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Abstract

New control paradigms are needed for large networks of wireless sensors and actuators in order

to efficiently utilize system resources. In this paper we consider the problem of discrete-time state

estimation over a wireless sensor network. Given a tree thatrepresents the sensor communications with the

fusion center, we derive the optimal estimation algorithm at the fusion center, and provide a closed-form

expression for the steady-state error covariance matrix. We then present a tree reconfiguration algorithm

that produces a sensor tree that has low overall energy consumption and guarantees a desired level of

estimation quality at the fusion center. We further proposea sensor tree construction and scheduling

algorithm that leads to a longer network lifetime than the tree reconfiguration algorithm. Examples are

provided throughout the paper to demonstrate the algorithms and theory developed.
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I. INTRODUCTION

Wireless sensor networks (WSN) have attracted much attention in the past decade which can be used for

environment and habitat monitoring, health care, home and office automation, traffic control, etc. [2]. In

WSN, there is an economic incentive towards using off-the-shelf sensors and standardized communication

solutions. A consequence of this is that the individual hardware components might be of relatively low

quality and that communication resources are quite limited. Thus a single sensor may not be enough to

provide a desired level of estimation quality, and data fusion from multiple sensors is often required.

Estimation and control over such resource-constrained networks thus require new design paradigms

beyond traditional sampled-data control. For example, consider the problem of state estimation over such

a network using a Kalman filter. The Kalman filter [3] is a well-established methodology for model-based

fusion of sensor data [4]. Kalman filtering under certain information constraints, such as decentralized

implementation, has been extensively studied [5]. The interaction between Kalman filtering and how data

is routed on a network seems to be less studied.

Another issue inherent with WSN is the limited energy resource available at each sensor node which

is typically battery-powered. Periodically changing the battery is often difficult and expensive, and

sometimes even impossible. Thus any good design must fully consider the energy resource constraint

and minimize the sensor energy consumption as much as possible.

Sensor network energy minimization is typically done via efficient MAC protocol design [6], or via

efficient scheduling of the sensor states [7]. A sensor transmitting scheduling was suggested by Chen et

al. [8]. Lai et al. [9] proposed a scheme to divide the deployed sensors into disjoint subsets of sensors

such that each subset can complete the mission, and then maximized the number of such disjoint subsets.

In this paper, we consider the problem of centralized state estimation while considering sensor energy

constraint. The main contributions are summarized as follows.

1) Given a tree that represents the sensors’ communicationswith the fusion center, we derive the

optimal estimation algorithm at the fusion center, and we provide a closed-form expression on the

steady-state error covariance matrix.

2) We present a tree reconfiguration algorithm that producesa sensor tree having low overall energy

consumption and providing a desired level of estimation quality at the fusion center.

3) We propose a sensor tree construction and scheduling algorithm that leads to a longer network

lifetime than the tree reconfiguration algorithm.

Routing protocols have been widely investigated in the literature. The main efforts have concentrated
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toward defining protocols that discover routes on demand using local and scalable technique, while

avoiding the overhead of storing routing tables or other expensive information such as link costs or

topology changes. The main challenge in those works is in discovering paths that are both time and

energy efficient, meaning that the information is deliveredacross the network in a reasonable amount of

time and at the minimum cost. Some examples include energy aware routing, attributed based routing,

rumor routing and directed diffusion. We refer the reader to[10] for a more detailed treatment. The focus

of our paper is different since we want to simultaneously solve an estimation and energy minimization

problem. More specifically, we want to find the most efficient network topology given constraints on

the estimation performance measured by the estimation error covariance matrix. Differently from the

works mentioned above, our network topology is static and recovered once for all as the solution of an

optimization problem.

All algorithms have low complexity which leads to efficient design and implementation in practice.

Furthermore, the low complexity brings the plug-and-play feature to the network, i.e., a new tree can be

calculated and dynamically formed when new sensors join thenetwork and existing sensors quit from the

network, or when the performance requirement is time-varying (e.g., see the example in Section IV-C).

The rest of the paper is organized as follows. In Section II, we give the mathematical models of the

considered problems, and provide some preliminary resultson Kalman filtering to facilitate the analysis

in remaining sections. In Section III, we derive the optimalestimation algorithm at the fusion center

for a given sensor tree. In Section IV, we present the a sensortree reconfiguration algorithm. Then in

Section V, we propose a sensor tree construction and scheduling algorithm that leads to a longer lifetime

than the sensor tree reconfiguration algorithm. Concludingremarks as well as future work are given in

the end.

II. PROBLEM SETUP AND PRELIMINARIES

A. Problem Setup

Consider the problem of state estimation over a wireless sensor network (Figure 1). The process

dynamics is described by

xk+1 = Axk +wk. (1)

A wireless sensor network consisting ofN sensors{S1, . . . , SN} is used to measure the state. When

Si takes a measurement of the state in Eqn (1), it returns

yi
k = Hixk + vi

k. (i = 1, . . . , N.) (2)
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In Eqn (1) and (2),xk ∈ IRn is the state vector in the realn-dimensional vector space,yi
k ∈ IRmi

is the observation vector atSi, wk ∈ IRn and vi
k ∈ IRmi are zero-mean Gaussian random vectors with

E[wkwj
′] = δkjQ, Q ≥ 0, E[vi

kv
i
t
′] = δktΠi, Πi > 0, E[vi

kv
j
t
′] = 0 ∀ t, k andi 6= j, E[wkv

i
t
′] = 0 ∀ i, t, k,

whereδkj = 0 if k 6= j andδkj = 1 otherwise. We assume that(A,
√
Q) is controllable, and(A,Call) is

observable, whereCall = [H1; · · · ;HN ], i.e., the joint measurement matrix of all sensors.

Each sensor can potentially communicate via a single-hop connection with a subset of all the sensors

by adjusting its transmission power. We assume the communication links are perfect in this paper in the

sense that data packets traveling on the links will not be dropped. Thus we will not consider the effect

of interference or fading, etc. Let us introduce a fusion center which we denote asS0, and consider a

treeT with root S0 (see Figure 2). We suppose that there is a non-zero single-hop communication delay,

which is smaller than the sampling time of the process. All sensors are synchronized in time, so the data

packet transmitted fromSi to S0 is delayed one sample when compared with the parent node ofSi. We

also assume thatSi aggregates the previous time data packets from all its childnodes with its current

time measurement into a single data packet. Therefore only one data packet is sent fromSi to its parent

node at each timek.

B. Problems of Interest

We are interested in the following problems. The first one is how should the fusion center process the

measurement data from the sensors which arrive at differenttimes (due to the multi-hop communications)

such that the estimation error is minimized?

The second problem is related to the energy constraint on thesensor nodes. Apparently, to minimize

the energy consumption, sensors should only use minimum transmission energy and communicate with

their nearby neighbors; on the other hand, the many short-hop communications introduce many delays

when delivering the data to the fusion center. As delays deteriorate the estimation quality, there is a clear

tradeoff between how much energy the sensors should spend and how good the estimation quality is at

the fusion center. We are thus interested in seeking a low-energy sensor tree which still guarantees a

desired level of estimation quality at the fusion center.

When all sensors need to participate in the estimation, minimizing the total energy consumption might

not lead to a longer lifetime of the network as demonstrated by the example in Section V-C. Therefore

we are also interested in schemes that can maximize the network lifetime.

In Section III, IV, and V we provide answers to the above threeproblems respectively. Before we

present the main result of the paper, we briefly introduce thestandard Kalman filtering upon which our
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optimal estimation algorithm for solving the first problem relies.

C. Kalman Filtering Preliminaries

Consider the process in Eqn (1) with the following single sensor measurement equation:

yk = Ckxk + vk, (3)

wherevk is zero-mean Gaussian random vectors withE[vkvj
′] = δkjRk, Rk > 0, andE[wkvj

′] = 0 ∀ j, k.

Notice that we consider time-varyingCk andRk here. The Kalman filter in its most general form can

assume time-varyingA and Q. The special form we look at here suffices for deriving the optimal

estimation algorithms in later sections.

Assume a linear estimator receivesyk and computes the optimal state estimate at each timek. Let Yk

denote all measurements available at the estimator at timek. Further define:

x̂k , E[xk|Yk], (4)

Pk , E[(xk − x̂k)(xk − x̂k)
′|Yk], (5)

P , lim
k→∞

Pk, if the limit exists. (6)

It is well known thatx̂k andPk can be computed as

(x̂k, Pk) = KF(x̂k−1, Pk−1, yk, Ck, Rk),

whereKF denotes the Kalman filter which consists of the following update equations at timek:

x̂−k = Ax̂k−1, (7)

P−
k = APk−1A

′ +Q, (8)

Kk = P−
k C

′
k[CkP

−
k C

′
k +Rk]

−1, (9)

x̂k = x̂−k +Kk(yk − Ckx̂
−
k ), (10)

Pk = (I −KkCk)P
−
k . (11)

Let Sn
+ be the set ofn by n positive semi-definite matrices. For functionsf1, f2 : Sn

+ → Sn
+, define

f1 ◦ f2 as

f1 ◦ f2(X) , f1

(

f2(X)
)

. (12)
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Further define the functionsh, g̃[C,R], g[C,R] : Sn
+ → Sn

+ as

h(X) , AXA′ +Q, (13)

g̃[C,R](X) , X −XC ′[CXC ′ +R]−1CX, (14)

g[C,R](X) , h ◦ g̃[C,R](X). (15)

We write g[C,R](X) and g̃[C,R] asgC and g̃C if there is no confusion on the underlying parametersR.

III. STATE ESTIMATION OVER A SENSORTREE

Let us define the following state estimate and other quantities at the fusion centerS0. For a given tree

T rooted atS0, definex̂k(T ), Pk(T ), P (T ) at S0 similar as that in Eqn (4)–(6). We writêxk(T ) as x̂k,

etc., if there is no confusion on the underlying treeT . In this section, we shall computêxk andPk for

a givenT .

Assume the treeT has depthD. DefineYk−i
k as the set of all measurements available at the fusion

center for timek − i at timek, i = 0, . . . ,D − 1. Let Sij
be the sensor node that isj hops away from

the fusion center. Define

Γj , [H1j
;H2j

; · · · ], j = 1, . . . ,D

Ci , [Γ1; · · · ; Γi], i = 1, . . . ,D

Υj , diag{Π1j
,Π2j

, · · · }, j = 1, . . . ,D

Ri , diag{Υ1, . . . ,Υi}, i = 1, . . . ,D.

Then the following theorem presents the optimal estimationalgorithm over a sensor tree and characterizes

the steady-state error covariance matrices in closed-formexpression.

Theorem 3.1 ( [1]):Consider a sensor treeT with depthD that is rooted at the fusion center. Then

1) x̂k andPk can be computed fromD Kalman filters in sequence as

(x̂k−D+1, Pk−D+1) = KF(x̂k−D, Pk−D,Yk−D+1
k , CD, RD),

...

(x̂k−1, Pk−1) = KF(x̂k−2, Pk−2,Yk−1
k , C2, R2),

(x̂k, Pk) = KF(x̂k−1, Pk−1,Yk
k , C1, R1).

2) Furthermore, the steady-state error covariance matrixP satisfies

P = g̃C1
◦ gC2

◦ · · · ◦ gCD−1
(P∞), (16)
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whereP∞ is the unique solution togCD
(P∞) = P∞.

IV. M INIMUM -ENERGY SENSORTREE

In this section, we seek a low-energy sensor tree that guarantees a desired level of estimation quality

at the fusion center. The following definition are used in theremaining of the paper. Define Node(T ) as

all the nodes ofT , FamT (Si) as the subtree ofT that is rooted atSi, ParT (Si) as the parent node ofSi

in T , and Edge(T ) as the edges ofT , i.e.,

Edge(T ) ,
{

(Si, Sj) : Si ∈ Node(T ), Sj = ParT (Si)
}

.

We sometimes omit the subscriptT if there is no confusion on the underlying treeT , e.g., we write

FamT (Si) simply as Fam(Si).

We assume to have an energy sensor model regulating the amount of energy expenditure for trans-

mission and reception. Further assume that the total energyused by two sensors (one sending and the

other receiving) increases as the distance between the two sensors increases [11]. Since at each time,

each sensor sends and/or receives fixed number of data packets, without loss of generality, leteitx(T ) be

the energy cost forSi sending a measurement packet to ParT (Si) andeirx(T ) as the energy cost forSi

receiving measurement packets from its children. The totalenergy cost ofT per time is then given by

e(T ) =
∑

Si∈T

eitx(T ) + eirx(T ). (17)

DenoteTall as the set of all sensor trees, and letPdesired∈ Sn
+ be given. Since the sensors operate on

batteries, it is natural to let the network operate at an energy level that is as low as possible. Thus we

are interested in the following problem:

Problem 4.1:How can we choose the sensor tree that has the least overall energy consumption yet

still provides certain desired level of estimation quality? i.e.,

min
T∈Tall

e(T )

subject to

P (T ) ≤ Pdesired

where the inequality is in the matrix sense, i.e.,Pdesired− P (T ) is positive semi-definite. Cayley [12]

showed that the number of all possible trees isNN−2, thus solving Problem 4.1 via exhaustive search

is intractable whenN is large. It is also non-convex, thus finding the global optimal solution is in

general difficult. To approximate the global optimal solution, we present the following tree reconfiguration

algorithm.
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A. Tree Reconfiguration Algorithm

The proposedTree Reconfiguration Algorithm(Figure 3) consists of three subroutines. The first one is

theTree Initialization Algorithmwhich forms an initial treeT0 (the top rectangular block). Depending on

whetherT0 provides the required estimation quality, theSwitching Tree Topology Algorithm(the middle-

right rectangular block) and theMinimum Energy Subtree Algorithm(the bottom rectangular block) are

executed respectively. These algorithms are presented in detail next.

Tree Initialization Algorithm:The idea contained in theTree Initialization Algorithmis that the fusion

centerS0 first establishes direct connections with its neighbor sensors using minimum transmission power

level ∆e. After that, its neighbor sensors establish further connections with their own neighbor sensors

also using minimum transmission power level∆e. This process continues until a tree of depthD is

formed. As a result, the complexity of the algorithm isO(D). The algorithm is presented graphically in

Figure 4.

Switching Tree Topology Algorithm:For a given treeTt, if P (Tt) 
 Pdesired, the tree needs to be adjusted

in a way that the estimation quality is improved. TheSwitching Tree Topology Algorithmprovides such

a way (Figure 5). The idea is that a sensor node inTt that is two-hops away from the fusion center is

reconfigured to directly connect with it, hence becomes onlyone-hop away from the fusion center. As

we prove shortly, this reconfiguration always improves the estimation quality at the fusion center.

We defineπ(Tt, Si) as the new tree obtained by removing the edge
(

Si,ParT (Si)
)

and inserting

(Si, S0). Further define

Sj−hop , {Si : Si is j−hop away from S0}. (18)

The algorithm is given as follows, whereTr(X) denotes the trace of the matrixX.

Algorithm 1 SWITCHING TREE TOPOLOGY

Init: Tt.

Compute

Sp = arg min
Si∈S2−hop

Tr
(

P (π(Tt, Si))
)

.

ReturnTt+1 := π(Tt, Sp).

Minimum Energy Subtree Algorithm:For a given treeT with P (T ) ≤ Pdesired, the Minimum Energy

Subtree Algorithmfinds the subtreeT ′ rooted atS0 with the property thatP (T ′) ≤ Pdesired, ande(T ′) ≤
e(T̃ ) for any subtreeT̃ of T rooted atS0. The idea is that all possible subtreesT̃ rooted atS0 and
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satisfying

P (T̃ ) ≤ Pdesired

are found in an efficient way utilizing the structure ofT . Then the subtreeT ′ which has the least overall

energy cost is returned. The details are as follows.

To make the presentation clear and easy to follow, we divide the algorithm into several key steps and

provide an example to illustrate each step. Before introducing the algorithm, let us defineS(i1i2 · · · ip)
as the subtree that consists of the sensor nodes{Si1 , Si2 , · · ·Sip

}. We further defineΩ(i1i2 · · · ip) as the

complementary tree ofS(i1i2 · · · ip) in T , i.e.,

Ω(i1i2 · · · ip) = T \ S(i1i2 · · · ip).

We assumei1 ≤ i2 ≤ · · · ≤ ip. The following example is provided to illustrate the algorithm.

Example 4.2:Consider the treeT with four sensor nodes in Figure 6. Assume the following:

1) P (T ) ≤ Pdesired, i.e.,T provides the desired estimation quality.

2) P (S(i)) 
 Pdesired, i = 1, 2, 3, 4, i.e., no single sensor provides the desired estimation quality.

3) P (S(ij)) ≤ Pdesired iff {i, j} = {1, 4}, i.e., among the two sensor pairs, only{S1, S4} can provide

the desired estimation quality.

4) P (Ω(i)) ≤ Pdesired, i = 2, 3, 4, i.e., any three sensors except{S2, S3, S4} can provide the desired

estimation quality.

5) The energy cost of a single-hop communication inT is ∆e.

By the above assumptions, it is easy to see that the minimum energy subtreeT ′ is given byT̃4 with

e(T̃4) = 2∆e.

Let us examine the case when we takeT as an input to theMinimum Energy Subtree Algorithmwhich

consists of the following key steps.

Step 1

• Init: T

• l := 0,Dl := {Sip
∈ T : P (Ω(ip)) ≤ Pdesired}.

In this step,D0 holds all individual sensors without which the remaining sensors still satisfy the

estimation quality constraint. Therefore in Example 4.2,D0 = {S2, S3, S4}.
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Step 2

• l := l + 1,Dl := Dl−1

• ∀ Sip
∈ Dl−1 with P (Ω(ip)) ≤ Pdesired

- ∀ q > p andSiq
6∈ Fam(Sip

),

if P (Ω(ipiq)) ≤ Pdesired, Dl := Dl

⋃

S(ipiq).

In this step,D1 holds all single-sensor or two-sensor pairs without which the remaining sensors still

satisfy the estimation quality constraint. The third line of step 2 eliminates the redundancy in listing

the subtrees asS(ipiq) = S(iqip), and if Sip
is removed from a tree, so is Fam(Sip

). Therefore in

Example 4.2,D1 = {S2, S3, S4, S(23)}.

Step 3

• l := l + 1,Dl := Dl−1

• ∀ S(ipiq) ∈ Dl−1 with P (Ω(ipiq)) ≤ Pdesired

- ∀ o > q andSio
6∈ (Fam(Sip

)
⋃

Fam(Siq
)),

if P (Ω(ipiqio)) ≤ Pdesired,

Dl := Dl

⋃

S(ipiqio).

Similar to step 3,D2 holds all single-sensor, two-sensor pairs or three-sensors without which the

remaining sensors still satisfy the estimation quality constraint. The algorithm continues in this way until

Dr = Dr−1 at some stepr ≤ D.

Step r + 1

• ReturnT ′ = argminΩ(·)∈D e(Ω(·))

In Example 4.2,D2 = {S2, S3, S4, S(23)} = D1. Hence the algorithm stops and returnsT ′ = Ω(23) =

S(14) = T̃4 with P (T ′) ≤ Pdesired ande(T ′) = 2∆e.

Remark 4.3:In general, the global minimum energy tree depends on the initial tree that we start with.

The particular initial tree that we choose is certainly arbitrary but has a low energy consumption. Star

tree (e.g., all sensor nodes connect to the fusion center directly) could be another choice, which provides

the least estimation error. However it is unlikely to be the minimum energy tree. A better approach may

be that start from a few random initial trees and run the algorithms simultaneously. In the end choose
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the minimum energy tree from all outcomes of the algorithms.This will be the essential idea in the next

section when we consider maximizing network lifetime.

B. Performance Analysis of the Algorithms

The performance of the previous algorithms are summarized in the following algorithm.

Theorem 4.4 ( [1]): (1) Given a treeTt, the Switching Tree Topology AlgorithmreturnsTt+1 ∈ Tall

such that

P (Tt+1) ≤ P (Tt) .

(2) Given a treeT with P (T ) ≤ Pdesired, the Minimum Energy Subtree AlgorithmreturnsT ′ ⊂ T

rooted atS0 such that

P (T ′) ≤ Pdesiredand e(T ′) ≤ e(T̃ )

for any otherT̃ ⊂ T that is rooted atS0.

(3) If ∃ T ∈ Tall such thatP (T ) ≤ Pdesired, then the outputT ′ from theTree Reconfiguration Algorithm

satisfiesP (T ′) ≤ Pdesired.

C. Example

In this section, we provide an example to demonstrate the useof the tree reconfiguration algorithm.

Consider the following process with three sensors. The dynamics of the process and sensor measurement

equations are as follows:

xk = 0.9xk−1 + wk−1,

y1
k = xk + v1

k,

y2
k = xk + v2

k,

y3
k = xk + v3

k,

with Q = 1,Π1 = 1.5,Π2 = 1, andΠ3 = 0.5.

The sensors positions are illustrated in Figure 7. Assume that if Si is connected toSi−1, i = 1, 2, 3,

the energy of communication is∆e; if Si is connected toSi−2, i = 2, 3, the energy is4∆e and if S3

is connected toS0, the energy is8∆e. Without loss of generality, for the remaining examples, weonly

calculate the total transmission energy.
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Suppose the following performance specification is received by the fusion center:

P ≤ 0.75, 1 ≤ k ≤ 100,

P ≤ 0.25, 101 ≤ k ≤ 200,

P ≤ 1.0, 201 ≤ k ≤ 300,

P ≤ 0.75, 301 ≤ k ≤ 500.

Then the fusion center can find the corresponding minimum energy tree that fulfills the performance

requirement. Figure 8 shows the simulation result when the fusion center uses the same tree (T0 \S3) all

the time, and Figure 9 shows when it reconfigures the trees according to the performance specification. It

is easy to see that when101 ≤ k ≤ 200, the total energy usage increases from2∆e to 13∆e. However,

the error becomes much smaller; when201 ≤ k ≤ 300, the total energy usage reduces to just∆e.

Although in this case the error becomes much larger, the performance specification is still satisfied.

V. TOWARDS MAXIMIZING SENSORNETWORK L IFETIME

We say the sensor network is functioning if there are sufficient number of sensors that can provide

the estimation equality, i.e.,P ≤ Pdesired. We define the network lifetime as the first time that the sensor

network stops functioning, i.e., after some sensors die dueto running out of battery, the remaining sensors

cannot provide the estimation equality.

In some applications, all sensors might be needed (or some high quality sensors are always needed) for

guaranteeing the estimation quality at the fusion center. In those scenarios, although the tree configuration

algorithm in the previous section minimizes the total energy consumption of the sensor nodes, it may

not maximize the lifetime of the network, which is given by inthis case the first time that a sensor dies

due to running out of battery.

For example, consider a network that consists of two sensors(Figure 10). Assume bothT1 andT2 in

Figure 10 satisfy

P (Ti) ≤ Pdesired, i = 1, 2.

Further assume that

P (Si) 
 Pdesired, i = 1, 2.

Let eij be the total energy cost forSi in Tj , i, j = 1, 2, and letEi be the initial energy forSi. Consider

the following parameters.

E = [eij ] =





10 1

1 10



 , E1 = E2 = 1000.
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Denote the lifetime of the network asL. It is easy to verify thatL = 100 when theTree Reconfiguration

Algorithm is executed, asT1 is the only tree used.

It turns out that we can increaseL by mixing the use ofT1 andT2. Let 0 ≤ α ≤ 1 denote the portion

of times thatT1 is used, we can show that if0 < α < 1, thenL > 100. It is also easy to verify thatL

attains its maximum value at181 whenα = 0.5.

From this example, we see that simply minimizing the total energy consumption of the sensors may

not maximize the network lifetime, which is the focus of thissection.

We point out in Section IV that the set of all possible trees has cardinalityNN−2. Thus optimal

scheduling on theNN−2 trees is intractable whenN is large. We therefore restrict our attention to a set

of M << NN−2 trees, and optimally schedule thoseM trees instead. It turns out that choosing a set of

M trees that maximizes the lifetime is NP-complete. The complete proof is provided in Section A in the

appendix. We therefore propose a tree construction algorithm that generates a set ofM trees followed

by a scheduling algorithm on theM trees. We show that these algorithms lead to a longer lifetime than

the previous tree reconfiguration algorithm.

A. Tree Construction Algorithm

The proposed tree construction algorithm consists of threemain subroutines which are theRandom

Initialization Algorithm, the Topology Improvement Algorithm, and theTree Reconfiguration Algorithm

from Section IV. The overall algorithm is presented in Figure 11.

Random Initialization Algorithm:For a givenT that is rooted atS0, defineSc(T ) as

Sc(T ) , {Si : Si is not in T}.

The intuitive idea of theRandom Initialization Algorithmis thatSj−hop, j = 1, . . . ,D, defined in Eqn (18),

are randomly determined in sequence until allSi’s are included in the tree.

After the execution of theRandom Initialization Algorithm, an initial tree of depthD is constructed

with |Sj−hop| = nj, j = 1, . . . ,D, and
∑D

j=1 nj = N .

Remark 5.1:If n1 = N , then the algorithm returnsT ⋆, i.e., all sensor nodes connect toS0 directly.

Topology Improvement Algorithm:Since the previous algorithm randomly constructs the initial tree,

some sensor communication paths may be established inefficiently, i.e., some sensors use more energy

yet need more hops to communicate withS0. TheTopology Improvement Algorithmaims to remove this

inefficiency.
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Algorithm 2 RANDOM INITIALIZATION

D := 0

T := {S0, ∅}
∀j Sj−hop := ∅
Sc = {S1, . . . , SN}
while (Sc 6= ∅) do

D := D + 1

Pick nD from (1, |Sc|) uniformly randomly.

l := 1

while (l ≤ nD) do

Pick anySp ∈ Sc and anySq ∈ S(D−1)−hop uniformly randomly.

ConnectSp to Sq.

Sc := Sc \ {Sp}
T := T ∪ {Sp, (Sp, Sq)}
SD−hop := SD−hop ∪ {Sp}
l := l + 1

end while

end while

WhenSi is connected toSp, we defineτi,p as the number of hops betweenSi and the fusion center

S0, andei,p as the transmission energy cost ofSi. We further defineτ0 ande0 for Si in the initial tree

constructed by theRandom Initialization Algorithm.

We consider modifying the path ofSi in the initial tree, whereSi ∈ Sj−hop, j ≥ 2, only if there exists

Sp in the same tree andSp ∈ Sj−hop, j ≤ τ0 − 1 such that eitherei,p < e0 or ei,p = e0 and τi,p < τ0.

In these cases,Si is connected toSp. The first condition corresponds to reducing the energy costof Si

yet not making the hops betweenSi andS0 larger; the second condition corresponds to making the hops

betweenSi andS0 smaller yet not increasing its energy cost. DefineFi as the indicator function forSi,

andFi = 1 means thatSi has already been examined for possible improvement andFi = 0 otherwise.

The full algorithm is presented below.

Notice thatFi is set to be 1 for allSi ∈ Sj−hop, j ≤ 1, as for those sensor nodes that are one hop away

from S0, no improvement can be made that further reduces the energy cost (and maintains the same hop
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Algorithm 3 TOPOLOGY IMPROVEMENT

∀i Fi := 0

∀Si ∈ Sj−hop, j ≤ 1, Fi := 1

while ∃Fi = 0 do

Fi := 1

Σ := {Sp : Sp ∈ Sj−hop, j ≤ τ0 − 1, ei,p ≤ e0}
if Σ 6= ∅ then

τi,q := min{τi,p : Sp ∈ Σ}
if ei,q < e0 or (ei,q = e0 andτi,q < τ0) then

reconnectSi to Sq

updateSj−hop, j ≤ τi0

end if

end if

end while

numbers) or reduces the hop numbers.

At this step, we have constructed a set ofM randomized initial trees. We then use them as input to the

Tree Reconfiguration Algorithmfrom Section IV-A (ignoring its tree initialization algorithm subroutine)

to make sure that each tree provides the desired estimation quality.

Remark 5.2:The randomized algorithm here to a certain extent guarantees that the constructedM trees

will have different energy cost of the individual sensor nodes, hence through the scheduling algorithm

presented in the next section, the overall lifetime of the network is maximized.

B. Tree Scheduling Algorithm

Up to now, we have constructed a set of treesT and for eachTj ∈ T ,

P (Tj) ≤ Pdesired.

Let T0 be the low-energy tree from the tree reconfiguration algorithm in Section IV. Denoteθ as a

scheduling policy onT ∪ {T0}, andtj(θ) as the time thatTj is used for the policyθ. Then the network

lifetime L(θ) can be computed as

L(θ) =
M
∑

j=0

tj(θ).
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Consider the following optimization problem:

Problem 5.3:

max
t0,...,tM

M
∑

j=0

tj

subject to

M
∑

j=0

tjeij ≤ Ei, i = 1, . . . , N,

whereeij is the energy consumption for sensorSi in treeTj, andEi is the initial energy available atSi.

Problem 5.3 can be solved efficiently via linear programming, as both the objective function and

constraints are linear functions of the variables. We also have the following result which shows that the

tree construction and scheduling algorithm leads to a longer lifetime than using the tree reconfiguration

algorithm.

Lemma 5.4:Let the lifetime of the network via solving Problem 5.3 beL∗, and viaT0 alone beL(T0).

Then

L(T0) ≤ L∗,

with L(T0) = L∗ iff t∗j = 0 for all j = 1, . . . ,M .

Proof: AssumeL(T0) > L∗. Then settingt∗j = 0 for all j = 1, . . . ,M leads to a better solution

thanL∗, i.e.,L(T0). This violates the optimality assumption ofL∗.

C. Example

In this section, we provide an example to demonstrate the theory and algorithms developed so far. We

start by describing the process and sensor models.

Process and Sensor Models:We consider the process in Eqn (1) with

A =

















1 0.1 0.05 0.0002

0 1 0.1 0.05

0 0 1 0.1

0 0 0 1

















,

andQ = 0.1I. There are three sensors available. The measurement equations are given by

y1
k = [ 1 0 0 0 ]xk + v1

k,

y2
k = [ 0 1 0 0 ]xk + v2

k,

y3
k = [ 1 0 1 0 ]xk + v3

k,
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with Π1 = 0.5,Π2 = 0.25, and Π3 = 0.1. Assume the sensors are placed in a line (Figure 12) with

relative distance

d1,0 = 2, d2,1 = 1, d3,2 = 1,

wheredp,q is the distance betweenSp andSq.

Let etx(Sp, Sq) be the energy cost forSp transmitting a packet toSq and erx(Sp, Sq) be the energy

cost forSq receiving such a packet fromSp. We use the following simplified energy model

erx(Sp, Sq) = 1, etx(Sp, Sq) = d2
p,q,∀1 ≤ p, q ≤ 3, p 6= q.

Assume the initial energyEi available atSi is known and given by

E1 = E2 = E3 = 2000.

Let the performance specification at the fusion center be

Tr
(

P (Tk)
)

≤ 1.75 ∀ k.

It is easy to verify that

Tr
(

P (T \ S2)
)

= 2.7062, Tr
(

P (T \ S3)
)

= 3.1110

and (A, [H2;H3]) is not observable. Therefore all three sensors are needed inorder to satisfy the

estimation quality constraint.

Tree Construction Algorithm:Initially, we run the tree reconfiguration algorithm which returns the

initial tree T0 as seen from Figure 13. It is easy to verify thatTr
(

P (T0)
)

= 1.5752 which satisfies the

estimation quality constraint.

We further construct three trees, i.e.,M = 3 here. Figure (14)–(16) demonstrate the use of the tree

construction algorithm. As a result,

T = {T1, T2, T3}

is returned withTr
(

P (T1)
)

= 1.6773,Tr
(

P (T2)
)

= 1.3777,Tr
(

P (T3)
)

= 1.5023, and energy cost

E = [eij ] =











4 1 0 5

10 11 9 1

1 1 16 16











,

wherei = 1, 2, 3 and j = 0, 1, 2, 3. Notice that during the construction ofT1 to T3, only the topology

improvement algorithm modifies the input tree.
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Tree Scheduling Algorithm:Let tj be the time thatTj will be used. In order to maximize the lifetime

of the network, we solve the following scheduling problem:

max
t0,...,t3

3
∑

j=0

tj

subject to
3

∑

j=0

tjeij ≤ 2000, i = 1, 2, 3,

tj ≥ 0, j = 0, 1, 2, 3.

Solving the above problem via standard LP toolbox gives the following optimal value:

t∗ = [186 0 0 131].

Therefore onlyT0 andT3 will be used, and the maximum network lifetimeL∗ is given by

L∗ =

3
∑

j=0

tj = t0 + t3 = 301.

It is also to compute that

L(T0) = 200, L(T1) = 181, L(T2) = 222, L(T3) = 125.

Hence the network lifetime is indeed increased.

VI. CONCLUSIONS

In this paper, we consider the problem of discrete-time state estimation over a wireless sensor network.

We first study the problem of optimal estimation over a sensortree, and showed that the optimal estimator

is a chain of Kalman filters and the length of the chain corresponds to the depth of the tree. Closed-

form expression on the steady-state error covariance is obtained, which suggests how much each sensor

contributes to the overall estimation quality. Then we present a tree reconfiguration algorithm to establish

a sensor tree that has low overall sensor energy consumptionand also guarantees a desired level of

estimation quality. After that, we propose a tree construction and scheduling algorithm which has a

longer lifetime compared with the tree reconfiguration algorithm. The idea is that a set of low energy

trees with different energy cost of individual sensors are constructed, and those trees are then scheduled

in a way that the network lifetime is maximized.

There are many interesting directions along the line of the current work that will be pursued in the

future.
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We have assumed the communication links are perfect in the current paper in the sense that data packets

traveling on the links will not be dropped. However, in many cases, especially in wireless communications,

packet drops are often seen, e.g., due to interference, fading, etc. We have studied the tradeoffs between

measurement communication and estimate communication fora fixed sensor tree subject to random

packet drops on the communication links in [13]. We will further take a look at the tradeoff between

the estimation quality, the underlying graph that represents the sensor communication, the quality of the

communication link, and the energy cost of the sensors. We assumed synchronization of all sensor nodes

in the current work and we plan to relax this assumption in thefuture work. For the algorithms presented

in the paper, we will give bounds on how far the solution obtained is from the global optimal solution,

and also look for better algorithms. Closing the loop using the estimation algorithms developed in paper

is also interesting.

APPENDIX

A. The Optimal Scheduling is NP-Complete

In this section we prove the following.

Problem 1: Show that finding the family which maximizes the network lifetime, among all families

consisting ofM trees, is NP-complete.

Before formalizing the problem of interest, we introduce some notation. Given a setS = {s1, . . . , sN}
of vertices, let us denote byT the family of all trees havingS as vertex set. For any given integerM ,

we denote byFM the family of all subfamilies consisting ofM trees, with each tree belonging toT .

Formally speaking

FM = {Gi : Gi ⊂ T , |Gi| = M} (19)

Let f : 2T → R
+, where2T denotes the power set ofT . Moreover, let us denote by(FM , fM ) the

family FM endowed with the functionfM which is obtained projectingf on FM , meaning restricting

the domain off to FM .

We now have all ingredients needed to formalize our optimization problem of interest:

Problem 2: Given (FM , fM ), wherefM(Gi) is computable in polynomial time for anyGi ∈ FM ,

find

max{fM (Gi) : Gi ∈ FM} (20)

Before proceeding with the proof of the NP-completeness, wewant to relate the formal problem (2) to
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our original problem (1) of interest. The correspondence isas follows.

S → sensors of the network

T → set of of possible trees of sensors

fM(Gi) → LP(Gi)

(21)

where LP(Gi) is the solution of the linear programming problem applied to the familyGi of sensor

trees, which is computable in polynomial time using, for example, the ellipsoid method. Using the

correspondence given in Eqn (21), it is straightforward to check that problem (2) is the formalization of

problem (1). We next proceed with the proof of the NP-completeness. Since NP-completeness deals with

decision problems, we reformulate problem (2) as the following decision problem

Πscheduling Given(FM , fM ) wherefM(Gi) is computable in polynomial time for anyGi ∈ FM , and

a real numberk, wherek ≥ 0, is

{fM (Gi) : Gi ∈ FM} ≥ k? (22)

If Gi ∈ FM is such thatfM (Gi) ≥ k, then we say thatGi satisfiesthe decision problemΠscheduling.

We briefly recall the definition of NP-completness and refer the reader to [14] for more details. We

start with the following definitions

Definition 1: Let Π be a decision problem. ThenΠ is said the belong to the classNP if, given a

candidate solutions for the problemΠ, it is possible to verify in polynomial time thats satisfies the

decision problemΠ.

Definition 2: Let Π1 andΠ2 be two decision problems. We say thatΠ1 is polynomially reducable to

Π2 (notation:Π1 ≤p Π2), whenever any instanceI1 of Π1 can be transformed in polynomial time to an

instanceI2 of Π2 such thatI1 satisfiesΠ1 if and only if I2 satisfiesΠ2.

Roughly speaking, Definition 2 says thatΠ1 is a special case ofΠ2. Thus, if Π1 ≤p Π2, then there

exists a polynomial time algorithm that transforms an instance forΠ1 into an instance forΠ2, that does

not change the outcome.

A decision problemΠ is said to beNP-completeif the following holds:

(a) Π is in NP

(b) Π1 ≤p Π for any decision problemΠ1 in NP.

We first establish (a), i.e. thatΠscheduling is in NP. Suppose that we are given a candidate solution, let

us call itGsol ∈ FM , for our problem. Since we can evaluatefM on Gsol in polynomial time, then we

June 10, 2009 DRAFT



21

can verify in polynomial time whetherf(Gsol) ≥ K. Thus we can verify in polynomial time whether

Gsol satisfiesΠscheduling.

We next prove (b). We will show that the satisfiability problem can be reduced toΠscheduling in

polynomial time. This will directly imply (b) since the satisfiability problem is well known to be NP-

complete, therefore for any decision problemΠ1 in NP, we would have:

Π1 ≤p SAT ≤p Πscheduling, ∀Π1 ∈ NP (23)

which clearly implies

Π1 ≤p Πscheduling, ∀Π1 ∈ NP (24)

Before proceeding further, we give the formulation of the satisfiability decision problem.

SAT: Given (ψ, {0, 1}N ), whereψ is a boolean formula consisting ofn literals x1, x2, . . . , xN , find

an assigmenty ∈ {0, 1}N such thatψ(y) = 1.

We next show that we can map an instance ofSAT to an instance ofΠscheduling as follows.

Cayley [12] proved that the number of spanning trees of a complete simple graph withn vertices is

nn−2. We use the result by Prufer [15] who noticed the fact thatnn−2 is the number of ways to write

down a string of lengthn− 2 from a setS of n numbers and constructed a code (called Prufer’s code)

that maps polynomially such strings to labeled trees in a one-to-one correspondence.

Let s ∈ {0, 1}(n−2)M be a string, withs = s1s2 . . . sM , i.e. s is obtained concatenatingM strings,

each having length(n − 2). We can associate to any stringsi its corresponding treeTi := φ(si) given

by the Prufer code. This gives us a family of trees of sizeM defined as

Gs = {φ(s1), φ(s2), . . . , φ(sM )} (25)

Since the time required to construct the Prufer’s code for each substringsi, i = 1 . . .M , is polynomial

in the lengthn of the substring, it follows that the above construction is polynomial in n. The function

fM associated to the constructed familyGs would be

fM (Gs) = ψ(s) (26)

where ψ(s) indicates the output of the evaluation of the boolean formula ψ on the strings. Since

evaluating a boolean formula ofn literals can be done polynomially, any instances of SAT can be

polynomially reduced to an instance(Gs, fM (Gs)) of Πscheduling. We set the decision boundaryk in

Πscheduling to 1.
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In order to complete the proof, we need to show that a string instances satisfiesSAT if and only if the

corresponding instanceGs satisfiesΠscheduling. Assume first that a string instances satisfiesSAT. Then

ψ(s) = 1. SincefM(Gs) = ψ(s) by construction and since the decision boundaryk = 1, we would have

thatGs satisfiesΠscheduling. Assume now thatGs satisfiesΠscheduling. This means thatfM (Gs) = 1.

SincefM(Gs) = ψ(s) by construction, we would have that the boolean formulaψ in SAT evaluates to

one on the string instances, thus it is satisfiable.

Having proven both (a) and (b), we can conclude thatΠscheduling is NP-complete.
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Figure 1. State Estimation Using a Wireless Sensor Network

Figure 2. An Example of a Sensor Tree

Figure 3. Tree Reconfiguration Algorithm
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Figure 4. Tree Initialization Algorithm: Intuitive Idea

Figure 5. Switching Tree Topology Algorithm: Intuitive Idea

Figure 6. TreeT and Some SubtreẽTs

Figure 7. Different Trees Formed by the Tree ReconfigurationAlgorithm
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Figure 8. State and Error Evolution without Tree Reconfiguration

Figure 9. State and Error Evolution with Tree Reconfiguration
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Figure 10. Network with Two Sensors

Figure 11. Tree Construction Algorithm

Figure 12. Initial Sensor Topology
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Figure 13. T0

Figure 14. T1

Figure 15. T2

Figure 16. T3
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