
An Aircraft Electric Power Testbed for Validating

Automatically Synthesized Reactive Control Protocols

Robert Rogersten†, Huan Xu?, Necmiye Ozay?, Ufuk Topcu‡, and Richard M. Murray?

†KTH Royal Inst. of Tech.
rrog@kth.se

?California Inst. of Tech.
{mumu, necmiye, murray}

@cds.caltech.edu

‡University of Pennsylvania
utopcu@seas.upenn.edu

ABSTRACT
Modern aircraft increasingly rely on electric power for sub-
systems that have traditionally run on mechanical power.
The complexity and safety-criticality of aircraft electric
power systems have therefore increased, rendering the de-
sign of these systems more challenging. This work is moti-
vated by the potential that correct-by-construction reactive
controller synthesis tools may have in increasing the e↵ec-
tiveness of the electric power system design cycle. In partic-
ular, we have built an experimental hardware platform that
captures some key elements of aircraft electric power sys-
tems within a simplified setting. We intend to use this plat-
form for validating the applicability of theoretical advances
in correct-by-construction control synthesis and for study-
ing implementation-related challenges. We demonstrate a
simple design workflow from formal specifications to auto-
generated code that can run on software models and be used
in hardware implementation. We show some preliminary re-
sults with di↵erent control architectures on the developed
hardware testbed.

1. INTRODUCTION AND MOTIVATION
Aircraft electric power systems have become increasingly

important over the years because they support various sub-
systems and essential services on aircraft. These electrical
services and subsystems are commonly referred to as sys-
tem loads. System loads are of two categories, namely, pri-
mary loads (some of these are safety- or mission-critical)
and secondary (noncritical) loads. The system needs to en-
sure that the primary loads are supplied with power at all
times; that is, if a fault a↵ects a part of the system that
powers a primary load, the system must be able to recon-
figure and provide power to the load through another path.
In order to reconfigure a system, it is necessary to reroute
power, which is accomplished with high power electromag-
netic devices called contactors. The contactors are arranged
such that they are magnetically held in a preferred state by
an applied signal. The state is either open or closed. To

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

HSCC ’13 Philadelphia, PA USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

reconfigure the contactors to react to faults and modes of
operation, the system uses control logic that can sense sys-
tem conditions and environmental conditions under which
the system operates. The electric power system, therefore,
includes voltage and current sensors connected to the con-
trol logic. In current practice, the control logic is often de-
signed by hand, resulting in lengthy design and verification
cycles. As an alternative approach, [11] and [12] explored
the application of correct-by-construction reactive controller
synthesis techniques.

In this paper, we report on our recently developed sim-
ulation models and a hardware testbed for validating re-
active controllers synthesized using TuLiP [11], a temporal
logic planning toolbox, in order to investigate the validity
of the assumptions made in controller synthesis. TuLiP is
a collection of Python-based code used for automatic syn-
thesis of correct-by-construction embedded control software.
Automatic synthesis of reactive centralized and distributed
controllers of aircraft electric power systems is described in
detail in [12]. The particular distributed synthesis method
adopted in this study is introduced in [4] and [5].

University-scale testbeds for research on correct-by-
construction controller synthesis are fairly limited. An ad-
vanced diagnostics and prognostics testbed is described in
[9]. Some applications of this testbed to the electric power
systems of spacecraft and aircraft are detailed in [3]. How-
ever, the experiments focused on diagnostic queries of the
system, while our work is focused on the implementation of
correct-by-construction control protocols for fault-tolerant
operations. A robotics testbed implementing correct-by-
construction controllers is described in [2].
TuLiP can be used to synthesize logic so that the satis-

faction of certain safety requirements is guaranteed. The
synthesized logic enables the contactors to react to changes
in system conditions such as the status of generators and
rectifier units. This is commonly referred to as a reactive
system. The safety requirements used in our simulation
models and hardware testbed stipulate that the alternat-
ing current generators should never be paralleled and that
the duration for which the bus is not powered should never
exceed a certain limit. They also include the environment-
related assumption that at least a subset of the generators
and rectifier units must be working at all times. The simula-
tion models were built with the physical modeling software
SimPowerSystems, an extension of Simulink [10]. In or-
der to validate the controller on the experimental hardware
platform, we synthesized and tested it using TuLiP and Sim-

PowerSystems, respectively. Thereafter, we investigated

Submitted, Hybrid Systems: Computation and Control (HSCC) 2013
http://www.cds.caltech.edu/~murray/papers/rog+13-hscc.html

Figure 1: Single-line diagram of the power system
testbed. Contactors are represented by double bars.
The AC and DC sides of the system are separated
by rectifier units (RU).

the validity of the assumptions used for controller synthesis
on the experimental hardware platform.

An aircraft electric power system uses di↵erent voltage
levels, which can broadly be divided into four categories,
namely, high-voltage AC, high-voltage DC, low-voltage AC,
and low-voltage DC. The topology in Figure 1 is of spe-
cific interest because it is representative of some of the key
features of aircraft electric power systems in simplified set-
tings. Therefore, the hardware testbed was built based on
the above mentioned topology.

2. THEORETICAL BACKGROUND
We now discuss the formal specification language utilized

for the synthesis of control protocols and how these protocols
are implemented in the software models and on the hardware
testbed.

2.1 Linear Temporal Logic
In reactive systems, correctness depends, not only on in-

puts and outputs of a computation, but on execution of the
system. Temporal logic is a branch of logic that incorporates
temporal aspects to reason about propositions in time. In
this paper, we consider a version of temporal logic called
linear temporal logic (LTL) [1].

LTL includes Boolean connectors like negation (¬), dis-
junction (_), conjunction (^), material implication (!), and
two basic temporal modalities next (#) and until (U). By
combining these operators, it is possible to specify a wide
range of requirements. Formulas involving other operators
can be derived from these basic ones, including eventually
(3) and always (⇤).

An atomic proposition is a statement on system variables
v that has a unique truth value (True or False) for a given
value v. For a set ⇡ of atomic propositions, any atomic
proposition p 2 ⇡ is an LTL formula. Given a propositional
formula describing properties of interest, widely used tem-

poral specifications can be defined in terms of their corre-
sponding LTL formulas as follows. A safety formula asserts
that a property will remain true throughout the entire exe-
cution (i.e., nothing bad will happen). A response formula
states that at some point in the execution following a state
where a property is true, there exists a point where a second
property is true. A response formula is used to describe how
systems need to react to changes in environment or operat-
ing conditions. A response property, for example, can be
used to describe how the system should react to a generator
failure: if a generator fails, then at some point a correspond-
ing contactor should open [11], [12].

2.2 Reactive Synthesis
A system consists of a set V of variables. The domain of

V , denoted by dom(V), is the set of valuations of V . Let
E and P be sets of environment and controlled variables,
respectively. Let s = (e, p) 2 dom(E) ⇥ dom(P) be a state
of the system. Consider a LTL specification ' of assume-
guarantee form

' = '

e

! '

s

,

where, roughly speaking, '
e

characterizes the assumptions
on the environment and '

s

characterizes the system require-
ments. LTL formulas are interpreted over infinite sequences
of states, where s0s1s2 . . . is an infinite sequence of valua-
tions of environment and controlled variables. The synthesis
problem is then concerned with constructing a strategy, i.e.,
a partial function f : (s0s1 . . . st�1, et) 7! p

t

, which chooses
the move of the controlled variables based on the state se-
quence so far and the behavior of the environment so that
the system satisfies '

s

as long as the environment satisfies
'

e

.

For general LTL, the synthesis problem has a doubly expo-
nential complexity [7]. A subset of LTL, namely generalized
reactivity (2.2) (GR(1)), can be solved in polynomial time
(polynomial in the number of valuations of the variables in
E and P) [6]. GR(1) specifications restrict '

e

and '

s

to
take the following form, for ↵ 2 {e, s},

'

↵

:= '

↵

init ^
^

i2I

↵
1

2'

↵

1,i ^
^

i2I

↵
2

23'

↵

2,i,

where '

↵

init is a propositional formula characterizing the ini-
tial conditions; '

↵

1,i are transition relations characterizing
safe, allowable moves and propositional formulas character-
izing invariants; and '

↵

2,i are propositional formulas charac-
terizing states that should be attained infinitely often. For
the specifications considered in this paper, the safety frag-
ment of GR(1) su�ces.

Given a GR(1) specification, the digital design synthe-
sis tool implemented in JTLV (a framework for developing
temporal verification algorithm) [8] generates a finite-state
automaton that represents a switching strategy for the sys-
tem. TuLiP provides an interface to JTLV.

2.3 Testbed Specifications
Consider the single-line diagram in Figure 1 in which en-

vironment variables are health statuses of generators and
rectifier units, and controlled variables are the state of con-
tactors. Consider also two di↵erent controller implementa-
tions: a centralized logic that runs the system with a sin-
gle automaton and a distributed logic that has two di↵erent

automata, one for the AC subsystem and one for the DC
subsystem, running sequentially.

For the centralized logic, the environment assumptions
are: (i) at least one generator must always be healthy, and
(ii) at least one rectifier unit must always be healthy. In
LTL, this can be written as

⇤(((gen1 = healthy) _ (gen2 = healthy)) ^
((ru1 = healthy) _ (ru2 = healthy))),

(1)

where gen1, gen2, ru1, and ru2 are health statuses of the two
generators and the two rectifier units, respectively. To en-
sure non-paralleling of AC sources, we disallow any configu-
ration of contactors in which a path may be created between
the two generators. The contactors c1 and c2 are below the
generators in Figure 1, and c3 is between the AC buses.
Therefore, contactors c1, c2, and c3 can never be closed at
the same time. This is written as

⇤¬((c1 = closed) ^ (c2 = closed) ^ (c3 = closed)).

The last specification ensures that all buses can be unpow-
ered for no more than a time T . The limit that unpow-
ered time can be set to depends on timing characteristics
of the testbed, witch is explained in Section 4.1. To syn-
thesize centralized logic, we used the assumption that this
time is zero; thus, the specifications that all buses b

i

fulfill
⇤(b

i

= powered), for i 2 {1, 2, 3, 4} can be set.
To synthesize distributed logic, we separate the system

into two subsystems, seen in Figure 1. The AC subsystem
contains all AC components (generators, AC contactors, AC
buses, and loads). The DC subsystem contains all rectifier
units, DC contactors, buses, and loads. All specifications
from the centralized case decompose and carry over to the
distributed case. However, in order to ensure that the overall
specification is realizable, we impose additional restrictions
on the components located at the interface between subsys-
tems. The rectifier units contain capacitors that can be cho-
sen so that they create a delay T

RU

, in which the DC buses
stays powered even after that an AC bus gets unpowered.

If T
RU

> T the additional interface refinement comes in
the form of a guarantee specification that all DC buses b

i

, for
i 2 {1, 2} will always be powered ⇤(b

i

= powered), provided
that both rectifier units stay healthy, i.e.,

⇤((ru1 = healthy) ^ (ru2 = healthy)).

This guarantee is written as an environment for the DC
subsystem. With this refinement, both subsystems can be
synthesized independently, and the overall system specifica-
tions are satisfied when they are implemented together. We
assume that the time a generator remains healthy is not arbi-
trarily short so that the AC bus powered time (i.e., the time
between two intervals when AC bus is unpowered) is large
enough to keep the capacitors on rectifier units charged.

2.4 Implementing Formal Specifications
TuLiP generates finite-state automata in the form of a text

file that enumerates the possible states of the system and
how the transitions could be carried out according to the
current state. It also generates a text file that specifies envi-
ronment variables (e.g., generators and rectifier units) and
system variables (e.g., contactors). In order to implement
the control logic in SimPowerSystems, we automatically
translate these files into aMatlab-compatible script. A pre-
liminary solution uses a Python script for this translation.

State 0 <gen1:1, gen2:1, c1:1, c2:1, c3:0>
With successors: 1, 2, 3, 0
State 1 <gen1:0, gen2:0, c1:0, c2:0, c3:0>
With no successors
State 2 <gen1:0, gen2:1, c1:1, c2:0, c3:1>
With successors: 1, 2, 3, 0
State 3 <gen1:1, gen2:0, c1:0, c2:1, c3:1>
With successors: 1, 2, 3, 0

Figure 2: Sample of a TuLiP output in two-generator
and three-contactor case. The generator status vari-
ables are gen1 and gen2, and the contactor status
variables are c1, c2, and c3. Each state has suc-
cessors, which define where the controller can tran-
sit depending on current state. In addition, no-
successor states exist.

function [c1, c2, c3] = mscript(gen1, gen2)
global state;
switch (state)
case 0:

if gen1 == 1 and gen2 == 1 then
state = 0; c1 = 1; c2 = 1; c3 = 0;

else if gen1 == 0 and gen2 == 0 then
state = 1; c1 = 0; c2 = 0; c3 = 0;
...

end if
case 1:

...
end switch

Figure 3: Sample code generated using TuLiP con-
troller shown in Figure 2.

A Python script generating the Matlab code is released
with TuLiP version 0.3c under the tools directory1. Figure 2
shows an example four-state TuLiP generated controller for
the two-generator and three-contactor case. A few lines of
the auto-generated code that corresponds to this controller
is shown in Figure 3. The auto-generated code can be in-
serted in SimPowerSystems as a Matlab function block.
It can also be connected to the board with the code shown
in Figure 4.

3. DESIGN AND IMPLEMENTATION
The single-line diagram in Figure 1 is a simplified nota-

tion for representing a three-phase power system. However,
as described in Section 3.1, power supply to the hardware
testbed is not three-phase. In order to represent the instal-
lations of the sensors, circuit protection devices, and fault
injection switches, we present a detailed schematic of the
testbed in Figure 6. Descriptions of the components shown
in Figure 6 are given in Figure 7.

The hardware testbed has two di↵erent voltage levels: 24
VAC and 2.5 VDC. The DC section is connected to the AC
section by rectifier units. Aircraft contactors are designed to
switch three-phase electric power with relatively high cur-
rents. Relays are generally used for switching lower cur-
rents. These operate in a similar fashion to contactors but
are lighter, simpler, and less expensive. Therefore, it was

1http://tulip-control.sf.net

global state;
while 1 do

gen1 = readgen1();
gen2 = readgen2();
[c1, c2, c3] = mscript(gen1, gen2);
writeboard(c1, c2, c3);

end while

Figure 4: Code that implements the control software
running on hardware model.

Relay&board& Transformers&
connected&to&
power&cord&

Ba5eries&

Inverters&

AC&loads&

Rec;fier&
units&

DC&loads& Fault&injec;on&
switches&

Figure 5: Hardware setup corresponding to the
single-line diagram shown in Figure 1.

more convenient to handle the switching in the hardware
model with relays. It was possible to connect the control
logic to the relays with the use of a relay board2, which is a
set of computer-controlled relays that can communicate with
programming languages supporting serial communications,
e.g., Matlab. Analog-to-digital (A/D) connections on the
relay board are used to monitor the system conditions. A
photo of the setup3 is shown in Figure 5. The transformers
in Figure 5 are connected to power cords; these can be un-
plugged to simulate a generator failure. The rectifier units
are connected to a switch, which can be used to generate a
fault on the DC subsystem. Next, we describe how we mon-
itor and sense the status of generators and rectifier units.

3.1 Generation and Circuit Protection
Each generation unit consists of a 12 V battery connected

to an inverter that generates 120 VAC; that is then trans-
formed down to 24 VAC to ensure safety. If the controller
violates one of the safety requirements and connects these
two sources in parallel, it would result in a short-circuit and
cause the fuses installed next to the generators, shown in
Figure 6(a), to blow. This observation makes it possible to
monitor the correctness of the controllers at run time.

2A company called RelayPROS sells such relay boards. For
more information, visit www.relaypros.com.
3A photo of the relay board can be found on-
line at assets.controlanything.com/photos/usb_relay/
ZADSR165DPDTPROXR_USB-900.jpg

Figure 7: Description of the components used in
Figure 6.

T

c

[ms] T

0
c

[ms]
Mean 303.7 187.5
Max 333.3 234.1
Min 282.5 166.6

Table 1: Control cycle time, both when relay con-
figuration changes, i.e., T

c

and without any change,
i.e., T

0
c

. The values with and without change were
calculated from 20 and 250 measurements, respec-
tively.

3.2 Sensing
The relay board needs to react consistently to faults in-

jected into the system; this requirement implies that sensor
placement, functionality, accuracy, and time delay play cru-
cial roles in design. Two types of faults can be injected in
the system, namely, rectifier unit failures and generator fail-
ures. Voltage sensing for generator failures is handled using
additional relays. These relays close a 3.6 V circuit to a bat-
tery when triggered by the voltage from the transformers. If
a fault occurs and a generator does not work properly, the
3.6 V circuit opens and the system reacts accordingly. The
voltage sensors of the rectifier units are directly connected
to the A/D ports of the relay board because the voltage can
be tuned to the appropriate value using an adjustable out-
put on the rectifier units. Figure 6(b) illustrates the sensing
configuration.

4. EXPERIMENTS
We next describe the characteristics of the hardware

testbed and show some preliminary test runs with di↵erent
control architectures.

4.1 Testbed Characteristics
The first step before the implementation and testing of

di↵erent controllers is characterizing the timing properties of
the hardware testbed. Every relay has a time delay between
the time a command is sent by the computer and the time an
action (i.e., relay opening or closing) is taken, this is referred
to as the relay delay time, T

d

. Furthermore, the system has

(a) Circuit schematic (b) Sensing configuration

Figure 6: Circuit schematic of the hardware testbed, which corresponds to the single-line diagram shown in
Figure 1. The numbered arrows in (a) denote voltage sensing connections to the corresponding numbered
arrows in (b).

delays resulting from control cycle times, T
c

and T

0
c

, defined
as

T

c

= T

r

+ T

I

+ T

w

T

0
c

= T

r

+ T

I

,

(2)

where T
r

is the time it takes to read the health statuses from
all of the four environment variables, T

I

is the time it takes
to run the logic (the time can be interpreted as the time
taken to run the code shown in Figure 3), and T

w

is the
time it takes to write information to the board (see Figure
4). Writing information to the board is not needed in every
iteration (for instance, if the system state remains the same),
therefore the control cycle time also include T

0
c

. The control
cycle times T

c

and T

0
c

are listed in Table 1. The relay delay
time can be found from the board specifications and shall
be less than 20ms.

An important safety requirement in an aircraft is that a
bus should never lose power for more than a certain dura-
tion, e.g., typically 50ms. In the hardware testbed, the time
for which the bus is unpowered depends on the control cycle
times and the relay delay time, and because the control cy-
cle times exceed 50ms, we cannot use the typically specified
time for which an aircraft can be unpowered. Therefore, it
was necessary to adopt a suitable limit. As illustrated with
two environment variables in Figure 4 the relay board read
the health status from each environment variable in a spec-
ified order. It is therefore necessary to include a part of T 0

c

from the previous control cycle in this limit. The time T

I

in Equation (2) is negligible compared to T

r

and T

w

, the
time taken to read the health status from one environment
variable can therefore be approximated as T

0
c

/4. A reason-
able value of an acceptable unpowered time for the hardware
testbed can be

T ⇡ max (T
d

) + max (T
c

) +
4� n

4
max (T 0

c

), (3)

where n 2 {1, 2, 3, 4} is the number which denotes the order
of when the environment variable that is faulty is read in
the code.

4.2 Controller tests
Two controllers were tested, one with distributed logic and

one with centralized logic. The controller with centralized
logic had a 16-state automaton synthesized as explained in
Section 2.3. The controller with distributed logic had two
four-state automata that run on each subsystem. Both of
these automata were synthesized in a similar fashion to the
16-state controller.

If the environment-related assumption is violated, the con-
troller may end up in a state with no outgoing transitions,
referred to as the no-successor state. The environment-
related assumptions for the testbed are expressed in Equa-
tion (1) of Section 2.3. A violation of Equation (1) results
in the controller entering a no-successor state, which hap-
pens when both generators or both rectifier units are faulty.
If a centralized controller senses that both rectifier units
are faulty, the whole system stops working because a no-
successor state has been reached. This is not the case when
distributed logic is used, because the AC system continues
working even if the DC environment assumption is violated
and the DC part reaches a no-successor state. The dis-
tributed logic implementation has two di↵erent automata
that represent the logic, one for each subsystem, with cou-
pling between them. However, the distributed logic is cen-
tralized in that it consists of single control software running
on a single computer and communicating with the hardware
through a single channel.

Figure 8 shows the voltage measurement for the central-
ized 16-state controller. The measurement was taken on the
AC bus when the generator, which health status is read at
second place (n = 2 in Equation (3)) of the four environment
variables in the code, was switched o↵ and then on again.
The generator was switched o↵ at t = 2.83 s, at which point
the bus becomes unpowered. The second vertical line from
the left indicates when the controller reacts and power up the
bus using the other generator, which happens at t = 3.1 s.
The generator was switched on again at t = 3.73 s; this was
accompanied by a discernible change in the sine curve. Once

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

−40

−30

−20

−10

0

10

20

30

40

Time [s]

V
o

lta
g

e
 [

V
]

Bus
unpowered

Time [s]!
2,9!2,8! 3! 3,2!3,1! 3,3! 3,4! 3,6!3,5! 3,7!

-40!

-30!

-20!

-10!

0

10!

20!

30!

40!
Vo

lta
ge

 [V
]!

Figure 8: Bus voltage measurement when a gener-
ator is switched o↵ and then turned back on. The
first vertical line indicates the fault, the second ver-
tical line is when the controller reacts, and the third
line is when the generator is turned back on.

Bus-unpowered time [ms]
Mean 333.9
Max 414.9
Min 232.7

Table 2: Time for which bus is unpowered after a
fault is injected. These values are calculated using
measurements from 10 fault injections.

a generator is switched on again after a fault, the time for
which the bus is without power is not noticeable because the
controller sends simultaneous commands to two relays.

The measured bus-unpowered times are listed in Table
2, which show a maximum value of T

max

= 414.9ms. An
acceptable unpowered time when n = 2 and max (T

d

) =
20ms can be calculated with Equation (3). It follows that
T ⇡ max (T

d

) + max (T
c

) + 1
2 max (T 0

c

) = 470.35ms and
hence, T

max

< T .

5. LIMITATIONS AND EXTENSIONS
As discussed earlier, when we implemented distributed

logic with the hardware model, it was still centralized in
that only one relay board was connected to one computer.
However, it is possible to use two relay boards connected
to two di↵erent computers, with each of them controlled by
di↵erent automata. The part that contributes the most to
the control cycle times (T

c

and T

0
c

), is the time it takes to
read data from the board (T

r

); if the controller is operated
with two relay boards, T

r

would be split in half, which would
cause T

c

and T

0
c

to decrease significantly. The distributed
control architecture would also be more like that of an air-
craft.

We injected faults in the hardware testbed by unplugging
the power cords and changing the switches; however, a more
accurate approach to generate faults would be the use of
an additional relay board. Using an additional fault injec-
tion board, we can systematically study synchronous, corre-
lated, and cascaded failures and their influence on controller
performance; with the current method of fault injection, it
could be di�cult to switch o↵ a generator and a rectifier

unit within the same control cycle.
On an aircraft, the controller is an embedded system des-

ignated for a specific task. To increase its reliability and per-
formance, the hardware model could be adapted to run the
relay boards through microcontrollers. Embedded code for
these microcontrollers can be readily generated using Mat-

lab.

6. ACKNOWLEDGMENTS
The authors acknowledge the funding from MuSyC, the

Boeing Corporation, and AFOSR (award # FA9550-12-1-
0302), and thank Rich Poisson from Hamilton-Sundstrand
for helpful discussions about the development of the
testbed.

7. REFERENCES
[1] C. Baier and J. Katoen. Principles of Model Checking.

MIT press, 1999.
[2] M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and

S. B. Andersson. Automatic deployment of
autonomous cars in a robotic urban-like environment.
In IEEE International Conference on Robotics and
Automation, pages 2055–2060, Kobe, Japan, 2009.

[3] O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira,
S. Poll, and S. Uckun. Diagnosing faults in electrical
power systems of spacecraft and aircraft. In Innovative
Applications of Artificial Intelligence Conference,
pages 1699–1705, Chicago, IL, 2008.

[4] N. Ozay, U. Topcu, and R. M. Murray. Distributed
power allocation for vehicle management systems. In
IEEE Conference on Decision and Control, 2011.

[5] N. Ozay, U. Topcu, T. Wongpiromsarn, and R. M.
Murray. Distributed synthesis of control protocols for
smart camera networks. In ACM/IEEE International
Conference on Cyber-Physical Systems, Chicago, IL,
2011.

[6] N. Piterman, A. Pneuli, and Y. Sa’ar. Synthesis of
reactive(1) designs. Verification, Model Checking and
Abstract Interpretation, 3855, 2006.

[7] A. Pnueli and R. Rosner. Distributed reactive systems
are hard to synthesize. In IEEE Symposium on
Foundations of Computer Science, 1990.

[8] A. Pnueli, Y. Sa’ar, and L. Zuck. JTLV a framework
for developing verification algorithms. In International
Conference on Computer Aided Verification, 2010.

[9] S. Poll, A. Patterson-hine, J. Camisa, D. Garcia,
D. Hall, C. Lee, O. J. Mengshoel, D. Nishikawa,
J. Ossenfort, A. Sweet, S. Yentus, I. Roychoudhury,
M. Daigle, G. Biswas, and X. Koutsoukos. Advanced
diagnostics and prognostics testbed. In International
Workshop on Principles of Diagnosis, pages 178–185,
2007.

[10] Simulink. version 7.7 (R2011a). The MathWorks
Inc., Natick, Massachusetts, 2011.

[11] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and
R. Murray. TuLiP: a software toolbox for receding
horizon temporal logic planning. In International
Conference on Hybrid Systems: Computation and
Control, 2011.

[12] H. Xu, U. Topcu, and R. Murray. Reactive protocols
for aircraft electric power distribution. In IEEE
Conference on Decision and Control, 2012.

