 
uid with density � and speed U experiences a lift

L � �U&

perpendicular to the direction of 
ow� A vector in the direction of the lift is obtained
by rotating a vector in the direction of the 
ow through a right angle opposite the
sense of the circulation�

The net absence of drag in two�dimensional inviscid �ow is termed d	Alembert	s
paradox


Suppose that the complex potential w � f �z	 corresponds to the planar �ow
of an inviscid �uid in the absence of rigid boundaries
 The �rst circle theorem ����
states that the introduction of the cylinder with impenetrable contour jzj � a alters



	�

the �ow to that with complex potential

w � f �z	 � ,f



a�

z

�
�

The complex potential corresponding to a uniform �ow in the x direction takes the
form w � Uz
 The complex potential corresponding to the �ow around the contour
jzj � a with added circulation & is therefore

w � Uz � U
a�

z
�

i&

��
log z� ��
�	

Suppose that the exterior of a circle centered at the origin in the � plane is
mapped conformally to the exterior of a hydrofoil in the z plane
 Then we can
determine the complex potential corresponding to �ow about the hydrofoil from ��
�	
and the form of the conformal map
 A variety of practical hydrodynamic pro�les
may be realized in this way
 K�arm�an�Tre�tz pro�les are determined by conformal
maps which satisfy

z � kl

z � kl
�

�� � l	k

�� � l	k
�

where k � �
 K�arm�an�Tre
tz pro�les for which k � � are called Joukowski pro�les �
the Joukowski transformation is more frequently written as

z � � �
l�

�
�

K�arm�an�Tre
tz pro�les belong to the more general class of von Mises pro�les� all of
which feature cusps at their trailing points
 Cuspless pro�les� such as the Carafoli
pro�les� may also be obtained by conformal mapping ����


Suppose that we wish to construct the complex potential corresponding to the
�ow about a Joukowski pro�le with a given angle of attack relative to a given
uniform incident �ow
 It remains for us to specify the circulation & about the
pro�le
 Joukowski	s hypothesis restricts the �ow speed at a foil�s trailing point to
remain �nite� e
ectively requiring the circulation about the foil to adjust so that
the �uid stagnates there


Since an inviscid �uid can exert no tangential force upon a solid surface element�
one might expect the net force on a �at plate with nonzero angle of attack to act in
a direction perpendicular to the plate
 According to the Kutta�Joukowski theorem�
however� the lift upon a �at plate must act in a direction perpendicular to the
ambient �uid �ow
 The drag on the plate� which acts parallel to the ambient �ow�
is cancelled by a leading edge suction which results from the vanishing radius of the
plate�s forward edge


We obtain the �ow around a �at Joukowski pro�le of length F from the �ow
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Figure 	�	 The simulated experiment�

around a circle of radius a � F�� using the transformation

z � � �
a�

�
�

It is shown in ���� that the circulation about the pro�le is given� consequently� by

& � �FU sin��

and the lift by

L � ��FU� sin��

The lift experienced by a moving plate depends upon the relative velocity of �uid
incident to the plate
 We assume the �n which propels our experimental apparatus
to encounter only quiescent �uid� disturbances due to the �n�s excursion remain
largely downstream
 The torso of a biological carangid precedes its caudal �n as it
swims� the �ow incident to the caudal �n may incorporate vorticity shed from the
pectoral �ns and other physical structures upstream
 The role of the caudal �n in
this context is to modify nonzero incident �ow to e
ect propulsion
 This point of
view is addressed in ����


As our experimental �n translates and rotates� di
erent points along its length
describe di
erent velocities relative to the laboratory frame
 In computing the lift
developed on the �n� we assign to every point along its length the instantaneous
velocity of the quarter�chord point
 Were we so inclined� we might instead compute
an e
ective camber from the distribution of velocities along the �n�s length


We simulate the motion of the system depicted in Figure �
�
 The position of
the quarter�chord point relative to the origin O is

�xQC� yQC	 �



xm � P cos��

F

�
cos�� P sin ��

F

�
sin�

�



	�

and its velocity

vQC � �U �



$xm � P sin� $��

F

�
sin� $�� P cos� $� �

F

�
cos� $�

�
�

The leading edge of the �n points in the direction

le � � �cos�� sin�	 �

We denote with an overbar the inclusion of planar vectors into R	� so that

,vQC � �vQC � �	 � ,le � �le� �	 � R	�

As long as the �n�s angle of attack � remains in the interval ������ ����� in order
that the leading edge and trailing edge remain as such� the lift developed on the �n
is given by

,L� small � ��F
�
,vQC � ,le

�
� ,vQC�

If the angle of attack lies in the interval ����� ����	� the �n�s leading edge and
trailing edge reverse roles
 We therefore compute the lift in general to be

L � sgn �cos �atan� le� atan� vQC		 ��F
�
,vQC � ,le

�
� ,vQC�

where atan� ��	 denotes the four�quadrant inverse tangent of its argument

Since the system is constrained to translate in the x direction� we are concerned

only with the corresponding component Lx of the lift
 The equations we simulate�
then� are

m�xm � Lx

�
�� �� $�� $�� $xm

�
�

����� Simulation and validation

In the theoretical absence of dissipative e
ects� our simulation overestimates the
acceleration of the platform
 We attentuate the predicted thrust developed by the
�n with a viscous drag term ����� tuning a single gain until our numerical and
experimental data agree over the range of gaits considered


Figures �
�� and �
�� reproduce Figures �
� and �
� from the model developed
in Section �
�
�
 The apparent mean curvature of the experimental trajectories
corresponding to faster gaits may re�ect some imperfection of the rails along which
our platform translates
 The model predicts the mean velocity of the platform
consistently over the range of gaits considered� but does not re�ect the smoothing
e
ect of higher speeds
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Figure 	��� Steady �ow model for in�phase gaits�
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��	 The substitution vortex revisited

In Section �
�
�� we outlined the construction of the �ow around di
erent hyrofoils in
the complex z plane from the �ow around the contour j�j � a using transformations
of the form

z � � �
a�
�

�
a�
��

� � � � � ��
�	

For su�ciently large j�j� such transformations leave z � �� so that streamlines far
enough from the origin approximate concentric circles
 Suppose� for example� that

a� � a� �
F �

��
and a� � a	 � � � � � ��

as for a �at plate
 Then

jz � �j

jzj
�
ja

�


 j

jzj

�
j F

�

��
 j

jzj

�
F �

��

�

jzjj�j
�

If z � Rei�� then

� �
R

�
ei� �

r
R�

�
e�i� �

F �

��

and

�

jzjj�j
�

�

R
���Rei� �qR�e�i� � F �




���
�

�

R�
���ei� �qe�i� � F �


R�

��� �
so that

jz � �j

jzj
�

F �

�R�

�

jei� �
q
e�i� � F �


R� j



F �

�R�

�

� �
q
� � F �


R�

�



	�

If R � F � then

jz � �j

jzj
�

�

�

�

� �
q
� � �




�
�

��
�

Thus� at distances greater than one chord length F from a �at plate� our error
in treating the �ow as that around a point vortex amounts to less than one part
in sixteen
 Figure �
�� depicts the deformation of circles in the z plane by the
transformation

z �� z �
�

z
�

The complex potential for a vortex of strength � at the point z� subject to a
uniform �ow with angle of incidence � may be written as

w � Uei�z �
i&

��
log �z � z�	

� Uei�z �
i&

��
log z �

i&

��
log
�
��

z�
z

�
� Uei�z �

i&

��
log z �O



z��
z�

�
�

The complex potential for the �ow around a hydrofoil is given �as for � � � in ��
�		
by

w � Uei�� � Ue�i�
a�

�
�

i&

��
log ��

where � may be obtained from z by reversing ��
�	 to yield

� � z
�
��

a�
z�
� � � �

�
�

Thus

z� �
��i

&
U
�
a�e�i� � a�e

i�
�
�O



�

z�

�

provides the position of the substitution vortex

For a �at plate with chord length F � a � F�� and a� � F ���� so that

z� �
��i

&
U



F �

��
e�i� �

F �

��
ei�
�

�
�

�&
UF � sin �
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Figure 	��� Flow around a �at plate with circulation�



		

Figure 	��� The characteristic carangiform wake�

up to O
�
�
z�

�

 Since Joukowski�s hypothesis requires that

& � �FU sin�

for a �at plate� the corresponding substitution vortex is situated at the quarter
chord point

z� �
F

�
�

��� Flow visualization

Commercially available Kalliroscope �uid is a colloidal suspension of re�ective� ob�
long guanine platelets which� when added to an aqueous �ow� align with instanta�
neous streamlines
 A �
�. solution provides opacity and re�ectivity to the water
in our smaller tank� allowing us to photograph �ow patterns with ordinary cameras
and lighting
 Figure �
�� �best viewed at arm�s length	 depicts the inverted K�arm�an
vortex street left behind by our robotic �n
 Figure �
�� depicts the vortex pair shed
by an abrupt quarter�stroke


��
 Carangiform gaits

Unlike the propulsors addressed in Chapter �� a carangiform swimmer describes
gaits which are sensitive in their e�cacy to time reparametrization
 A variety of
dimensionless parameters are used to index the similitude of viscous �uid �ows� we
have already encountered the Reynolds number Re � UL��
 The two degrees of



�



Figure 	��� A counter�rotating vortex pair�

internal freedom enjoyed by our experimental propulsor a
ord us two frequencies
with which to characterize gaits� the phase between them a third


A single caudal frequency � �in rad�s	 is typically ascribed to the swimming of
a biological carangid ����� combining with the body length Lbody and characteristic
swimming velocity U to provide the reduced frequency

� � �Lbody�U�

A related parameter is the Strouhal number

St � �E�U�

where E denotes the width of the caudal �n�s excursion
 Species as diverse as the
gold�sh� dace� trout� and bream beat their caudal �ns such that E � ���Lbody ����

The e�cient swimming of marine animals is characterized by Strouhal numbers
between ��� and ��� ����
 We note that the Strouhal number is sometimes de�ned
in terms of the frequency f � ���� in Hertz


The single�frequency gaits depicted in Chapter � represent Strouhal numbers
between ��� and ����
 We are limited by the speed at which the motors driving
our experimental �n can respond� an increase in � forces a decrease in E
 Because
we command the positions of the motors directly� however� we do not observe the
presumed ine�ciency of these gaits


Our experiments focus on forward motion because the platform which supports
our experimental �n can move only longitudinally
 The model developed in Sec�
tion �
�� however� is readily adjusted to accommodate full planar motion
 Consider
the aquatic robot shown in Figure �
��
 We ascribe to the body apparent masses
�ml� mt	 corresponding to longitudinal and transverse motion and an apparent in�
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Figure 	��� A planar carangiform robot�
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Figure 	��� An out�of�phase drive gait�

ertia I 
 For an ellipse with semimajor axes a and b� where a � b�

ml � �� a�� mt � �� b�� and I �
�

�
�� �a� � b�	�

per unit depth ����
 Since P � F � ���� m for our experimental apparatus� we
simulate a robot with these parameters and an elliptical body measuring �a �
���� m by �b � ���� m in water with planar density � � ����Kg�m�


Figure �
�� depicts several snapshots of the robot as it executes the gait

��t	 � cos �t

��t	 � ��t	 � sin �t�

The Jacobi�Lie brackets computed in Section �
� suggest that a gait of the form

��t	 � �� � cos�t

��t	 � ��t	 � sin�t

will� for �� �� �� rotate and advance the robot simultaneously
 Figure �
�� depicts
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��t	 � ��� � cos �t
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Chapter �


Future Work

The preceding pages suggest a great many topics for future investigation� we ack�
owledge only a few of these here


The �uid mechanics providing for the connections in Section �
� were distilled
from the Navier�Stokes equations by physical assumption
 A comprehensive theory
of the swimming of deformable bodies should encompass the idiosyncrasies of ideal
�ow and creeping �ow mathematically
 The momentum map corresponding to the
particle relabelling symmetry of an ideal �uid in a domain F takes values in the
space dual to the Lie algebra of vector �elds on F which are solenoidal and parallel
to 	F on 	F
 If F is the periphractic region complemeting a body about which the
�ow is acyclic� this space is naturally identi�ed with the space of vorticity �elds on
F ����
 The assumption of irrotational �ow therefore corresponds to restriction to
the preimage of a momentum level set
 This restriction� together with reduction�
should recapture the Kirchho
 potentials from the Euler�Lagrange equations
 This
remains to be shown explicitly


In order to simultaneously realize Stokes� equations via reduction� we must begin
with a geometric model for viscous �ow
 Parametric dependence of an accompanying
Navier slip boundary condition upon �uid viscosity and Reynolds number is only
one apparent requirement of a pandectic formulation


The end product of the Lagrangian analysis of Chapter � was a set of equations
indicating the overall conservation of certain quantities shared by a rigid body and
a surrounding �uid
 The nonholonomic connection governing the motion of certain
terrestrial vehicles ���� ��� speaks to dynamics which are essentially nonconservative�
their symmetry broken by equations of constraint
 Considered together� however�
a vehicle and the Earth to which it is coupled may be modelled a conservative
system
 Symmetry is lost when the Earth�s large inertial reservoir is assumed to be
in�nite
 A similar assumption regarding an in�nite �uid�s capacity to absorb the
vorticity shed from a natant surface may allow us to synthesize a structure like the
nonholonomic connection
 We anticipate a complete theory of composite Lagrangian
systems which will unify conceptually the swimming of undulating surfaces and the
negotiation of large inertial bodies by wheeled mobile robots
 Specialization of
results like Noether�s theorem to such systems should guide the development of the
general theory


Indeed� the implicit nature of the drift derived in Chapter � has prevented us�
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thusfar� from interleaving the pieces of the model we proposed in Chapters � and �
for carangiform swimming
 Our cursory assessment of controllability drew conclu�
sions from a fragment of this model� proper control analysis will follow our realization
of its complete form


From a Hamiltonian point of view� the conservative interconnection of mechan�
ical systems may be studied in the context of Dirac structures ����
 We note only
the availability of this formalism� citing an assessment of its utility as an objective
for the future


The experimental apparatus detailed in Chapter � is constrained to translate
rectilinearly
 Its displacement re�ects one component of the lift developed by the
caudal �n� but neither the other nor the yawing moment to which a real carangid is
subject
 Subsequent generations of the experiment will provide full SE��	 mobility
to the peduncle and �n� replacing the lateral reistance of the bearings on the rails
with the apparent load of a submerged body


The longitudinal translation of an elliptical body in an irrotational �ow is un�
stable ����
 A �sh� however� will coast forward with apparent stability after ceasing
to generate thrust with its tail
 This stability may be the result of a continued but
subtle control e
ort on the �sh�s part� or a consequence of the damping inherent
to real hydrodynamic systems
 The cross�sectional signature of rectilinear carangi�
form swimming is a wake resembling an inverted K�arm�an vortex street
 The notion
of image vorticity permits extension of the Hamiltonian theory of planar vortices
to the advection of free surfaces by vortex systems
 This context could illuminate
stabilizing properties of conservative wakes� particularly if physical maneuvers of in�
terest were to correspond to relative equilibria of constrained vortex systems
 Were
this the case� a technique like the energy�momentum method ���� could be applied
to evaluate the stability of these relative equilibria
 Models for the interaction of
vortex patches ���� may also prove adaptable to the interaction of rigid bodies and
structured vortex wakes


The autonomy of piscimimetic vehicles requires the integration of appropriate
sensors and feedback laws
 The nature of the lateral line sensor common to many
�sh is the subject of ongoing biological research
 Results from that �eld could
motivate arti�cial sensor design� an understanding of the data needed to negotiate
a �uid environment could guide the zoological community in its e
orts


E�cient numerical schemes which allow vortex shedding to be decoupled from
other viscous phenomena can validate theoretical results more adaptably than any
experimental platform
 Modi�cations of Chorin�s method� which supposes a discrete
distribution of vorticity� are particularly suited to abstractions of carangiform swim�
ming based on the substitution vortex
 Ready simulation will speed the assessment
of gaits for hyperarticulated marine propulsors


The classi�cation of nonlinear control systems according to their feedback equiv�
alence to certain canonical systems is tantamount to the identi�cation of pertinent
invariant di
erential forms
 Locomotion systems are� compatibly� distinguished by
adherent connections� curvatures� and related forms
 It remains to develop a taxon�
omy of locomotion systems based on equivalence under feedback transformations

Cartan�s method of equivalence ���� ��� may provide the tools to geometrize feedback
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