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Abstract

New control paradigms are needed for large networks of edelsensors and actuators in order
to efficiently utilize system resources. In this paper we sider the problem of discrete-time state
estimation over a wireless sensor network. Given a tregdpaesents the sensor communications with the
fusion center, we derive the optimal estimation algorithirtha fusion center, and provide a closed-form
expression for the steady-state error covariance matréxth®n present a tree reconfiguration algorithm
that produces a sensor tree that has low overall energy ogign and guarantees a desired level of
estimation quality at the fusion center. We further propassensor tree construction and scheduling
algorithm that leads to a longer network lifetime than theetreconfiguration algorithm. Examples are

provided throughout the paper to demonstrate the algositand theory developed.
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. INTRODUCTION

Wireless sensor networks (WSN) have attracted much aiteitithe past decade which can be used for
environment and habitat monitoring, health care, home diickcautomation, traffic control, etc. [2]. In
WSN, there is an economic incentive towards using off-thelfssensors and standardized communication
solutions. A consequence of this is that the individual hem@ components might be of relatively low
guality and that communication resources are quite limifddis a single sensor may not be enough to
provide a desired level of estimation quality, and datadmgrom multiple sensors is often required.

Estimation and control over such resource-constrainedarks thus require new design paradigms
beyond traditional sampled-data control. For examplesidar the problem of state estimation over such
a network using a Kalman filter. The Kalman filter [3] is a weditablished methodology for model-based
fusion of sensor data [4]. Kalman filtering under certairoinfation constraints, such as decentralized
implementation, has been extensively studied [5]. Theactéion between Kalman filtering and how data
is routed on a network seems to be less studied.

Another issue inherent with WSN is the limited energy reseuavailable at each sensor node which
is typically battery-powered. Periodically changing thattery is often difficult and expensive, and
sometimes even impossible. Thus any good design must folsider the energy resource constraint
and minimize the sensor energy consumption as much as fmssib

Sensor network energy minimization is typically done vificednt MAC protocol design [6], or via
efficient scheduling of the sensor states [7]. A sensor inétting scheduling was suggested by Chen et
al. [8]. Lai et al. [9] proposed a scheme to divide the deplogensors into disjoint subsets of sensors
such that each subset can complete the mission, and themimegithe number of such disjoint subsets.

In this paper, we consider the problem of centralized ststienation while considering sensor energy
constraint. The main contributions are summarized asvisllo

1) Given a tree that represents the sensors’ communicatiithsthe fusion center, we derive the

optimal estimation algorithm at the fusion center, and wavjale a closed-form expression on the
steady-state error covariance matrix.

2) We present a tree reconfiguration algorithm that prodacssnsor tree having low overall energy

consumption and providing a desired level of estimationlityuat the fusion center.

3) We propose a sensor tree construction and schedulingitalgothat leads to a longer network

lifetime than the tree reconfiguration algorithm.

Routing protocols have been widely investigated in thediiere. The main efforts have concentrated
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toward defining protocols that discover routes on demandgufical and scalable technique, while
avoiding the overhead of storing routing tables or othereasive information such as link costs or
topology changes. The main challenge in those works is inodgiring paths that are both time and
energy efficient, meaning that the information is deliveaedoss the network in a reasonable amount of
time and at the minimum cost. Some examples include energyeamuting, attributed based routing,
rumor routing and directed diffusion. We refer the readdii] for a more detailed treatment. The focus
of our paper is different since we want to simultaneouslyean estimation and energy minimization
problem. More specifically, we want to find the most efficieetwork topology given constraints on
the estimation performance measured by the estimatiorr eawariance matrix. Differently from the
works mentioned above, our network topology is static amdvered once for all as the solution of an
optimization problem.

All algorithms have low complexity which leads to efficientsign and implementation in practice.
Furthermore, the low complexity brings the plug-and-plegtéire to the network, i.e., a new tree can be
calculated and dynamically formed when new sensors joimé#terork and existing sensors quit from the
network, or when the performance requirement is time-varye.g., see the example in Section IV-C).

The rest of the paper is organized as follows. In Section #,give the mathematical models of the
considered problems, and provide some preliminary resultKalman filtering to facilitate the analysis
in remaining sections. In Section lll, we derive the optineatimation algorithm at the fusion center
for a given sensor tree. In Section IV, we present the a semserreconfiguration algorithm. Then in
Section V, we propose a sensor tree construction and sehgaugorithm that leads to a longer lifetime
than the sensor tree reconfiguration algorithm. Concludémyarks as well as future work are given in

the end.

[I. PROBLEM SETUP AND PRELIMINARIES
A. Problem Setup

Consider the problem of state estimation over a wireless@enetwork (Figure 1). The process
dynamics is described by

Tyl = Az + wp. (1)

A wireless sensor network consisting &8f sensors{S, ..., Sy} is used to measure the state. When

S; takes a measurement of the state in Eqn (1), it returns
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In Egn (1) and (2),z € R™ is the state vector in the real-dimensional vector spacg; € R™

is the observation vector &t;, w, € IR" and v}; € IR™ are zero-mean Gaussian random vectors with
Elwpw;] = 6,;Q, @ > 0, E[viv}] = 6k 11;, II; > 0, E[U};v{’] =0Vt kandi # j, Elwgvl’] =0V i, t,k,
whered,; = 0 if k # j andd,; = 1 otherwise. We assume th@d, \/Q) is controllable, and A, Ca) is
observable, wher€'y, = [Hy;--- ; Hy], i.e., the joint measurement matrix of all sensors.

Each sensor can potentially communicate via a single-hopection with a subset of all the sensors
by adjusting its transmission power. We assume the comratioitlinks are perfect in this paper in the
sense that data packets traveling on the links will not bgpled. Thus we will not consider the effect
of interference or fading, etc. Let us introduce a fusionteewhich we denote a§,, and consider a
tree T with root S, (see Figure 2). We suppose that there is a non-zero singletmmunication delay,
which is smaller than the sampling time of the process. Aflsees are synchronized in time, so the data
packet transmitted fron%; to Sy is delayed one sample when compared with the parent node afe
also assume tha§; aggregates the previous time data packets from all its cfoldes with its current
time measurement into a single data packet. Therefore amdydata packet is sent frosy to its parent

node at each timé.

B. Problems of Interest

We are interested in the following problems. The first onea Ishould the fusion center process the
measurement data from the sensors which arrive at difféiraes (due to the multi-hop communications)
such that the estimation error is minimized?

The second problem is related to the energy constraint osgheor nodes. Apparently, to minimize
the energy consumption, sensors should only use minimunsritession energy and communicate with
their nearby neighbors; on the other hand, the many sh@rteoonmunications introduce many delays
when delivering the data to the fusion center. As delaysribette the estimation quality, there is a clear
tradeoff between how much energy the sensors should spehtiaam good the estimation quality is at
the fusion center. We are thus interested in seeking a l@wggnsensor tree which still guarantees a
desired level of estimation quality at the fusion center.

When all sensors need to participate in the estimation,mianng the total energy consumption might
not lead to a longer lifetime of the network as demonstratgethle example in Section V-C. Therefore
we are also interested in schemes that can maximize the rietifeime.

In Section Ill, 1V, and V we provide answers to the above thpeeblems respectively. Before we

present the main result of the paper, we briefly introducesthadard Kalman filtering upon which our
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optimal estimation algorithm for solving the first problegiies.

C. Kalman Filtering Preliminaries

Consider the process in Egn (1) with the following singlessgrmeasurement equation:
e = Crrp+ g, 3)

whereuy, is zero-mean Gaussian random vectors \lithy,v;'] = 0 Ry, Ri > 0, andE[wiv;'] =0V j, k.
Notice that we consider time-varying; and R; here. The Kalman filter in its most general form can
assume time-varyingd and Q. The special form we look at here suffices for deriving theiroat
estimation algorithms in later sections.

Assume a linear estimator receivgsand computes the optimal state estimate at each kinet Y,

denote all measurements available at the estimator atkinf@irther define:

B 2 BV @
P, 2 El(xs — ) (@ — a0)' Y, (5)
P £ klim Py, if the limit exists. (6)

It is well known thatz; and P, can be computed as
({I\;ka Pk) = KF ({I\;k—h Pk—h Yk Ck7 Rk)a

whereKF denotes the Kalman filter which consists of the following afedequations at timé:

T, = Alp_, (7)
Py = AP A +Q, (8)
K, = P CLCvP;Cl+ Ry, 9)
Ty = I + Kip(yr — Cry), (10)
P = (I-KyCp)Py. (11)

Let S} be the set ofn by n positive semi-definite matrices. For functioffig fo : S} — S}, define
fio f2 as

fro fo(X) £ fi(f2(X)). (12)
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Further define the functions, gic g, gjc,g) : S — St as

h(X) & AXA +Q, (13)
Jor(X) & X -XC[CXC'+R]7'CX, (14)
gie.r(X) = hogier(X). (15)

We write gic r)(X) andgic r) asgc andgc if there is no confusion on the underlying parametgrs

I1l. STATE ESTIMATION OVER A SENSORTREE

Let us define the following state estimate and other quastdi the fusion centefy. For a given tree
T rooted atS, definei(T), P.(T), P(T) at Sy similar as that in Eqn (4)—(6). We writé, (T) as iy,
etc., if there is no confusion on the underlying tfEeln this section, we shall compute, and P, for
a givenT.
Assume the tred" has depthD. Definey,’j‘i as the set of all measurements available at the fusion
center for timek — 7 at timek,i = 0,...,D — 1. Let S;, be the sensor node that jshops away from

the fusion center. Define

F] = [Hlj;H2j;"':|7 ]:lva

(1>

CZ' [Fl;-'-;l“i], izl,...,D

T, £ diag{Ily,,I,---}, j=1,...,D

<

R; = diag{Yy,..., Y}, i=1,...,D.

Then the following theorem presents the optimal estimagigorithm over a sensor tree and characterizes
the steady-state error covariance matrices in closed-éqpnession.

Theorem 3.1 ( [1]): Consider a sensor tréE with depth D that is rooted at the fusion center. Then

1) z; and P, can be computed fron® Kalman filters in sequence as

(#r—pD+1, Pe—p+1) = KF(ix—p,Pep, Vi P, Cp, Rp),

(#r-1,Pi1) = KF(&p—2, Poe2, Vi~ ', Cs, Ra),
(2, P) = KF(&g_1, Po1, V5, C1, Ry).

2) Furthermore, the steady-state error covariance matrsatisfies

Pzgcl ©gc, O“'Ochfl(POO)v (16)
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where P, is the unique solution tg¢, (Px) = Poo.

IV. MINIMUM -ENERGY SENSORTREE

In this section, we seek a low-energy sensor tree that gtessia desired level of estimation quality
at the fusion center. The following definition are used in tlmaining of the paper. Define Nade) as
all the nodes off", Famy(S;) as the subtree df that is rooted at5;, Par(S;) as the parent node of;
in 7', and EdgéT") as the edges df, i.e.,

EdgeT) £ {(S;,S;) : S; € Nod€(T), S; = Par(S;) }.

We sometimes omit the subscrift if there is no confusion on the underlying tr¢ e.g., we write
Famp(S;) simply as Fans,).

We assume to have an energy sensor model regulating the amoenergy expenditure for trans-
mission and reception. Further assume that the total enesggl by two sensors (one sending and the
other receiving) increases as the distance between the éngoss increases [11]. Since at each time,
each sensor sends and/or receives fixed number of data paekitiout loss of generality, let . (T) be
the energy cost fof; sending a measurement packet to;R&f) ande: ,(T) as the energy cost fof;
receiving measurement packets from its children. The &nargy cost ofl" per time is then given by

e(T) =Y ¢o(T) + €1y (T). (17)

S, €T
Denote7y as the set of all sensor trees, and Ratsieq € S7) be given. Since the sensors operate on

batteries, it is natural to let the network operate at angnkavel that is as low as possible. Thus we

are interested in the following problem:

Problem 4.1:How can we choose the sensor tree that has the least oveeadjyeoonsumption yet

still provides certain desired level of estimation qudlitye.,

i T
Foin e(T)

subject to
F(T) § Pdesired
where the inequality is in the matrix sense, i.Byesiea— P (1) is positive semi-definite. Cayley [12]
showed that the number of all possible treesVi§ —2, thus solving Problem 4.1 via exhaustive search
is intractable whenN is large. It is also non-convex, thus finding the global optiraolution is in

general difficult. To approximate the global optimal sauatiwe present the following tree reconfiguration

algorithm.
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A. Tree Reconfiguration Algorithm

The proposedree Reconfiguration AlgorithriiFigure 3) consists of three subroutines. The first one is
the Tree Initialization Algorithmwhich forms an initial treély (the top rectangular block). Depending on
whetherT} provides the required estimation quality, tBesitching Tree Topology Algoriththe middle-
right rectangular block) and thinimum Energy Subtree Algorithifthe bottom rectangular block) are
executed respectively. These algorithms are presentedtail chext.

Tree Initialization Algorithm:The idea contained in théree Initialization Algorithmis that the fusion
centersS first establishes direct connections with its neighbor sengsing minimum transmission power
level Ae. After that, its neighbor sensors establish further cotioes with their own neighbor sensors
also using minimum transmission power levkt. This process continues until a tree of degbhis
formed. As a result, the complexity of the algorithm$D). The algorithm is presented graphically in
Figure 4.

Switching Tree Topology Algorithnior a given tred}, if P(T}) & Pyesired the tree needs to be adjusted
in a way that the estimation quality is improved. T8eitching Tree Topology Algorithiprovides such
a way (Figure 5). The idea is that a sensor nod&;inthat is two-hops away from the fusion center is
reconfigured to directly connect with it, hence becomes amg-hop away from the fusion center. As
we prove shortly, this reconfiguration always improves thgngation quality at the fusion center.

We definern (73, 5;) as the new tree obtained by removing the edde Par-(S;)) and inserting
(Si, So). Further define

Sj—hop = {Si : S; is j—hop away from Sp}. (18)

The algorithm is given as follows, whef(X) denotes the trace of the matriX.

Algorithm 1 SwITCHING TREE TOPOLOGY
Init: T3.

Compute

Sp=arg_ min Tr(P(n(1},5;))).

€S2 hop

ReturnTiy; == 7 (1}, Sp).

Minimum Energy Subtree Algorithnor a given treel’ with P(T') < Pyesired the Minimum Energy
Subtree Algorithnfinds the subtre@” rooted atS, with the property that?(7”) < Pgesired ande(T") <
e(T) for any subtreel” of T rooted atSy. The idea is that all possible subtre€srooted atS, and
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satisfying

F(T) § Pdesired

are found in an efficient way utilizing the structure’®f Then the subtre&” which has the least overall
energy cost is returned. The details are as follows.

To make the presentation clear and easy to follow, we diligéealgorithm into several key steps and
provide an example to illustrate each step. Before introduthe algorithm, let us defing(iyiz - - - ip)
as the subtree that consists of the sensor n¢dgsS;,, - - - S;, }. We further define(ii, - - -ip,) as the

complementary tree o$(iyiz---ip,) in T, i.e.,
Q(iyig---ip) = T\ S(iiz---ip).

We assumé; < iy < --- <i,. The following example is provided to illustrate the algjon.

Example 4.2:Consider the tred with four sensor nodes in Figure 6. Assume the following:

1) P(T) < Pyesired i.€., T provides the desired estimation quality.

2) P(S(7)) & Pyesiea @ = 1,2, 3,4, i.e., no single sensor provides the desired estimatiofitgua

3) P(S(i5)) < Pyesired iff {i,j} = {1,4}, i.e., among the two sensor pairs, oAl§;, S,} can provide
the desired estimation quality.

4) P(2(i)) < Pesireai = 2, 3,4, i.e., any three sensors excejfz, S3,.5,} can provide the desired
estimation quality.

5) The energy cost of a single-hop communicatiofins Ae.

By the above assumptions, it is easy to see that the minimwergersubtreel” is given byT with
e(Ty) = 2Ae.

Let us examine the case when we tgkas an input to thdlinimum Energy Subtree Algorithmhich

consists of the following key steps.

Step 1
o |nit: T
o/ = O,Dl = {Sip ceT: F(Q(’LP)) < Pdesired}-

In this step,Dy holds all individual sensors without which the remainingqisas still satisfy the

estimation quality constraint. Therefore in Example 403,= {Ss, S3, S4}.
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Step 2
e/ :=1+1,D,:=D;_4
oV S; €Dy with P(Qip)) < Pesired
-Vq>pandS; ¢ Fams; ),
if P(Qipiq)) < Puesied D1 := DU S (ipiq).

In this step,D; holds all single-sensor or two-sensor pairs without whicé@ temaining sensors still
satisfy the estimation quality constraint. The third linkstep 2 eliminates the redundancy in listing
the subtrees as/(i,i,) = S(iqip), and if S; is removed from a tree, so is Faf) ). Therefore in

Example 4.2D; = {Ss, S3, 54, 5(23)}.

Step 3
o =14+1,D:=D;_4
o ¥ S(iyig) € Dy_q With P(Qipiy)) < Peesired
-Vo>gqands;, ¢ (Fams;,)JFams;,)),
if P(Q(ipiqio)) < Pesired
Dy := Dy S(ipigic)-

Similar to step 3,D, holds all single-sensor, two-sensor pairs or three-ssnathout which the
remaining sensors still satisfy the estimation qualitystaaint. The algorithm continues in this way until

D, = D,_1 at some step < D.

Stepr +1

e ReturnT’ = argming.ep e(2(+))

In Example 4.2Dy = {Ss, S5, S4,.5(23)} = D;. Hence the algorithm stops and retuffis= (23) =
S(14) = Ty with P(T") < Pyegireq ande(T") = 2Ae.

Remark 4.3:In general, the global minimum energy tree depends on tlialitiee that we start with.
The particular initial tree that we choose is certainly &eboy but has a low energy consumption. Star
tree (e.g., all sensor nodes connect to the fusion centecttiiy could be another choice, which provides
the least estimation error. However it is unlikely to be th@imum energy tree. A better approach may

be that start from a few random initial trees and run the @gms simultaneously. In the end choose
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the minimum energy tree from all outcomes of the algorithiifss will be the essential idea in the next

section when we consider maximizing network lifetime.

B. Performance Analysis of the Algorithms

The performance of the previous algorithms are summarizetié following algorithm.

Theorem 4.4 ( [1]):(1) Given a treeT;, the Switching Tree Topology Algorithmeturns7;,; € Ty
such that
P(Ti41) < P(Ty) .

(2) Given a treeT’ with P(T) < Pyesired the Minimum Energy Subtree Algorithmeturns7’ c T
rooted atSy such that

F(T’) S Pdesiredand e(T/) S G(T)

for any otherT’ C T that is rooted afS.
(3) If 3T € T such thatP(T) < Pyesired then the outpuf” from the Tree Reconfiguration Algorithm

C. Example

In this section, we provide an example to demonstrate theotisliee tree reconfiguration algorithm.
Consider the following process with three sensors. The jesgof the process and sensor measurement

equations are as follows:

zp = 0.9z + wg-1,
yh = T+,
yi = TR+,
y;z = wk—l—v,?;,

with Q = 1,1I; = 1.5,II, = 1, and I3 = 0.5.

The sensors positions are illustrated in Figure 7. AssuraeithS; is connected t®; 1,7 = 1,2, 3,
the energy of communication Ae; if S; is connected ta5;_»,i = 2,3, the energy istAe and if S
is connected tdb, the energy iSAe. Without loss of generality, for the remaining examples, omdy

calculate the total transmission energy.
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Suppose the following performance specification is recklwe the fusion center:

=

< 0.75,1 < k < 100,

=

< 0.25,101 < k < 200,

=

< 1.0,201 < k < 300,

!

< 0.75,301 < k < 500.

Then the fusion center can find the corresponding minimunmggnigee that fulfills the performance
requirement. Figure 8 shows the simulation result whendis@®h center uses the same trég \(Ss) all
the time, and Figure 9 shows when it reconfigures the treewdiog to the performance specification. It
is easy to see that whel1 < & < 200, the total energy usage increases frdke to 13Ae. However,
the error becomes much smaller; whedil < k& < 300, the total energy usage reduces to just.

Although in this case the error becomes much larger, theopaehce specification is still satisfied.

V. TOWARDS MAXIMIZING SENSORNETWORK LIFETIME

We say the sensor network is functioning if there are sufiicirumber of sensors that can provide
the estimation equality, i.eP < Pyesireq We define the network lifetime as the first time that the senso
network stops functioning, i.e., after some sensors dietaluenning out of battery, the remaining sensors
cannot provide the estimation equality.

In some applications, all sensors might be needed (or sogheduiality sensors are always needed) for
guaranteeing the estimation quality at the fusion centethdse scenarios, although the tree configuration
algorithm in the previous section minimizes the total egezgnsumption of the sensor nodes, it may
not maximize the lifetime of the network, which is given bythis case the first time that a sensor dies
due to running out of battery.

For example, consider a network that consists of two ser(§@gsire 10). Assume botfi; andTs; in
Figure 10 satisfy

P(T;) < Pyesireai = 1,2.
Further assume that
P(S;) & Pesired i = 1,2.

Let e;; be the total energy cost fd¥; in 7},4,j = 1,2, and let&; be the initial energy forS;. Consider

the following parameters.

10 1
E = [eij] = ,51 = 52 = 1000.
1 10
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Denote the lifetime of the network ds It is easy to verify thal, = 100 when theTree Reconfiguration
Algorithmis executed, ag} is the only tree used.

It turns out that we can increadeby mixing the use off; and75. Let 0 < o < 1 denote the portion
of times that7 is used, we can show thatif< « < 1, thenL > 100. It is also easy to verify thaL
attains its maximum value d81 whena = 0.5.

From this example, we see that simply minimizing the totargg consumption of the sensors may
not maximize the network lifetime, which is the focus of tisisction.

We point out in Section IV that the set of all possible trees bardinality NV=2. Thus optimal
scheduling on théV¥~2 trees is intractable whel is large. We therefore restrict our attention to a set
of M << NN~2 trees, and optimally schedule thosé trees instead. It turns out that choosing a set of
M trees that maximizes the lifetime is NP-complete. The cetepproof is provided in Section A in the
appendix. We therefore propose a tree construction allgorithat generates a set 8f trees followed
by a scheduling algorithm on th& trees. We show that these algorithms lead to a longer ligetinan

the previous tree reconfiguration algorithm.

A. Tree Construction Algorithm

The proposed tree construction algorithm consists of thnaen subroutines which are ttieandom
Initialization Algorithm the Topology Improvement Algorithnand theTree Reconfiguration Algorithm
from Section IV. The overall algorithm is presented in Figdrl.

Random Initialization Algorithm:For a givenT that is rooted atSy, defineS¢(T) as
S¢(T) £ {S; : S; is not in T}.

The intuitive idea of thé&kandom Initialization Algorithnis thatS;_j.,,j = 1,..., D, defined in Eqn (18),
are randomly determined in sequence until&ls are included in the tree.

After the execution of thé&kandom Initialization Algorithman initial tree of depthD is constructed
With |Sj_pop| = nj,j =1,...,D, and> 12 n; = N.

Remark 5.1:1f n; = N, then the algorithm return®™, i.e., all sensor nodes connect$g directly.

Topology Improvement AlgorithmSince the previous algorithm randomly constructs thedhitiee,
some sensor communication paths may be established irafficii.e., some sensors use more energy
yet need more hops to communicate wih The Topology Improvement Algorithaims to remove this

inefficiency.
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Algorithm 2 RANDOM INITIALIZATION

D:=0
T := {So, 0}
VJ Sj—hop = (Z)

§={S,....5n}
while (8¢ # () do

D:=D+1
Pick np from (1,|S¢|) uniformly randomly.
l:=1

while (I < np) do
Pick any S, € §¢ and anyS; € S(p_1)_nqp Uniformly randomly.
ConnectS), to S,.
5°:=5°\ {5}
T :=TU{Sp, (Sp, Sq)}

SD—hop = SD—hop U {Sp}

l:=10+1
end while
end while

When S; is connected ta5),, we definer; , as the number of hops betwegh and the fusion center
So, ande; , as the transmission energy cost9f We further definery ande, for \S; in the initial tree
constructed by th&®andom Initialization Algorithm

We consider modifying the path &f; in the initial tree, whereS; € S;_j,,,j > 2, only if there exists
Sy, in the same tree anfl, € S;j_pop,J < 70 — 1 such that eithee; , < eg or e;, = eg andr; , < 7.
In these casess; is connected ta5,. The first condition corresponds to reducing the energy cbst;
yet not making the hops betweéh and S, larger; the second condition corresponds to making the hops
betweensS; and S, smaller yet not increasing its energy cost. Defffjeas the indicator function fos;,
and F; = 1 means thatS; has already been examined for possible improvementfand 0 otherwise.
The full algorithm is presented below.

Notice thatF; is set to be 1 for allS; € S;_qp,j < 1, as for those sensor nodes that are one hop away

from Sy, no improvement can be made that further reduces the enesjyand maintains the same hop
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Algorithm 3 TOPOLOGYIMPROVEMENT
Vi F; =0

VSi € Sj_hop,J S 1, Fi =1
while 3F; = 0 do
F, =1

Y i={S):8), €Sj_hop:J <10—1,€ip < e}
if X # 0 then
Tiq = min{7 , : S, € ¥}
if e;4 <eoOr(e;q =eo andr; , < 79) then
reconnects; to S,
updateS; _pop, j < Tio
end if
end if

end while

numbers) or reduces the hop numbers.
At this step, we have constructed a setfMdéfrandomized initial trees. We then use them as input to the
Tree Reconfiguration Algorithritom Section IV-A (ignoring its tree initialization algahim subroutine)
to make sure that each tree provides the desired estimatialityq
Remark 5.2:The randomized algorithm here to a certain extent guararied the constructet! trees
will have different energy cost of the individual sensor esdhence through the scheduling algorithm

presented in the next section, the overall lifetime of thevoek is maximized.

B. Tree Scheduling Algorithm

Up to now, we have constructed a set of trgesind for eachl’; € 7,
F(T]) < Pdesired

Let Ty be the low-energy tree from the tree reconfiguration algoriin Section IV. Denoté as a
scheduling policy or?” U {7y}, andt;(6) as the time thaf; is used for the policy. Then the network

lifetime L(#) can be computed as
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Consider the following optimization problem:
Problem 5.3:

subject to
M

theij Sgi,’i: 1,...,N,
j=0

wheree;; is the energy consumption for sensfyrin tree 7;, and¢&; is the initial energy available &f;.

Problem 5.3 can be solved efficiently via linear programmiag both the objective function and
constraints are linear functions of the variables. We akseetthe following result which shows that the
tree construction and scheduling algorithm leads to a Iofigime than using the tree reconfiguration
algorithm.

Lemma 5.4:Let the lifetime of the network via solving Problem 5.3 bg, and viaT, alone bel(Ty).
Then

L(TIp) < L,

with L(Ty) = L* iff t;=0forallj=1,..., M.

Proof: AssumeL(Ty) > L*. Then settingg; = 0 for all j = 1,..., M leads to a better solution
than L*, i.e., L(Tp). This violates the optimality assumption &f. [ |
C. Example

In this section, we provide an example to demonstrate theryhend algorithms developed so far. We
start by describing the process and sensor models.

Process and Sensor ModelgVe consider the process in Eqn (1) with

0.1 0.05 0.0002

1

0 1 01 0.05
A= ,

0 O 1 0.1

0 O 0 1

and@ = 0.11. There are three sensors available. The measurementa@tgiate given by

vi = [1 0 0 0]z +ot,
v = [0 1 0 0]zx+0d,
e = [1 0 1 0zg+0},
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with IT; = 0.5,IT, = 0.25, andII3 = 0.1. Assume the sensors are placed in a line (Figure 12) with
relative distance

dip=2,d21 =1,d32 =1,

whered, , is the distance betwee$}, and S,,.
Let e (Sp, Sy) be the energy cost faf, transmitting a packet t&, ande,.(S,,S,) be the energy

cost for S, receiving such a packet froisi,. We use the following simplified energy model
er(Sp, Sq) = 1, €2(Sp, Sg) = diq,Vl <p,qg<3,p#q.

Assume the initial energy; available atS; is known and given by

& = & = &3 = 2000.
Let the performance specification at the fusion center be

Tr(P(Ty)) < 1.75V k.
It is easy to verify that

Tr(P(T'\ S2)) = 2.7062, Tr(P(T\ S3)) = 3.1110

and (A, [Hy; Hs]) is not observable. Therefore all three sensors are neededdir to satisfy the
estimation quality constraint.

Tree Construction Algorithminitially, we run the tree reconfiguration algorithm whicéturns the
initial tree T; as seen from Figure 13. It is easy to verify that P(T;)) = 1.5752 which satisfies the
estimation quality constraint.

We further construct three trees, i.84 = 3 here. Figure (14)—(16) demonstrate the use of the tree
construction algorithm. As a result,

T = {11, T, T3}

is returned withTr (P(T3)) = 1.6773, Tr (P(T»)) = 1.3777,Tr (P(T3)) = 1.5023, and energy cost

4 1 0 5
E=lgl=110 11 9 1 |,
1 1 16 16

where: = 1,2,3 andj = 0, 1,2, 3. Notice that during the construction @f to 73, only the topology

improvement algorithm modifies the input tree.
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Tree Scheduling Algorithmtet ¢; be the time thafl; will be used. In order to maximize the lifetime

of the network, we solve the following scheduling problem:

subject to
3
D tiei <2000,i =1,2,3,
j=0
t;>0,j=0,1,2,3.
Solving the above problem via standard LP toolbox gives tlleviing optimal value:
t* =1[186 0 0 131].

Therefore onlyT; and T3 will be used, and the maximum network lifetindg is given by

3
L* = th =ty + t3 = 301.
=0

It is also to compute that
L(Ty) = 200, L(Ty) = 181, L(Ty) = 222, L(T3) = 125.

Hence the network lifetime is indeed increased.

V1. CONCLUSIONS

In this paper, we consider the problem of discrete-timeestatimation over a wireless sensor network.
We first study the problem of optimal estimation over a setrea, and showed that the optimal estimator
is a chain of Kalman filters and the length of the chain cowesg to the depth of the tree. Closed-
form expression on the steady-state error covariance araat, which suggests how much each sensor
contributes to the overall estimation quality. Then we preés tree reconfiguration algorithm to establish
a sensor tree that has low overall sensor energy consumatidnalso guarantees a desired level of
estimation quality. After that, we propose a tree constoacand scheduling algorithm which has a
longer lifetime compared with the tree reconfiguration &thon. The idea is that a set of low energy
trees with different energy cost of individual sensors arestructed, and those trees are then scheduled
in a way that the network lifetime is maximized.

There are many interesting directions along the line of theent work that will be pursued in the

future.
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We have assumed the communication links are perfect in tirertiupaper in the sense that data packets
traveling on the links will not be dropped. However, in ma@ages, especially in wireless communications,
packet drops are often seen, e.g., due to interferencexgiadic. We have studied the tradeoffs between
measurement communication and estimate communicatiora fiixed sensor tree subject to random
packet drops on the communication links in [13]. We will hgt take a look at the tradeoff between
the estimation quality, the underlying graph that représére sensor communication, the quality of the
communication link, and the energy cost of the sensors. \&nasd synchronization of all sensor nodes
in the current work and we plan to relax this assumption inftiiere work. For the algorithms presented
in the paper, we will give bounds on how far the solution alediis from the global optimal solution,
and also look for better algorithms. Closing the loop usimg éstimation algorithms developed in paper

is also interesting.

APPENDIX
A. The Optimal Scheduling is NP-Complete

In this section we prove the following.

Problem 1. Show that finding the family which maximizes the networletime, among all families
consisting ofM trees, is NP-complete.

Before formalizing the problem of interest, we introducensonotation. Given a s&t = {s;,...,sny}
of vertices, let us denote by the family of all trees having' as vertex set. For any given integéf,
we denote byF,, the family of all subfamilies consisting of/ trees, with each tree belonging 0.
Formally speaking

Let f: 27 — R+, where2? denotes the power set @f. Moreover, let us denote by, fis) the
family F,, endowed with the functiorf;, which is obtained projecting on Fj;, meaning restricting
the domain off to Fy,.

We now have all ingredients needed to formalize our optitiomaproblem of interest:

Problem 2. Given (Fus, far), where f(G;) is computable in polynomial time for an; € Fay,
find

max{fy(G;) : G; € Far} (20)

Before proceeding with the proof of the NP-completenessyant to relate the formal problem (2) to
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our original problem (1) of interest. The correspondencasigollows.

S — sensors of the network
T — set of of possible trees of sensors
fu(Gi) — LP(GY)
(21)

where LP@;) is the solution of the linear programming problem appliedttie family GG; of sensor
trees, which is computable in polynomial time using, for repée, the ellipsoid method. Using the
correspondence given in Egn (21), it is straightforwardheak that problem (2) is the formalization of
problem (1). We next proceed with the proof of the NP-congriess. Since NP-completeness deals with
decision problems, we reformulate problem (2) as the fdligwdecision problem

Ilscheduling Given (Fu, far) where far(G;) is computable in polynomial time for any; € F,,, and

a real numbek, wherek > 0, is

{fm(G;) : Gy € Fyr} > k? (22)

If G; € Fu is such thatfy (G;) > k, then we say thaty; satisfiesthe decision problendl.,cquling-

We briefly recall the definition of NP-completness and refex teader to [14] for more details. We
start with the following definitions

Definition 1: Let IT be a decision problem. Then is said the belong to the cla$¢P if, given a
candidate solutiors for the problemlIl, it is possible to verify in polynomial time that satisfies the
decision problenl.

Definition 2: Let IT; andIl; be two decision problems. We say thi&t is polynomially reducable to
II, (notation:II; <, Ily), whenever any instanck of II; can be transformed in polynomial time to an
instancel, of II, such thatl; satisfiesII; if and only if I satisfiesII,.

Roughly speaking, Definition 2 says thH} is a special case dfl,. Thus, if IT; <, II,, then there
exists a polynomial time algorithm that transforms an ins&aforII; into an instance fofl,, that does
not change the outcome.

A decision problendl is said to beNP-completsf the following holds:

(@) IIis in NP
(b) II; <, II for any decision problendl; in NP.
We first establish (), i.e. thal,.ycquing 1S IN NP. Suppose that we are given a candidate solution, let

us call it G4, € Fas, for our problem. Since we can evalugtg on G, in polynomial time, then we
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can verify in polynomial time whethef(Gs,) > K. Thus we can verify in polynomial time whether
G0 satisfiesllyepeduling-

We next prove (b). We will show that the satisfiability prablecan be reduced tdl; 4equiing I
polynomial time. This will directly imply (b) since the safiability problem is well known to be NP-

complete, therefore for any decision probléhn in NP, we would have:
Hl Sp SAT ép Hschedulinga VHI e NP (23)

which clearly implies

1_[1 Sp Hscheduling; VI_[1 €ENP (24)

Before proceeding further, we give the formulation of thas$@bility decision problem.

SAT: Given (1, {0,1}"V), where is a boolean formula consisting of literals =1, zo, . .., z, find
an assigmeny € {0,1}" such that)(y) = 1.

We next show that we can map an instancéSafT to an instance oI cheduling @s follows.

Cayley [12] proved that the number of spanning trees of a det@simple graph with vertices is
n"~2. We use the result by Prufer [15] who noticed the fact thfat? is the number of ways to write
down a string of lengtlw — 2 from a setS of n numbers and constructed a code (called Prufer's code)
that maps polynomially such strings to labeled trees in ator@ne correspondence.

Let s € {0,1}(»=2M be a string, withs = s1s2...5,/, i.€. s iS obtained concatenatiny/ strings,
each having lengtiin — 2). We can associate to any strirgits corresponding tre&; := ¢(s;) given

by the Prufer code. This gives us a family of trees of siZedefined as

Gs = {o(51),0(52),-..,0(sm)} (25)

Since the time required to construct the Prufer’'s code feheabstrings;, i = 1... M, is polynomial
in the lengthn of the substring, it follows that the above construction adypomial in n. The function

/s associated to the constructed family would be

fu(Gs) = ¥(s) (26)

where ¢ (s) indicates the output of the evaluation of the boolean foamulon the strings. Since
evaluating a boolean formula of literals can be done polynomially, any instancef SAT can be
polynomially reduced to an instan¢é&'s, far(Gs)) of Ilscheduling- We set the decision boundakyin

1_Ischedulimg to 1.
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In order to complete the proof, we need to show that a stristairces satisfiesSAT if and only if the
corresponding instand@, satisfiesIIscheduling- ASsume first that a string instangesatisfiesSAT. Then
P(s) = 1. Since fy1(Gs) = 1(s) by construction and since the decision boundary 1, we would have
that G satisfiesITscheduling: ASsume now thati, satisfiesIIscheduling. This means thafy,(Gs) = 1.
Since fi(Gs) = ¢(s) by construction, we would have that the boolean formulan SAT evaluates to
one on the string instance thus it is satisfiable.

Having proven both (a) and (b), we can conclude ®g{cduling IS NP-complete.
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