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Modern aircraft increasing rely on electric power, resulting in high safety-criticality

and complexity in their electric power generation and distribution systems. Moti-

vated by the resulting rapid increase in the costs and duration of the design cycles for

such systems, we investigate the use of formal specification and automated, correct-by-

construction control protocols synthesis for primary distribution in vehicular electric

power networks. We discuss a design workflow that aims to transition from the tra-

ditional “design+verify” approach to a “specify+synthesize” approach. We give an

overview of a subset of the recent advances in the synthesis of reactive control proto-

cols. We apply these techniques in the context of reconfiguration of the networks in

reaction to the changes in their operating environment. We also validate these auto-

matically synthesized control protocols on high-fidelity simulation models and on an

academic-scale hardware testbed.
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I. Introduction

Next generation aircraft are moving away from hydraulically and pneumatically powered systems

into electrically powered systems [1]. As dependence increases on electric power, however, the electric

power generation and distribution systems become more critical to the safe operation of aircraft [2].

Because of this increased reliance on electric power, these systems on next-generation aircraft need

to be highly reliable and fault-tolerant. In current practice the design of an aircraft electric power

system is constructed in an ad hoc manner, and is either borrowed from legacy designs or created

“by hand” using designer experience and knowledge. The entire process from running simulations

to software testing (i.e., testing control logic) and hardware testing is both time consuming and

costly, as mistakes are found throughout. Moreover, unexpected system failures at the hardware

level require returning to the design phase to make changes. As the design stage progresses, the

more expensive changes must be in re-design.

The difficulty in design of large-scale, complex systems partly lies in the lack of a formal structure

to verify the correctness of a system. We propose a formal design methodology for an electric

power system that integrates the use of formal methods [3, 4] in order to guarantee correctness.

The overall design flow is shown in Fig. 1. The first step in the methodology is translation of

specifications. System requirements, including safety and performance properties and customer

requests, are typically given in English, text-based form. In order to apply formal methods to

establish the correctness of a system, specifications must be translated into a formal specification

language (e.g., linear temporal logic is used in this paper) [5, 6], that is mathematically-based and

unambiguous. While the details of the translation are not covered within the scope of his paper,

this process is critical to overall system design.

Once abstracted and specified formally, we then proceed to the control synthesis layer in the

methodology. In this step, we take the abstract model and formal requirements and automatically

synthesize a control protocol. The Python-based Temporal Logic Planning toolbox, TuLiP [7], is

used to construct a controller that is guaranteed to be correct with respect to the system require-

ments. If no such controller exists, then specifications or the model can be modified. Instead of

constructing a system by hand and then verifying its correctness (i.e., “design and verify”), we “spec-
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ify and synthesize” a control protocol. TuLiP has been used to synthesize controllers in past work

on aircraft electric power systems [8] and vehicle management systems [9, 10].

Once a control protocol is synthesized, the next step in the methodology is the simulation and

hardware tests layer. From the abstract model, a simulation model can be constructed in a tool such

as Simulink [11]. Here, (relatively) high-fidelity simulations can be performed, i.e., the behavior of

the system can be tested by injecting faults or failures. Because specifications may arise from legacy

designs or other customers, in this step of the methodology we can adjust the types of components

used in the model. For example, different batteries may have different voltage ratings that may

not be able to satisfy all requirements given. Thus, the simulation layer provides information on

how good the abstract model and specifications are, and whether or not those need to be modified.

These models can also be used for “testing” of design artifacts (e.g., controllers that are synthesized

using the abstract models).

Previous work has discussed the implementation of software on hardware [12]. The hardware

test step introduces the physical aspects of the system into the design stage. Thus, controllers can

be tested for their correctness on a physical system. If any undesired behaviors arise that would

not necessarily violate specifications, but are not considered reasonable or “optimal”, the hardware

implementation provides information back to the specification and abstract model level.

Because of the growing complexity of electric systems, in particular, and embedded systems in

general, the use of ad hoc techniques for design is becoming more difficult and time-consuming. The

advantages of a formal methodology, such as the one demonstrated in this paper, is the ability for

systematic exploration of the design space, as well as the ability to formally analyze and guarantee

correctness. In this paper, we demonstrate this design flow for an electric power system and its

academic-scale hardware implementation. This demonstration serves only the purpose of proof-of-

concept. Extending the tools used in our study, modifying them to align with the needs of particular

application areas, and transitioning them are among the important challenges that are faced. They

are, however, beyond the scope of the current paper.
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Fig. 1 Methodology of design flow for an aircraft electric power system. An abstract model
and formal requirements are used to synthesize a controller. Then control protocols can be
tested in high-fidelity simulations and implemented on a hardware platform.

II. Background

An electric power system provides power to buses and subsystem loads. In more-electric aircraft,

these loads include lighting, heating, and safety- and mission-critical subsytems (such as avionics,

de-icing, and flight actuation) [1]. Fig. 2 shows a single-line diagram for an electric power system

[13]. Each of the two engines power a high-voltage and low-voltage AC generator. Two additional

generators are mounted on an auxiliary power unit and can be used to supply power in case of emer-

gencies. The primary loads can be considered as safety- or mission-critical. Primary loads include

avionics, communication systems, and window heating. The electric power system of an aircraft

often contains transformers and rectifier units that broadly divide the system into four categories,

namely high-voltage AC, high-voltage DC, low-voltage AC, and low-voltage DC. The power is dis-

tributed from the generators to the loads in series connection through buses, transformers, rectifier

units and electronically controlled switches called contactors.
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Fig. 2 A single-line diagram for an electric power system topology adapted from a Honeywell
Patent for a more-electric aircraft [13] by Richard Poisson of United Technologies Aerospace
Systems.

There are three levels of design challenges in an electric power system: the primary distribution

problem, the secondary distribution problem, and the load-shedding problem. In primary distribu-

tion, the main concern is in providing power from generators to buses. Generators must be able

to supply power to buses connected to safety-critical loads. In the secondary distribution problem,

the design question is how much power should be allocated to system loads by buses. Finally, the
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load-shedding problem is, if a power failure or emergency situation were to arise, what loads should

be shed, and in what order, so that safety-critical loads can still be powered and the aircraft can

land safely.

In this paper we consider the primary distribution problem. The overall goal is to design a

controller that can react to component failures by changing the topology so that new ways for

power delivery are created. Moreover, the controller must ensure that that safety-critical buses and

loads are always powered. The state of the system (i.e., the status of all contactors and health of

components) is estimated by current and voltage sensor measurements. If a fault is detected the

controller reacts and reconfigures the contactors so that the system still satisfies all requirements.

This controller can take actions depending on the system and environmental conditions during

operation. The control logic not only accounts for a static configuration of contactors given a fault,

but also determines the correct sequence of contactor switches in order to guarantee all specifications

are still satisfied.

Typical electric power system specifications are categorized in terms of safety, reliability, and

performance. On aircraft with variable-frequency generators, a mismatch in frequency and voltage

can lead to, for example, overcurrents and fires. A safety specification, therefore, would be to

disallow any configuration of components in which more than one generator provides power to a

bus. A typical reliability specification requires that the system must be able to account for a certain

number or subset of failures. The total number of allowable, simultaneous failures is known as a

reliability level. Every component has a probability of failure, determined from past operational

data. Assuming independence of failures on components, the maximum number of components that

can fail (i.e., the environmental conditions for which the controller must account) is determined

the reliability specification [14]. Finally, consider performance specifications that effect the overall

quality of the flight. A standard performance specification would disallow buses connected to critical

loads to be unpowered for a length of time greater than some pre-determined time bound. This

ensures proper operation of loads necessary for safe flight. While this paper examines a limited

subset of electric power system specifications, more general specifications have been used [15, 16].
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III. Modeling, Specifications, and Synthesis

At the core of the design methodology we advocate in this paper are models and specifications

in mathematically based languages and the corresponding algorithms that automate the synthesis

of software-based control protocols from these models and specifications. We now give an overview

of these building blocks as tailored to the discussion in the subsequent sections.

A. Modeling and Specifications

The initial step in any model-based flow is determining the level of fidelity to be used in the

design of the control protocols. Partly for aligning with the industrial practice and partly for

leveraging the currently available synthesis tools, we use purely discrete (and finite) models for the

evolution of the configuration of a power distribution network, for example, as shown in Fig. 2.

Roughly speaking, the variables of interest can be grouped as those under direct control (we

will call these as “control” variables) and those that can change without the control of the system

(we will call those as “environment” variables). As a modeling convention, we will consider that the

environment variables evolve adversarially (specific meaning of “adversarial” will be concretized later

in this section) against the system. Typically, controlled variables are the statuses of the contactors.

They open and close with directives from the controller. Examples of environment variables include

the health statuses of the generators and rectifier units which typically take binary values (i.e.,

healthy vs unhealthy).

Let now x be the set of variables (including both controlled and environment). Then, the

evolution of the system can be described by sequences of valuations xt (we will also call these

valuations as the “states” of the system) of x at the time steps t = 0, 1, 2, . . . Let M denote all

sequences x0x1x2 . . . that can be generated by the system. M can be considered as a model of

the system. Note that, besides this abstract representation of the model, we can equivalently use

finite-state, nondeterministic transition system in order to represent all possible behaviors of the

system [17, 18].

We will characterize the correctness of the system in terms of the properties satisfied by the

sequences in M. To formalize this notion, we use temporal logic based languages [5, 17]. Roughly,
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temporal logic allows to unambiguously specify and reason about infinite sequences of states. We

specifically employ linear temporal logic (LTL) to describe system behavior. An LTL formula is

built up from a set of atomic propositions and two kinds of operators: logical connectives and

temporal modal operators. An atomic proposition is a statement over the system variables that has

a unique truth value (True or False) for a given valuation of x. For example, let g and c denote

the health status of a particular generator and the status of a particular contactor, respectively.

Then, given a configuration of the system, the truth value of “g = healthy”, “c = open”, and

“g = health and c = closed” can be determined and all these statements are atomic propositions.

In other words, atomic propositions are the lowest level of building blocks for specifying the system

behavior and logical connectives, including negation (¬), disjunction (∨), conjunction (∧), and

implication (→), and temporal operation, including always (!), eventually (!), until ( U ), and

next ("), connect these building blocks to create more sophisticated specifications of the system.

For example, given atomic propositions p and q, we can write

- invariance (a specific form of safety) properties as !p,

- guarantee or reachability properties !p,

- progress or recurrent properties as !!p,

- response properties as !(p =⇒ !q), and

- next-step response properties as #(p =⇒ "!q).

In this paper, we use LTL as the specification language for convenience. Depending on the underlying

model and properties of interest, one may consider other, potentially more suitable specification

languages including timed temporal logic [19], probabilistic temporal logic [20], and branching-time

logics [17]. For further details on the range of specification languages we refer the reader to [5, 17]

and for details of and a complete treatment for primary distribution in vehicular electric power

networks to our earlier work [18].

B. Synthesis of Reactive Control Protocols

The overall goal of the design problem is synthesizing a control protocol that, when implemented

on the electric power system, ensures that the controlled system satisfies its specifications. The
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correctness of the system is though not merely a function of the controlled variables. It needs to be

interpreted in conjunction with the environment variables. For example, the generator from which

each bus shall be powered is constrained by the health statuses of the generators, which cannot be

controlled by the system. Hence, the control protocol needs to react to the changes in both the

controlled variables and environment variables.

Furthermore, it is necessary to incorporate information on potential environment conditions

under which the system is expected to operate. If the environment variables are not properly

constrained, then the resulting control protocol may be overly conservative, and it and may not

be possible to construct a protocol that ensures the satisfaction of the system requirements. For

example, if all the generators simultaneously stay unhealthy for a long enough time, then it is not

possible to satisfy the condition that the essential buses shall not be unpowered longer than some

prespecified period. Hence, such behaviors of the environment shall be disregarded in the protocol

design. An essential component of the protocol synthesis problem is the environment assumptions

that specify what environment behaviors the controller shall correctly react to. Consequently, the

overall goal is to design a protocol that determines how the controlled variables shall move at each

point of the execution as a function of the behaviors of the controlled and environment variables so

far in the execution as long as the environment assumptions are satisfied.

We now, equipped with LTL as a specification language, formally state the reactive synthesis

problem. Let E and P be sets of environment and controlled variables, respectively. Let s = (e, p) ∈

dom(E) × dom(P ) be a state of the system. Consider a LTL specification ϕ of assume-guarantee

form

ϕ = ϕe → ϕs, (1)

where, roughly speaking, ϕe is the conjunction of LTL specifications that characterizes the assump-

tions on the environment and ϕs is the conjunction of LTL specifications that characterizes the

system requirements. The synthesis problem is then concerned with constructing a strategy, i.e.,
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a partial function f : (s0s1 . . . st−1, et) '→ pt, that chooses the move of the controlled variables

based on the state sequence so far and the behavior of the environment so that the system satisfies

ϕs as long as the environment satisfies ϕe. The synthesis problem can be viewed as a two-player

game between the environment and the controlled plant: the environment attempts to falsify the

specification in (1) and the controlled plant tries to satisfy it.

For general LTL, it is known that the synthesis problem has a doubly exponential complexity

[21]. For a subset of LTL, namely generalized reactivity (1) (GR(1)), Piterman et al., have shown

that it can be solved in polynomial time (polynomial in the number of valuations of the variables

in E and P ) [22]. GR(1) specifications restrict ϕe and ϕs to take the following form, for α ∈ {e, s},

ϕα := ϕα
init ∧

∧

i∈Iα

1

#ϕα
1,i ∧

∧

i∈Iα

2

#!ϕα
2,i,

where ϕα
init

is a propositional formula characterizing the initial conditions; ϕα
1,i are transition re-

lations characterizing safe, allowable moves and propositional formulas characterizing invariants;

and ϕα
2,i are propositional formulas characterizing states that should be attained infinitely often.

Given a GR(1) specification, the digital design synthesis tool implemented in JTLV (a framework

for developing temporal verification algorithm) [23] generates a finite automaton that represents a

switching strategy for the system. The temporal logic planning (TuLiP) toolbox, a collection of

Python-based code for automatic synthesis of correct-by-construction embedded control software

provides an interface to JTLV [7]. For the examples discussed in this paper, we use TuLiP.

C. A Closer Look at the Synthesized Controllers

Fig. 3 shows different views of the resulting controller automaton for a toy example. This

controller has four states. The top left corner of Fig. 3 shows the output from TuLiP which roughly

lists each of the states, the corresponding configurations (i.e., the status of the two generators and

three contactors in this example) and the states to which the system may transition (as a function

of the environment move) from the current one. The big box on the right hand side pictures the

configurations of the corresponding network in each of the four states. For example, state 0 (read

from the text in the top, left box) corresponds to a configuration where both generators are healthy,
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State 0 <rgen:1, lgen:1 ,c1:1, c2:1, c3:0>

              With successors:1, 2, 3, 0

State 1 <rgen:0, lgen:0, c1:0, c2:0, c3:0>

              With no successors.

State 2 <rgen:0, lgen:1, c1:1, c2:0, c3:1>

              With successors: 1, 2, 3, 0

State 3 <rgen:1, lgen:0, c1:0, c2:1, c3:1>

              With successors: 1, 2, 3, 0

24 VAC
generator

AC subsystem

AC bus

AC 
load

24 VAC
generator

AC bus

AC 
load

State 2

function [c3,c2,c1] = Controller(rgen,lgen)

global state;

switch state

case 0

if rgen == 1 && lgen == 1

state = 0; c3 = 0; c2 = 1; c1 = 1;

elseif rgen == 0 && lgen == 0

state = 1; c3 = 0; c2 = 0; c1 = 0;

elseif rgen == 0 && lgen == 1

state = 2; c3 = 1; c2 = 0; c1 = 1;

elseif rgen == 1 && lgen == 0

state = 3; c3 = 1; c2 = 1; c1 = 0;

else

disp('Cannot find a valid successor')

c3 = 0; c2 = 1; c1 = 1;

end

case 1

c3 = 0; c2 = 0; c1 = 0;

case 2

.

case 3

.

otherwise

.

end

lgen rgen

c1 c2

c3

lgen rgen

c1 c2

c3

lgen rgen

c1 c2

c3

lgen rgen

c1 c2

c3

Fig. 3 An automatically generated controller from TuLiP (top, left) and its translation into a
Matlab function. The automaton is synthesized for a two-generator and three-contactor case.
The generator status variables are rgen and lgen, and the contactor status variables are c1,
c2, and c3. Each state has successors, which define to which state the controller can transition
depending on the current controlled and environment state. In addition, no-successor states
exists.

two of the contactors are closed, and the one connecting the two buses is open. If one of the

generators (rgen) become unhealthy, then the system transitions to state 2, contactor c2 opens,

and contractor c3 closes in reaction to this change in the generator health. Finally, the left bottom

corner of Fig. 3 shows (part of) the control automaton written into a Matlab function which is used

to drive the testbed as discussed in the next section.

IV. An Aircraft Electric Power Testbed

We now discuss an end-to-end implementation of the “specify+synthesize” design flow on an

academic-scale electric power testbed we had developed in our recent work [12]. We begin with an

overview of the testbed and its basic functionality. Fig. 4 shows the physical layout of the testbed

(left) and its single-line diagram (right). It was build to mimic some of the characteristics of the

primary electric power distribution systems on aircraft. It contains transformers that supply power

to an AC systems and rectifier units that separate the DC part of the system from the AC part. We

refer to these transformers as generators because we are only interested in the role as voltage sources.

11



Sensing circuit
+ more cables

Transformer

RU

Relay board

DC loads

Switches to induce 
RU failures

AC load AC load

DC bus

DC

load

DC bus

DC

load

24 VAC
generator

24 VAC
generator

AC subsystem

AC bus AC bus

AC 
load

AC 
load

RU RU

DC subsystem

DC bus DC bus

DC 
load

DC 
load

lgen rgen

c7 c0

c3
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Fig. 4 Left: A photo of the physical layout of the electric power system testbed. Right: Single-
line diagram of the power system testbed. Contactors are represented by double bars. The
AC and DC sides of the system are separated by rectifier units (RU).

The generators and rectifier units are crucial for the safe operation of an aircraft. Therefore, the

testbed focuses on the failure of these components.

A. The Structure of the Hardware Testbed

The topology of the hardware testbed is shown in Fig. 4 (right); it contains two generator sources

and two rectifier units. The generator sources are modeled by transformers with a secondary side

voltage of 24 VAC. The DC section is connected to the AC section through two rectifier units.

The rectifier units contain a diode-rectifier bridge and DC bus capacitor to achieve a low ripple in

the DC-side voltage. It also contains a variable DC voltage regulator that is tuned to 2.5 VDC.

Consequently, the testbed has two different voltage levels: 24 VAC and 2.5 VDC.

The single-line diagram also contains four buses, specifically, two AC buses and two DC buses.

Multiple lamps attached to these buses are considered as the primary loads in the distribution

network. The main design goal is to keep these loads powered even in the presence of failures in

the generators or rectifier units. A detailed circuit schematic of the testbed hardware is shown in

Fig. 5.

The contactors in electric power distribution networks on aircraft are designed to switch three-
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Fig. 5 Circuit schematic of the testbed. The topology is the same as in Fig. 4 (right). The
relays are represented by the numbered boxes. The numbered arrows denote voltage sensing
connections from Fig. 8.

phase electric power. Their functionality are replicated by simpler relays in the testbed. In par-

ticular, a commercially available relay board [25] that provides a set of computer-controlled relays

that can communicate with programming languages supporting serial communications for example

Matlab, is used. The relays on the board are numbered and range from 0 to 7. The same numbering

convention is used in Fig. 4 (right) and Fig. 5, and throughout the paper. We also remark that

for the results presented in this paper, the contactors c1 and c2 shown in Fig. 5 were not used and

left closed. However they can be used to isolate the AC and DC subsystems and to test the AC

subsystem separately.

The hardware testbed is also equipped with switches/plugs for injecting faults and with sensors

that monitor the health status of components. These elements are discussed in detail in Section IVD.

B. The Specifications

The testbed mimics only a small fraction of the functionality that exists in the primary distri-

bution networks on aircraft. Therefore, only a subset of the typical specifications are well-defined
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for the testbed. We now discuss these specifications, both their descriptions in English and their

translations into temporal logic statements.

As discussed in Section III, the formal specifications we consider have an assume-guarantee

form, i.e., they contain both assumptions on the possible environment behavior and guarantees on

the system behavior. The environment assumptions include the following.

• At least one of the generators is always healthy.

• At least one of the rectifier units is always healthy.

The guarantees on the system behavior include the following.

• No AC bus can be powered from two different AC sources simultaneous at any time.

• AC and DC buses are powered at all times.

The synthesis problem can then be states to constructing a reactive control logic that ensures

the realizability of the temporal logic specification ϕe → ϕs, where

ϕe = !(((gen1 = healthy) ∨ (gen2 = healthy)) ∧ ((ru1 = healthy) ∨ (ru2 = healthy))), (2)

ϕs = !¬((c0 = closed) ∧ (c7 = closed) ∧ (c3 = closed)) ∧
∧

i∈{1,2,3,4}

!(busi = powered), (3)

and gen1, gen2, ru1, and ru2 are the health statuses of the two generators and two rectifier units,

respectively. The contactors c0 and c7 are next to the generators in the topology shown in Fig. 5, and

c3 is between the AC buses. Therefore, contactors c0, c7, and c3 can never be closed at the same time,

which otherwise would lead to paralleling two AC sources. The buses bus1, bus2, bus3, and bus4 can

be considered to be in an electrical connection to the loads. The final part of ϕs ensures that a bus

can never be unpowered, given that the environment assumptions hold. However, measurements are

taken at discrete time intervals. A continuous implementation have to allow a certain unpowered

time.
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In addition to the centralized control protocol that realizes the global specification ϕe → ϕs, we

synthesize a distributed reactive control protocol following the theory in [10]. More specifically, we

decompose the global specification into local specifications for the AC and DC parts of the system

is such a way that, if the local specifications are realizable separately, then they can be implemented

together and ensure the correctness of the global specification (under additional mild technical

assumptions discussed in [10]). For example, the relatively simple global specification in (2)-(3) are

decomposed into ϕe,AC → ϕs,AC and ϕe,DC → ϕs,DC for the AC and DC parts respectively, where

ϕe,AC = !(((gen1 = healthy) ∨ (gen2 = healthy)),

ϕs,AC = !¬((c0 = closed) ∧ (c7 = closed) ∧ (c3 = closed)) ∧
∧

i∈{1,2} !(busi = powered),

ϕe,DC = !(((ru1 = healthy) ∨ (ru2 = healthy)), and

ϕs,DC = !¬((c5 = closed) ∧ (c4 = closed) ∧ (c6 = closed)) ∧
∧

i∈{3,4} !(busi = powered).

(4)

C. The Synthesized Controller Automata

We use TuLiP to synthesize the control protocols for the global and the distributed specifications

for the AC and DC parts. The centralized controller realizing the global specifications has 16 states

(i.e., one state for each of the possible environment configurations in this case). On the other hand,

each of the automata for the AC and DC parts contains 4 states.

Fig. 6 shows part of the output from TuLiP for the centralized controller. Each entry in the list

has two lines that correspond to one state in the automaton. The valuations of the environment

variables (i.e., the health statuses of the generators and rectifier units) and the controlled variables

(i.e., the statuses of the contactors) are in the first line. The second line lists the possible transitions

from the current state. Out of these possible transitions, the one that is implemented as the

transition in the controlled variables is picked based on the transition in the environment variables.

For example, if, from state 0 in which all generators and rectifier units are healthy, the environment

transitions to a configuration in which rgen = 0 and rru = 0, then the controller transitions to

state 4 and the contactor statuses switch to the values listed under state 4.

By its construction, as long as the environment satisfies its assumptions then, the controller can

execute indefinitely and the contactors take actions such that the system requirements are satisfied.
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State 0 with rank 0 -> <rgen:1, rru:1, lru:1, lgen:1, c3:0, c0:1, c7:1, c4:0, c5:1, c6:1>

 With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0

...

State 2 with rank 0 -> <rgen:0, rru:0, lru:0, lgen:1, c3:0, c0:0, c7:0, c4:0, c5:0, c6:0>

 With no successors.

...

State 4 with rank 0 -> <rgen:0, rru:0, lru:1, lgen:1, c3:1, c0:0, c7:1, c4:1, c5:0, c6:1>

 With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0

...

State 6 with rank 0 -> <rgen:0, rru:1, lru:0, lgen:1, c3:1, c0:0, c7:1, c4:1, c5:1, c6:0>

 With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0

...

Fig. 6 TuLiP auto-generated automaton. All states are not represented in the figure. The
environment variables are lgen, rgen, lru1, and rru. The controlled variables are c0, c7, c3,
c5, c6, and c4.

global state;

while 1

      lgen = readlgen();

      rgen = readrgen();

      lru = readlru();

      rru = readrru();

      [c0, c7, c3, c5, c6, c4] = controller(lgen, rgen, lru, rru);

      write2contactors(c0, c7, c3, c5, c6, c4);

Fig. 7 Code that implements a control cycle on the hardware testbed. In each control cycle
the sensors are first read for the generators, then the sensors for the rectifier units. After
that, the mscript generated by TuLiP is used to decide on the contactor statuses. Finally, the
state of contactors are set.

However, if the environment assumptions are violated, then the controller may end up in a state

with no outgoing transition, referred to as the “no-successor” state in Fig. 6. For example, if both

generators or both rectifier units are unhealthy (as in state 2) the controller will enter a no-successor

state.

D. Determining the Statuses of the Generators, Rectifier Units and Buses

Note that the execution of the reactive protocols synthesized in Section IVC requires the knowl-

edge of the valuations of the environment variables at each execution step. The lines of code in

Fig. 7 illustrate the control cycle workflow, which consists of three steps: read environment vari-

ables, run control logic, and assign values to controlled variables. The four environment variables

are represented in Fig. 7 and are labeled as lgen, rgen, lru, and rru. The controlled variables are

c0, c7, c3, c5, c6, and c4. The health statuses of the generators and rectifier units are not directly

monitored. Their values are deduced from certain voltage measurements at appropriate locations in

the power distribution network. Let V0 be a pre-specified positive constant and Tr be the time that

elapses while the corresponding sensor reading takes place. Then, a generator or a rectifier unit will
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be registered unhealthy if the magnitude of its voltage reading stays below V0 for a time Tsense that

elapse so it includes Tr. Time Tsense therefore has to be greater than or equal to Tr. For example,

the function readrgen() in Fig. 7 check if the right generator is above or below the threshold V0.

Each of the rectifier units in the testbed consists of a single-phase diode rectifier followed by a

capacitor and a voltage regulator. The capacitor is connected to the DC bus in order to reduce the

voltage ripple at the input of the voltage regulator. The specification used in controller synthesis

requires that all buses are powered at all times. However, there exists time T during which the bus is

unpowered that needs to elapse when the controller take actions. See Section IVE for the details on

how the constant T is chosen based on the characteristics of the testbed estimated empirically. This

situation does not necessarily mean that relevant components are influenced by that the voltage is

below V0 during time T . For example, consider a rectifier unit connected to an AC bus. It contains

a capacitor which charges to the peak voltage each half cycle of the AC voltage sine curve and then

discharges at a slower rate through the load while the rectified voltage drops before the beginning

of next half cycle. Therefore, duration, call TRU , of time that takes for the capacitor voltage to

drop below an acceptable value depends on the capacitance of the capacitor and the amount of

current drawn by the load. If TRU is strictly larger than T , then it can be guaranteed that the

DC voltage stays above a pre-specified threshold provided that the corresponding rectifier unit is

healthy. Furthermore, the time over which a generator has to remain healthy during each control

cycle is not arbitrarily small because it needs to be healthy for at least a time, call Tr, during that

the sensor is read. Otherwise, we would violate the environment assumptions. The time Tr is enough

to charge the capacitor to the peak voltage. Therefore, the capacitances and the current drawn by

the DC loads in the testbed are arranged so that Tr is large enough to charge the capacitors in the

rectifier units to their peak voltage.

For proper operation of the controller, the sensors shall provide complete and consistent in-

formation. To this end, their placement, functionality and accuracy play crucial roles in design.

Analog-to-digital (A/D) inputs on the relay board are used to monitor the system conditions; the

input connections range from 1 to 8, as shown Fig. 8. The system can have four threshold values

because it has four sensors. The A/D inputs on the relay board can read 0 to 5 VDC. The first
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two sensors will have a threshold value of V0 = 5VAC/256, and the other two sensors will have a

threshold value of V0 = 5VDC/256. We check the voltage on an A/D input with an accuracy of 8

bits therefore, VAC and VDC are scaled in the range of 0-256. The first lines of the code in Fig. 7

read the voltages from each sensor and check if the voltage measurement is above or below the

threshold values, VAC and VDC . The status of each environment variable can then be assigned as

healthy or unhealthy accordingly.

1 2 3 4 5 6 7 8 GND
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3

4

Fig. 8 Sensing configuration for the testbed.
The numbered arrows denote voltage sensing
connections from Fig. 5.

The voltage sensing connections are rep-

resented by the numbered arrows in Fig. 8,

which correspond to the numbered arrows in

Fig. 5. The transformers that act as generator

sources can be unplugged in order to simulate

a generator failure. The A/D inputs cannot

handle 24 VAC; therefore, voltage sensing for

generator failures on 24 VAC is handled using

additional relays. The relays connect a 3.6

V circuit to a battery when triggered by the

voltage from the transformers. Therefore, the threshold value V ′
AC for the system is set whenever

the additional relays are not triggered anymore. The threshold value VAC , which is read from the

A/D inputs, is set to 100, approximately 2 V using an 8-bit resolution. The voltage V ′
AC is set by

the relay manufacturer but is usually a low value compared to when they are triggered. The relays

used in the testbed have a minimum turn-off voltage of 3.6 VAC and a maximum turn-on voltage

of 18 VAC.

The rectifier units are connected to a switch which can be used to generate a fault in the DC

subsystem. The voltage sensors of the rectifier units are directly connected to the A/D inputs of

the relay board because the voltage is tuned to 2.5 VDC using the variable DC voltage regulator on

the rectifier units. When the status of a switch that injects a fault on the DC subsystem is changed,

there will be no potential difference between ground and the wire connected to the sensor; therefore,

VDC can be chosen anywhere between 0 and 128 and is usually set to 100 (i.e., equal to VAC).
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E. Testbed Characteristics

We now describe the characteristics of the hardware testbed. The characteristics depend on

the relay delay time, Td, and control cycle times, Tc and T ′
c. The relay delay time is the time delay

between the time a command to actuate the relay is written on the relay board and the time the

action (i.e., relay opening or closing) is completed. The control cycle times are defined as

Tc = 4Tr + TI + Tw

T ′
c = 4Tr + TI ,

(5)

where Tr is the time taken to read the health status from one environment variable, TI is the time

taken to run the Matlab script generated from TuLiP , and Tw is the time taken to write information

to the board. We also have to consider the control cycle time T ′
c because, if the system remains the

same, writing information to the board is not necessary in that iteration.

As discussed in Section IVD, we reason the definition of when a bus becomes unpowered based

on these timing characteristics. Consider the code listed in Fig. 7, which shows that the controller

reads the health status from each environment variable in a specified order. Therefore, we have to

include first Tc, and then part of T ′
c, from the previous control cycle in the limit T . We approximate

the time to read the health status from generators and rectifier units as Tr ≈ T ′
c/4 because the time

TI is negligible compared to Tr. Therefore, a reasonable estimate of time T can be calculated with

T ≈ max (Td) + max (Tc) +
4− n

4
max (T ′

c), (6)

where n ∈ {1, 2, 3, 4} is a number that denotes the order of when the faulty environment variable is

read in the code. Table 1 summarizes the variables that characterize the testbed. The relay delay

time Td can be found from the board specifications and should be less than 20ms. We also get

a relay delay time from the additional relays that measure the AC voltage. However, we assume

that both the delay time from the board relays and the additional relays never exceed 20ms. The

control cycle times and the time it takes to run the code are estimated empirically. We calculated

Tr ≈ T ′
c/4 = 58.5ms and used Eq. (5) to calculate max(Tw) = max(Tc) −min(T ′

c) = 166.7ms and
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Variable Max Value Description

T 587.9ms Time limit for the bus to stay unpowered

Td 20ms The relay delay time

Tc 333.3ms Control cycle time (Tr + TI + Tw).

The mean and minimum values are 303.7ms and 282.5ms, respectively.

T ′
c 234.1ms Control cycle time without relay changes (Tr + TI).

The mean and minimum values are 187.5ms and 166.6ms, respectively.

TI 1ms Time it takes to run the control logic generated from TuLiP .

Tr 58.5ms Time it takes to read information from one sensors

Tw 166.7ms Time it takes to write information to all relays that need to take actions

Table 1 Summary of the variables that characterize the testbed. The values for Tc, T ′

c, and TI

were calculated from 20, 250, and 400 measurements, respectively. The times were calculated
on a Macbook Pro with 2.3 Ghz Intel Core i7 Processor.

mean(Tw) = mean(Tc)− mean(T ′
c) = 116.2ms.

For an example calculation, consider a configuration of two generators and two rectifier units,

such as shown in the topology of Fig. 4, where one generator is read first in the code (n = 1) and the

other generator is read second (n = 2). The rectifier units are read third and fourth, respectively,

in the code. The maximum unpowered time for the left AC bus on the hardware testbed can be

calculated with Eq. (6). Thus, T ≈ max (Td) +max (Tc) +
3

4
max (T ′

c) = 587.9ms. The unpowered

times for the right AC bus, left DC bus, and right DC bus are calculated in the same way as

470.4ms, 411, 8ms, and 353.3ms, respectively.

Thus, it can be concluded that the unpowered time depends on where the fault is injected. The

components connected to the right DC bus are least affected in the case of a fault, whereas the

components connected to the left AC bus are most affected in the case of a fault.

V. Simulation Models for the Testbed

As discussed earlier, correctness of an automatically synthesized control software should be in-

terpreted with respect to the abstract models and specifications used in synthesis. Therefore, before

control software is implemented and tested on actual hardware, it is useful to develop high-fidelity

simulation models to explore potential shortcomings of the abstract models used in synthesis as well

as to test continuous time properties not precisely captured by LTL specifications. This section

details the simulation models for the hardware testbed including potential control architectures.

In this work, we used Matlab Simulink [11], a graphical tool with a wide variety of built-in
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functions that can be assembled into complete systems, and, in particular the SimPowerSystems

toolbox [24], which is a physical modeling tool for electric power systems. With SimPowerSystems,

models for an entire electric power system can be built just as it would be assembled from physical

components. The constituent blocks are linked together with ideal conductors and may be linear,

nonlinear, continuous, or discrete. It is also easy to integrate TuLiP controllers into Simulink models

as TuLiP has the ability to export controllers in the form of a Matlab script that can be used as a

Simulink block.

The SimPowerSystems models used in this study are built in accordance with the hardware.

The generator units are connected to be 180◦ out of phase in order to create a shortcut when

paralleled. The rectifier units in the Simulink model are built from a transformer, diode bridge, and

capacitor to smooth out the ripple from the AC-to-DC conversion. Generators and rectifier units are

equipped with fault injection inputs and fault sensors. The delays in the relay opening and closing

times are modeled using saturated integrators to capture the formation of the electromagnetic field

when the relays are actuated. Fig. 9 shows the topology when a centralized control architecture is

used. In the this model, the embedded Matlab function block, BPCU, runs the control logic script

generated from TuLiP . There are several adjustable parameters in the model that are initialized

with a configuration script. The relay delay time, Td, is set to 20ms. The time Tr it takes to

read a sensor value is modeled with a delay between the sensing and the control command times.

Because sensors are sequentially read as indicated in Section IVE, we set the delays from the fault

sensors to kTr, where k ∈ {0, 1, 2, 3} is the order in which the sensor is read (k = 0 is the first

sensor and k = 3 is the fourth). The time, TI for running the control logic, the mean time of

4Tr, and the mean time of Tw to write the information to the relays are lumped into a sampling

time Ts of the BPCU block; therefore, we let Ts = 4Tr + TI + Tw = Tc. The mean value of Tc is

chosen according to Table 1. To reflect the variability in timing, a uniform random value is added

to the sensor reading delays Tr ≈ T ′
c/4, so that the overall control cycle time T ′

c ranged between

its maximum and minimum value given in Table 1. The configuration script is also used to define

different scenarios that involved different combinations of fault conditions.

When we implement the distributed logic on the hardware testbed it is still centralized in that
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only one relay board is connected to one computer; that is, all sensors and relays are connected to the

same computer, which leads to the same timing characteristics regardless a centralized or distributed

logic is used. With Simulink, it is possible to mimic the behavior of distributed control architecture

with two relay boards controlled by different automaton running on two different computers. The

distributed Simulink model is shown in Fig. 10 where AC and DC subsystems are sensed and

controlled by different embedded Matlab function blocks. There are several advantages of this

distributed architecture. First, it increases the robustness of the system. For instance, even if the

computer running the control logic for the DC subsystem fails, or both rectifier units fail, the AC

subsystem will continue operating and providing power to the AC buses. Second, it reduces the

control cycle time by reducing the number of sensors each controller reads from. This effect would be

particularly noticeable for the hardware used in the testbed as the largest contribution to the control

cycle times is the total time it takes to read data from the board, i.e., 4Tr for the centralized case and

2Tr for the distributed case. Finally, in the distributed architecture it is possible to introduce and

study the effects of asynchrony by choosing different sampling times for the two different controllers

in the Simulink model.

VI. Controller Tests

We now discuss some implementations of the controllers by running tests on Simulink and

on the hardware. The following examples also illustrate the differences between the high-fidelity

simulations and testbed characteristics.

A. An Example Control Test on Hardware

Fig. 11 shows the voltage measurement for a centralized 16-state controller. The measurement

was taken on the AC bus when the power cord to the transformer which is read by the sensor for

n = 2 in Eq. (6) was unplugged. The power cord was unplugged at t = 2.83 s, which is denoted by

the first vertical line in Fig. 11. The second vertical line from the left indicates when the controller

reacted and powered up the bus through another path, which occurred at t = 3.1 s. After that, we

plugged the power cord back in again. At time t = 3.73 s the controller react on that the power cord

was back, which was accompanied by a discernible change in the sine curve. Once the transformer
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Fault injection 

lgen rgen

lru
rru

Fig. 9 An example SimPowerSystems model which corresponds to the single-line diagram in
Fig. 4. The embedded Matlab function called BPCU (bus power control unit) controls the
system with a 16-state TuLiP automaton. There are two AC loads connected to the AC
subsystem and two DC loads in the bottom connected to the DC subsystem. In addition,
there is a Matlab function that can be used for fault injection at a specific or random time.

was plugged in again after a fault, the time during which the bus had been without power is not

noticeable because the controller sends simultaneous commands to the two relays.

The measured unpowered bus times are listed in Table 2 for n = 2. The maximum value is

Tmax = 414.9ms. As calculated in Section IVE, time T = 470.35ms; therefore, Tmax < T . We used

a digital storage oscilloscope (Rigol DS1052E 50MHz) for the measurements. The measurement

data were imported into Matlab to plot sinusoidal curves (e.g., Fig. 11) and analyzed the signal to

estimate the unpowered times.
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Fault injection 

lgen rgen

lru
rru

Fig. 10 An example SimPowerSystems model which corresponds to the single-line diagram in
Fig. 4. The model has two embedded Matlab functions called BPCU; each of them runs on
a four-state TuLiP automaton. There are two AC loads connected to the AC subsystem and
two DC loads in the bottom connected to the DC subsystem. In addition, there is a Matlab
function that can be used for fault injection at a specific or random time.

Bus-unpowered time

Mean 333.9ms

Max 414.9ms

Min 232.7ms

Table 2 Time for which bus was unpowered after a fault had been injected on the hardware
testbed. These values were calculated using measurements from 10 fault injections.

B. An Example Control Test on Simulink

Fig. 12 illustrates the bus voltage measurements of the Simulink model when a fault was injected

on a generator which is read by the sensor for n = 2. Note the similarities with the hardware

measurements based on the unpowered time and change in the sine curve when the faulty generator
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Fig. 11 Bus voltage measurement when a generator was switched off and then turned back
on. The first vertical line indicates the fault, the second vertical line is when the controller
reacts, and the third line is when the generator was turned back on.

Bus-unpowered time

Mean 269.7ms

Max 379.0ms

Min 146.0ms

Table 3 Time for which bus was unpowered after a fault had been injected in the Simulink
model. These values were calculated using measurements from 10 fault injections.

was switched on again.

The measured unpowered bus times are listed in Table 3; the maximum value is Tmax = 333.0ms.

Thus, we can verify with Eq. (6) that Tmax < T .

C. Comparison Between Simulation Results

Fig. 11 and Fig. 12 show the similarities in the AC voltages measured in the Simulink based

simulations and in the hardware tests. Fig. 13 illustrates the measured voltage on the DC bus when

a rectifier fault was injected. The same unpowered behavior are seen in both figures. However,

no change could be detected in the voltage when the rectifier unit became healthy in the Simulink

based simulation. Partly, because of the ideal behavior of the components; e.g., contactor delays.

Table 2 and Table 3 show that the unpowered time is slightly lower in the Simulink based

simulation compared to that in the hardware testbed.
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Fig. 12 Bus voltage measurement in Simulink when a generator was switched off and then
turned back on.

Bus-unpowered time

Mean 204.4ms

Max 274.0ms

Min 121.0ms

Table 4 Time for which bus was unpowered after a fault had been injected in the distributed
logic Simulink model. These values were calculated using measurements from 10 fault injec-
tions.

Table 4 lists the unpowered times of the distributed logic in Simulink. Note the decrease

in the unpowered times compared to the values shown in Table 2 and Table 3. An interesting

observation from the executions of the centralized and distributed controllers (synthesized to realize

the local specifications discussed in Section IVB) is that if the centralized controller senses that

both rectifier units are unhealthy (i.e., the environment assumption on the DC side is violated), the

entire controller stops working because a no-successor state has been reached. On the other hand, in

the case of the distributed controllers, the AC part continues executing and its own requirements are

still fulfilled whereas the DC part stalls at a no-successor state with no guarantees on the satisfaction

of its requirements.

VII. Conclusions, Limitations and Extensions

We demonstrated a formalized workflow for the design of control protocols for primary dis-

tribution in electric power systems on more-electric aircraft. The steps of the workflow include
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Fig. 13 Bus voltage measurement on the testbed when a rectifier unit was switched off and
then turned back on. Figure in (a) is for when the rectifier was turned off and on twice.
Figure (b) is for when a fault was injected at 2.83ms in the Simulink model.

(i) establishing formal specifications that capture safety and performance requirements and ab-

stract models of the allowable evolution of the underlying system; (ii) automatically synthesizing

control protocols from these specifications and models; and validating/testing these protocols on

high-fidelity simulations models and a hardware testbed. For the hardware tests, we employed an

academic-scale setup we had developed in our recent work to initiate some of the salient features of

power networks on aircraft.

On the hardware testbed, we injected faults in the hardware testbed by unplugging the power

cords and changing the switches. With this method of fault injection, it is relatively difficult (if

not impractical) to switch off a generator and a rectifier unit within the same control cycle. A

more accurate approach to generate faults would be using an additional relay board which would

enable to systematically study synchronous, correlated, and cascaded failures and their influence on

controller performance; with the current method of fault injection, it could be difficult to switch off

a generator and a rectifier unit within the same control cycle.

Through the high-fidelity simulations, we showed that the bus unpowered time significantly

decreases when we use distributed controllers running with different automata on two different

computers and on two relay boards. Therefore, it would be more suitable on the hardware testbed

to use a distributed control architecture more like that on an aircraft.

On an aircraft, the controller is an embedded system designated for a specific task. To increase
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its reliability and performance, the hardware model could be adapted to run the relay boards through

microcontrollers. Embedded code for these microcontrollers can be readily generated using Matlab.
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