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Abstract

Lagrangian control systems that are di�erentially �at with �at outputs

that only depend on con�guration variables are said to be con�guration

�at� We provide a complete characterisation of con�guration �atness for

systems with n degrees of freedom and n� � controls whose range of con�

trol forces only depends on con�guration and whose Lagrangian has the

form of kinetic energy minus potential� The method presented allows us

to determine if such a system is con�guration �at and� if so provides a con�

structive method for �nding all possible con�guration �at outputs� Our

characterisation relates con�guration �atness to Riemannian geometry�

We illustrate the method by two examples�
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� Introduction

Roughly speaking an underdetermined system of ordinary di�erential equations

F k�t� x�� � � � � xN � �x�� � � � � �xN � � �� k � �� � � � � n � N

is di�erentially �at if there is a smooth locally ��� correspondence between
solutions x�t� of the system and arbitrary functions y�t�	 of the form

x�t� � g�t� y�t�� � � � � y�l��t���

y�t� � h�t� x�t�� � � � � x�q��t���

where �y�� � � � � yp� � Rp and p � N � n� Here g� h are smooth maps	 y�k� is the
kth derivative of y	 and l� q are integers� The variables yj are referred to as �at
outputs� The special class of systems given by

�xi � f i�t� x�� � � � � xn� u�� � � � � up�� i � �� � � � � n

are more familiar to control theorists and the �at outputs depend on states	
inputs	 and derivatives of inputs

yj � hj�t� x� u� u���� � � � � u�q��� j � �� � � � � p�

For a detailed discussion of di�erential �atness see Fliess et al� ��	 ��	 Martin
�
�	 Pomet ����	 van Nieuwstadt et al� ���� and Rathinam and Sluis �����

The importance of �atness to control applications lies in the fact that it
provides a systematic and relatively simple way to generate solution trajectories
between two given states� One uses the maps g and h to transform between
original system space �states as well as inputs� and the smaller dimensional �at
output space� See van Nieuwstadt and Murray ��
� and Murray et al� ���� for
more details�

For example consider the �kinematic car� shown in Figure �� Ignoring dy�
namics we assume the velocity of the mid point between rear wheels and the
steering velocity are directly controlled� Then the system is di�erentially �at
with the coordinates of the midpoint between rear wheels providing the two �at
outputs �see Tilbury et al� ������ Given any trajectory for this point one can
determine the entire motion of the car� the tangent to the trajectory determines
the orientation of the car and the curvature �second derivative� determines the
orientation of the front wheels� Hence all feasible paths of the vehicle can be
parametrised in terms of the trajectories of the �at output point� A given set
of initial and �nal con�gurations of the car then determine two end points and
�rst and second order derivatives at these end points for feasible trajectories of
the �at output point� One could choose any trajectory for the �at output point
that satis�es these end conditions and obtain a feasible trajectory for the car
that passes through the given initial and �nal conditions� In this example �at
outputs are rather obvious� This is not the case with many other examples and
one needs a theoretical tool to provide a systematic way of �nding them if they
exist�
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Figure �� Path Planning for Kinematic Car

In the case of single input systems a complete characterisation of di�erential
�atness is available	 see e�g� Shadwick ����� In that case	 �atness is the same as
static feedback linearizability� See also ���� In the framework of exterior di�eren�
tial systems	 checking for �atness of a single input system reduces to calculating
�derived systems� and checking certain rank and integrability conditions� See
van Nieuwstadt et al� ����	 Sluis ��� and Sluis and Tilbury ����� For multi�input
systems no complete theory exists�

Many interesting examples of mechanical systems are di�erentially �at and
in most known examples �at outputs have been found that depend only on
the con�guration variables but not on their derivatives� We refer to such �at
outputs as �con�guration �at outputs� and systems possessing such outputs
as �con�guration �at�� For instance	 the above example of kinematic car is
con�guration �at� All Lagrangian systems that are fully actuated �number of
controls equals number of degrees of freedom� are con�guration �at with all the
con�guration variables as �at outputs� See ���� for a catalogue of other exam�
ples� The reasons for studying con�guration �atness are as follows� Firstly it is
a simpler case than the general case of di�erential �atness and is possibly the
�rst thing to study if one were to be able to relate the mechanical structure
with di�erential �atness� For instance con�guration controllability of mechan�
ical systems has already been studied and related to the mechanical structure
�see Lewis and Murray ����� Secondly the smaller the number of derivatives of
con�guration variables the �at outputs depend upon the simpler the numeri�
cal implementation of the transformations involved in trajectory generation� In
this paper we completely characterise con�guration �atness for a special class of
mechanical systems� The class under consideration involves systems whose dy�
namics is described by Lagrangian mechanics with a Lagrangian function of the
form �kinetic energy minus potential�� Also the number of independent controls
is assumed to be one less than the number of degrees of freedom �the simplest
case next to fully actuated systems� and the possible range of control forces only
depends on the con�guration and not on the velocity� We describe an algorithm
for deciding if such a system is con�guration �at and if it is so	 we describe a
procedure for �nding all possible con�guration �at outputs� We do not consider
systems with nonholonomic constraints� The kinematic car example hence does
not fall into the class of systems under our consideration�

The paper is organized as follows� Section � introduces some concepts from
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Lagrangian control systems theory and also provides a de�nition of con�guration
�atness� Section � introduces some concepts from Riemannian geometry that
are necessary for our theory and also states and proves the main proposition
and outlines an algorithm for coordinate calculations to check con�guration
�atness� Section � explores how system symmetries relate to symmetries of the
�at outputs� Finally Section � gives two examples to illustrate the theory�

� Lagrangian control systems and con�guration

�atness

Consider a Lagrangian system with con�guration manifoldQ of dimension n and
a Lagrangian L � TQ � R� When no external �generalised� forces are applied	
the motion of this system satis�es the Euler�Lagrange equations	 written in
coordinates �q�� � � � � qn� as

d

dt
�
�L

� �qi
� �

�L

�qi
� �� i � �� � � � � n� ���

In a control situation external control forces are applied and it is natural to
think of forces as covectors on the manifold Q� In other words	 for a con�gura�
tion q � Q the total external force acting on the system can be represented by
an element of T �q Q� This is because forces naturally pair with velocities	 which
can be thought of as elements of TqQ	 to give instantaneous power� The possible
range of control forces lies in a subspace of T �q Q which may depend on position
q as well as velocity vq� In other words the control forces can be described by a
horizontal valued codistribution �P � T ��TQ�	 and p � dim �P is the number of
independent controls� For an interesting and wide class of systems this subspace
only depends on con�guration q and hence can be described by a codistribution
P � T �Q of dimension p� For the rest of the discussion we shall only consider
this case� All feasible paths �solutions� of such a system are characterised by
the following underdetermined system of ODEs in coordinates �q�� � � � � qn��

aik�
d

dt
�
�L

� �qi
� �

�L

�qi
� � �� k � �� � � � � n� p ���

where aik
�
�qi

for k � �� � � � � n� p span the annihilator of P 	 denoted annP �

It is useful to think in terms of the associated submanifold E � J��R� Q� of
the second order jet space �see �����	 which geometrically describes such a second
order system of equations� E has codimension n � p and in local coordinates
�t� q� �q� �q� is cut out by the common zeroes of the functions

aik�
��L

� �qi� �qj
�qj �

��L

� �qi�qj
�qj �

�L

�qi
�� k � �� � � � � n� p�

Let q � Q be a point and let y � U � Q� R
p be a submersion locally de�ned

around q� Let y � �y�� � � � � yp�� We say y�� � � � � yp are di�erentially independent
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around q if y�� � � � � yp do not have to satisfy an ODE along solutions local to
q� More precisely	 when restricted to E 	 dy�� � � � � dyp� d �y�� � � � � d �yp� d�y�� � � � � d�yp

are linearly independent for generic points on ���� �V � � E where V � U is an
open neighbourhood of q and �� � J��R� Q� � Q is the standard projection�
If dy�� � � � � dyp� d �y�� � � � � d �yp� d�y�� � � � � d�yp are linearly dependent when restricted
to E 	 for points on ���� �V � � E where V � U is an open neighbourhood of q
then y�� � � � � yp are di�erentially dependent around q�

Suppose y�� � � � � yp are di�erentially independent around q� If there are
functions f i and a neighbourhood W of q such that along a generic solution
c � R�W � Q	

�zi � c��t� � f i��y � c��t�� � � � �
dr

dtr
�y � c��t��� i � �� � � � � n� p ���

where z�� � � � � zn�p are any complementary coordinates to y�� � � � � yp	 then y�� � � � � yp

are said to be con�guration �at outputs around q and the system is con�guration
�at around q� In other words	 given y��t�� � � � � yp�t� we can determine a �locally�
unique trajectory for the Lagrangian system ����

We present the following lemma which will be of use later�

Lemma � Let q � Q	 U an open neighbourhood of q	 and y � U � R
p be a

con�guration �at output� Then generically the set of solutions c � R� U that
project down to the same curve y � c are all isolated�

Proof By de�nition of �atness along generic solutions	 given y�t� the com�
plementary coordinates z�t� are locally uniquely determined by equations ����

� Mechanical systems with n degrees of freedom

and n � � controls

Consider the mechanical system whose Lagrangian is given by

L�v� �
�

�
g�v� v� � V � �Q�v�� ���

where g is the Riemannian metric �assumed to be non degenerate� corresponding
to kinetic energy and V is the potential energy function on Q and �Q � TQ� Q
is the tangent bundle projection� Suppose the number of controls p � n � �	
in other words dimP � n � �� In this section we shall present a method for
determining if this system is con�guration �at� If the system is con�guration
�at our approach provides us with a constructive method for �nding all possible
�con�guration� �at outputs�

Before proceeding further we present some concepts from Riemannian ge�
ometry� Given a metric g we have a notion of di�erentiation of objects on the
manifold such as functions	 vector �elds	 di�erential forms and tensors along a
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given vector �eld Z� This is the covariant derivative r given by the Levi�Civita
connection �see ����� rZ denotes covariant derivative along a vector�eld Z and
is related to parallel �with respect to metric� transport of objects along the in�
tegral curves of Z� The covariant derivative of a function f along Z denoted
rZf is just the familiar directional derivative Z�f� or the Lie derivative� But
covariant derivative of a vector�eld X along Z denoted rZX is not the same
as the Lie derivative �Z�X�� Some properties of r are

rZ�X� �X�� � rZX� �rZX� ���

rZ�fX� � rZX � Z�f�X ��

rfZX � frZX ���

rZX �rXZ � �Z�X� ���

where X�X�� X�� Z are arbitrary vector �elds and f is an arbitrary function on
the manifold� In a coordinate system �q�� � � � � qn� on manifold Q the covariant
derivatives are calculated with the aid of Christo�el symbols �ijk where i� j� k �
�� � � � � n and Christo�el symbols are de�ned by

r �

�qj

�

�qk
� �ijk

�

�qi
� �
�

From the properties ��� of r it follows that �ijk � �ikj� �ijk can be computed
from metric g by the formula

�mjk �
�

�
�
�gik
�qj

�
�gij
�qk

�
�gjk
�qi

�gim� j�m � �� � � � � n� ����

where gikgkj � 	ij �gik are components of the inverse of matrix gik�� Then the

covariant derivative of vector�eld X � Xk �
�qk

along Z � Zj �
�qj

is given by

rZX � ZjXk�ijk
�

�qi
� Zj �X

k

�qj
�

�qk
� ����

For the mechanical system under consideration let us de�ne an associated
distribution D by

D � spanf
�rZ
 � Z � X�Q�g� ����

where 
 is any vector �eld such that annP � spanf
g and X�Q� is the set of all
smooth vector �elds on Q�

It is easy to check that D doesn t depend on the choice of 
 � annP � By
the linearity of covariant derivative it follows that

D � spanf
�r �

�qi

 � i � �� � � � � ng ����

where �q�� � � � � qn� are any set of coordinates� Hence D is easily calculated using
equations ����	 ���� and ����� The following proposition characterises con�gu�
ration �at outputs y�� � � � � yp by conditions on kerTy	 which in coordinates is
the null space of the Jacobian of the map y�
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Proposition � Let q be a point on Q	 U an open neighbourhood of q and
suppose y � U � Q � R

p is a submersion� If y�� � � � � yp are con�guration �at
outputs	 then

g�ker Ty�D� � �� ����

Conversely if g�ker Ty�D� � � and if certain regularity condition holds at q then
y�� � � � � yp are con�guration �at outputs around q�

The regularity condition is that the ratios of functions in the following set
should not all be the same at q�

fr��g�
� Z�� � g�
� Z��r��g�rZ�
Z�� 
�� � g�rZ�

Z�� 
��r��
�V �� � 
�V �g� ����

where Z�Z�� Z� are arbitrary vector �elds around q that are y�related to some
vector�eld on Rp and 
� � are �xed nonvanishing vector �elds such that annP �
spanf
g and kerTy � spanf�g�

Remark � Proposition � states the conditions for con�guration �atness in in�
trinsic geometric terms� In coordinates the algorithm for deciding if the system
is con�guration �at is as follows� Calculate D using equation ����� If D � TQ
then system is not con�guration �at	 since for any y	 one can �nd some vector
�eld Z � D � TQ	 such that g�ker Ty� Z� �� �� Suppose dimD � n� �� Then
choose a one dimensional distribution	 say spanned by a vector�eld �	 that is
orthogonal to D� Since a one dimensional distribution is integrable locally	 one
can �nd independent functions y�� � � � � yp �p � n � �� around q that �cut out�
the leaves of the corresponding foliation� These will be �at outputs provided
the regularity conditions are met�

The regularity conditions can be checked in coordinates as follows� Choose
a function z that completes y�� � � � � yp to a coordinate system� Then y�� � � � � yp

will be �at outputs if the following ratios of functions are not all identically
equal in a local neighbourhood�

�

�z
�g�
�

�

�yj
�� � g�
�

�

�yj
�� j � �� � � � � p

�

�z
�g�r �

�yk

�

�yj
� 
�� � g�r �

�yk

�

�yj
� 
��� j� k � �� � � � � p ���

�

�z
�
�V �� � 
�V ��

If these are all identically equal that means y�� � � � � yp are di�erentially depen�
dent and another one dimensional distribution must be tried�

Remark � It is readily seen that con�guration �atness is determined primarily
by the kinetic energy metric g since the role of potential function V only enters
via the regularity conditions� This explains why in many known examples �see
����� the presence or absence of gravity does not alter the con�guration �at
outputs but only the solution curves where singularities occur� However	 we
present an example in next section where the potential function plays a crucial
role via the regularity conditions�





Proof �of Proposition �� � Given a submersion y � Q� R
p	 one can choose

a local coordinate chart on Q such that y is the canonical submersion ofRn onto
R
p� Let the corresponding coordinates on Q be �q�� � � � � qn�� Then	 yj�q� � qj

for j � �� � � � � p � n � �� Let 
 � ai �
�qi

span annP � Then all solutions of the
system satisfy the single ODE

ai�
d

dt
�
�L

� �qi
� �

�L

�qi
� � �� ����

Suppose in these coordinates g is given by gij� Then we can rewrite equation
���� as

ai�gij �qj �
�gik
�qj

�qj �qk �
�

�

�gjk
�qi

�qj �qk �
�V

�qi
� � �� ����

Using the formula ���� for the Christo�el symbols and using qj � yj for j �
�� � � � � p to separate the terms involving �qn and �qn	 we rewrite equations ���� as	

ai�gij�yj � �mjkgmi �yj �yk �
�V

�qi
� gin�qn � �mnngmi� �qn�� � �mjngmi �yj �qn� � � ��
�

where range of summation of various indices is clear�

Necessity� Suppose y are �at outputs� Then it follows that the coe!cient of �qn

in the above ODE must to be zero� Otherwise we can rewrite the equation as

d �qn

dt
� f�y� �y� �y� qn� �qn�

for some smooth function f 	 and by existence theorem of solutions to ODEs	
given any curve y�t� we get a ��parameter family of solutions q�t� �parametrised
by initial conditions qn�t��� �qn�t��� that project to y�t� and they are not isolated
from each other and hence by Lemma � y cannot be �at	 contradicting our
assumption� So aigin � � and this leaves us with an ODE of the form

A�y�� �qn�� � B�y� �y� �qn � C�y� �y� �y� qn� � ��

A similar reasoning tells us that the term �qn should be absent	 in other words
A�y� � � and B�y� �y� � �� Here A and B are given by	

A � ai�mnngmi B � ai�mjngmi �yj �

Observe that B is linear in terms �y with coe!cients that are functions only of
�y� qn�� Hence the condition B � � can be written as n � � equations that set
the coe!cients of �yj to be zero� The equation A � � has the same form as
these	 and we get the following n equations�

ai�mjngim � �� j � �� � � � � n�

�



So all together �atness of y implies the following equations	

aigin � �

ai�mjngim � �� j � �� � � � � n� ����

If ker Ty � spanf�g	 then in our choice of coordinates � � � �
�qn

where � is some

nonvanishing function on Q� Hence	 g�
� �� � aigin � � by the �rst condition	
where 
 � ai �

�qi
spans annP � Also since

r �

�qj
� � ��mjn

�

�qm
�

��

�qj
�

�qn
�

it follows that

g�r �

�qj
�� 
� � �ai�mjngim �

��

�qj
aigin � ��

But	 by derivation property	

rZ�g�
� ��� � �rZg��
� �� � g�rZ
� �� � g�
�rZ��

and since rZg � � for any Z � X�Q� �by the property of Levi�Civita connection�
and since g��� 
� � � it follows that

g�r �

�qj

� �� � �� j � �� � � � � n�

By linearity of r it follows that

g�rZ
� �� � �� 	Z � X�Q��

Hence	 ker Ty is orthogonal to D�

Su�ciency� Conversely	 if ker Ty is orthogonal to D	 previous reasoning shows
that	 in the same coordinate system the equations ���� hold� As seen before
these imply that the solution curves of the system are given by the ODE

E�qn� y� �y� �y� � ��

where

E � aigij�yj � aigim�mjk �yj �yk � ai
�V

�qi
�

This is not su!cient for �atness of y�� � � � � yp since it is possible that y�� � � � � yp

are di�erentially dependent and this happens when E does not depend on qn�
More precisely y�� � � � � yp are di�erentially dependent around q when there exists
a neighbourhood V of q such that �E

�qn
is identically zero on ����� �V � � fE �

�g� � J��R�Q� where �� � J��R�Q� � Q is the standard projection� The
functions E and �E

�qn
are both a!ne in �y and quadratic in �y with the coe!cients
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functions only of �y� qn� and E depends on �y non trivially since metric g is non
degenerate� Hence �E

�qn
is either identically zero on ���� �q��fE � �g or it is non

zero for generic points on ���� �q��fE � �g� Further more �E
�qn

is identically zero

on ���� �q��fE � �g if and only if it is a multiple of E as a polynomial in �y and
�y for points on ���� �q�� Hence the regularity condition we impose is that �E

�qn
is

a not a multiple of E as a polynomial in �y and �y for points on ���� �q�� Then
it would follow from continuity and implicit function theorem that for generic
points on ���� �V � � fE � �g where V is some neighbourhood of q	 qn can be
locally solved for in terms of y� �y� �y	 implying �atness around q�

Rest of the proof is concerned with showing that this condition translates to
the regularity condition stated in the proposition� It is su!cient to show that
�E
�qn

is a multiple of E as polynomials in �y� �y with the ratio being a smooth func�

tion on Q is equivalent to the set of ratios of functions ���� all being identically
equal in a neighbourhood of q�

Let � span ker Ty� Then � � � �
�qn

for some nonvanishing function �� Also

let 
 � ai �
�qi

span annP � Suppose �E
�qn

� fE for some function f de�ned in a

neighbourhood of q on Q� Considering coe!cients of �yj terms we get

�

�qn
�aigij� � faigij j � �� � � � � p� ����

Also observe that any vector�eld Z on Q is y�related if and only if it has the
form Zj�y� �

�yj
� Zn�y� qn� �

�qn
� Hence

r��g�
� Z�� � �
�

�qn
�Zjaigij�

� �Zj �

�qn
�aigij� � �fZjaigij�

where we have used aigin � � and equation ����� Hence equation ���� is equiv�
alent to

r��g�
� Z�� � �fg�
� Z�� ����

where Z is any arbitrary y�related vector�eld�
Considering coe!cients of �yj �yk we get

�

�qn
�aigim�mjk� � faigim�mjk� j� k � �� � � � � p� ����

Assuming equation ����	 this is equivalent to

r��g�rZ�
Z�� 
�� � f�g�rZ�

Z�� 
�� ����

where Z�� Z� are arbitrary y�related vector�elds� This is because substituting
Zl � Zj

l �y� �
�yj

� Zn
l �y� qn� �

�qn
for l � �� � we get

g�rZ�
Z�� 
� � Zj

�Z
k
� g��

m
jk

�

�ym
� 
� � Zj

�

�Zk
�

�yj
g�

�

�yk
� 
��






where we have used aigin � �	 ai�mkngim � � �since kerTy is orthogonal to

D� and �Zk
�

�qn
� � for k � �� � � � � p� Hence

r��g�rZ�
Z�� 
��

� �Zj
�Z

k
�

�

�qn
�aigim�mjk� � �Zj

�

�Zk
�

�yj
�

�qn
�aigik�

� �fZj
�Z

k
� a

igim�mjk � �fZj
�

�Zk
�

�yj
aigik

where we have used equations ���� and ����� This simpli�es to

r��g�rZ�
Z�� 
�� � �fg�rZ�

Z�� 
�� ����

Finally considering the coe!cients of the terms independent of �y and �y we get

�

�qn
�ai

�V

�qi
� � fai

�V

�qi
�

Clearly this is equivalent to

r��
�V �� � �f
�V �� ���

completing the proof�

� Systems with n degrees of freedom� n� � con�

trols and symmetry

In this section we shall consider systems of the type considered in last section
that also exhibit symmetries� We shall suppose that a Lie group G acts on our
con�guration space Q with action "h corresponding to h � G and that

"�

hg � g� "�

hP � P 	h � G� ����

In other words the kinetic energy of the system as well as the range of control
forces both are invariant under the group action� However we do not assume
that V is invariant under the group action� Many mechanical systems fall under
this category� Rigid body systems moving in Euclidean space actuated by body
�xed forces are typical examples where the group is G � SE���	 even though
the equations of motion often do not have SE��� as a symmetry group since
potential forces due to gravity break the symmetry� But since V plays a very
limited role in con�guration �atness we may expect that when the system is
con�guration �at that it would be possible to �nd �at outputs that re�ect this
symmetry� We believe this to be true and shall prove it for the case dimD �
n � �� The general case dimD � n � � has not yet been resolved completely
�see Remark ���

��



Lemma � Consider a system satisfying ����� Let D be de�ned as in ����� Then
"h�D � D�

Proof Let 
 span annP � Clearly "h� �annP � � annP � Hence "h�
 �
�h
 � D where �h is some smooth function� Since "h is an isometry by ����	
it follows that "h� �rZ
� � r�h�Z

�"h�
� by properties of r �see	 for example	
��� page ���� Hence

"h�rZ
 � r�h�Z
��h
�

� �hr�h�Z

 � �r�h�Z

�h�
 � D� ����

So we have "h�D � D� Since "h is a di�eomorphism	 the result follows by
dimension count�

Let y � Q � R
p be a map de�ned locally around q � Q� We shall say

y�� � � � � yp are G�equivariant if

"h� kerTy � ker Ty�

This means level sets of y are mapped to level sets by the group action�

Proposition � Consider a system satisfying ����� Suppose dimD � n� � and
that the system is con�guration �at� Then the �at outputs are G�equivariant�

Proof Follows from the fact that kerTy is the orthogonal complement to
D and Lemma ��

Remark � The case dimD � n� � is not as restrictive as it may seem� Typi�
cally dimD � n	 implying that the system is not con�guration �at� When the
system is con�guration �at �dimD � n� ��	 most likely dimD � n� �� In fact
many examples of systems that are con�guration �at fall into this category in�
cluding the �rst example in next section as well as the �ducted fan with stand�
in ��
� and the �planar coupled rigid bodies� example in �����

Remark � In the case when dimD � n� �	 given the system is �at with �at
outputs y � Q� R

p around q � Q	 it is possible to construct outputs #y � Q� R
p

around q that are G�equivariant and satisfy g�ker T #y�D� � �� But it hasn t been
resolved whether it is possible to construct #y in such a way that it also satis�es
the regularity conditions ����� The authors are currently trying to resolve this
technical issue but suspect that at least in typical cases this construction should
work� The second example in next section falls into the case dimD � n�� and
we see that it possesses G�equivariant �at outputs�

	 Examples

In this section we shall consider some examples to illustrate the theory developed
in the previous section�
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Figure �� Underwater vehicle in R�

��� Underwater Vehicle

We shall study a simple model of an underwater vehicle that is controlled by
a force applied through a �xed point P on the body whose magnitude and
direction can be independently controlled�

Only the motion in the vertical plane is considered and hence our con�g�
uration space is SE��� � R

� 
 S�� This is reasonable when the vehicle has
symmetries about � orthogonal planes� In addition if we assume that the centre
of buoyancy is coincident with centre of mass	 the kinetic energy is given by

�

�
�m � 	m�� �x� cos � � �x� sin ��� �

�

�
�m � 	m�� �x� sin � � �x� cos ��� �

�

�
I� �����

��
�

where �x�� x�� are horizontal and vertical coordinates of the centre of mass G	
� is the orientation �measured clockwise� of line PG with respect to horizontal
axis	 m � M ��m� �m��� and 	m � �m��m��� where M is the mass of the
vehicle and m� and m� are added mass terms that take into account inertia of
the �uid	 and I is the e�ective moment of inertia taking into account the �uid�
This model assumes an incompressible	 irrotational �ow and neglects viscosity
e�ects� It is assumed that the motion of the �uid is entirely due to that of
the solid� The body and the �uid together are considered to form a dynamical
system and the kinetic energy is the combined energy of body and �uid� See
��� and �� for details� The analysis in ��� assumes a neutrally buoyant model	
but we need not make this assumption since this only alters the form of the
potential function but does not a�ect the kinetic energy� In fact for the �rst
part of the analysis we shall not assume any speci�c form for potential V � If
the vehicle is in air �strictly speaking vacuum� m� � m� � �	 so m � M and
	m � � and the kinetic energy takes the familiar form

�

�
�m� �x��

� �m� �x��
� � I� �����

��



where I is the usual moment of inertia and the model is the same as that of
VTOL �see ������

The metric g in coordinates x�� x�� � is given by the matrix�
� m � 	m cos �� �	m sin �� �

�	m sin �� m � 	m cos �� �
� � I

�
� �

The control forces lie in the codistribution

P � spanfd�x� �R cos ��� d�x� �R sin ��g

� spanfdx�� R sin �d�� dx� � R cos � d�g

and 
 � �
��

�R sin � �
�x�

�R cos � �
�x�

spans annP where R is the length of PG�

The Christo�el symbols �ijk can be computed from g using equation �����
Then using formula ���� we see that

r �
�x�


 � �
m	m

m� � �	m��
sin ��

�

�x�
�

	m

m� � �	m��
�	m� m cos ���

�

�x�

�
R	m cos �

I

�

��

r �
�x�


 � �
	m

m� � �	m��
��	m �m cos ���

�

�x�
�

m	m

m� � �	m��
sin ��

�

�x�

�
R	m sin �

I

�

��

r �
��

 �

mR cos �

m� 	m

�

�x�
�
mR sin �

m � 	m

�

�x�
����

It can be seen by computation that the above vector �elds together with 

span the full tangent space for generic points and generic parameter values
m� 	m� I�R� Since by equation ����

D � spanfr �
�x�


�r �
�x�


�r �
��

� 
g�

it follows that D � TQ for generic points on Q and for generic parameter values
and hence the system is not con�guration �at for generic parameter values
regardless of the potential energy function�

However for the case 	m � �	 we see that

D � spanfR cos �
�

�x�
� R sin �

�

�x�
� R sin �

�

�x�
� R cos �

�

�x�
�

�

��
g�

Hence dimD � � and � � �
��
� I

mR
sin � �

�x�
� I

mR
cos � �

�x�
spans the orthogonal

complement to D� Since D has codimension �	 up to a di�eomorphism there is
at most � set of �at outputs� One set of functions that �cut out� the foliation
due to � is

y� � x� �
I

mR
cos �� y� � x� �

I

mR
sin ��

��



To ensure that y�� y� are indeed �at outputs we must check the regularity con�
ditions ���� Let us choose z � � as a complementary coordinate to y�� y��
Then	

�

�y�
�

�

�x�
�

�

�y�
�

�

�x�
�

�

�z
� �

I

mR
sin �

�

�x�
�

I

mR
sin �

�

�x�
�

�

��
�

Hence

�

�z

�
g�
�

�

�y�
�

�
� g�
�

�

�y�
� � � sin z � cos z

�

�z

�
g�
�

�

�y�
�

�
� g�
�

�

�y�
� � cos z � sin z� ����

So at any point q � �y�� y�� z� these two ratios are unequal� This ensures that
y�� y� are indeed �at outputs everywhere�

When the vehicle is in air �strictly speaking vacuum� 	m � �	 and in this
case it is already known to be �at �see ���	 ����� We have just shown that up
to a di�eomorphism these are the only con�guration �at outputs� Also we have
covered the case of underwater vehicle of spherical shape �since then m� � m��
and this result is independent of any assumptions we make on the potential
function V �

Now let us suppose the system is moving under gravity in air and the po�
tential energy is given by V � mgx� where g � 
�� m$s� is the acceleration due
to gravity� Then the solutions of the system in coordinates y�� y�� z satisfy the
ODE

�y� sin z � �y� cos z � g cos z � ��

So along generic solution curves we get	

z�t� � tan��
�y� � g

�y�

or

z�t� � tan��
�y� � g

�y�
� ��

The exception being the singularity at �y� � �� �y� � g � �� Note that this
singularity is not a point on Q but corresponds to a submanifold in the jet
space J��R� Q�	 the space with coordinates �t� q� �q� �q� and such singularities are
very common in practical examples� We still want to regard such systems as
�at and this is the reason why our de�nition of �atness refers to generic curves
as opposed to all curves� Also note that though potential V does not a�ect the
�at outputs of the system it in�uences where the singularities occur�

��



We also see that the general system �no assumptions on 	m� possesses an
SE��� symmetry when the potential function is ignored� If we consider translat�
ing and rotating our spatial frame of reference the expression for kinetic energy
as well as the the expression for P are invariant� We may state this more pre�
cisely as follows� Consider the following action of SE��� on Q � SE���� Given
h � ���� ��� �� � SE��� the action "h corresponds to �rst rotating the spatial
frame counter clockwise by � about its origin and then with respect to this frame
translate the frame without rotation by ���������� Hence if q � �x�� x�� �� � Q
then

"h�q� � �x� cos �� x� sin�� ����x� sin�� x� sin�� ��� � � ���

The corresponding tangent map T"h is given by

�

�x�
� cos �

�

�x�
� sin�

�

�x�
�

�x�
�� sin �

�

�x�
� cos�

�

�x�
�

��
�

�

��
� ����

It is easy to verify this preserves g� Recalling that 
 � �
��

� R sin � �
�x�

�

R cos � �
�x�

spans annP 	 we see that "h�
 � 
	 implying "�

hP � P � In particular
these statements are true for the 	m � � case as well� Hence by Proposition  the
�at outputs are G�equivariant� This is indeed true since � � �

��
� I

mR
sin � �

�x�
�

I
mR

cos � �
�x�

spans kerTy and "h�� � ��

��� Particle in force �eld

This example does not necessarily correspond to an engineering example	 but
illustrates the regularity conditions� We consider a particle of unit mass moving
in � dimensional Euclidean space in the presence of a potential �eld V � x�x��
Hence the kinetic energy metric is given by the �
 � identity matrix in orthog�
onal coordinates x�� x�� x�� Suppose we control independently the forces along
x� and x� directions� Hence P � spanfdx�� dx�g and 
 � �

�x�
spans annP � We

see that Christo�el symbols are all zero by ���� �which is a feature of Euclidean
space� and using ���� and ���� we obtain D � spanf �

�x�
g and hence the or�

thogonal complement to D is spanf �
�x�

� �
�x�

g which is two dimensional� Hence
we have in�nitely many �candidates� for �at outputs that are not equivalent
via a di�eomorphism� But these �candidates� may not satisfy the regularity
conditions ���� Following the method outlined in Remark refremalg we pick
some �	 say � � �

�x�
which is orthogonal to D� Then y� � x�� y� � x� are a

possible choice of corresponding �candidates� for �at outputs �since they cut
out the one dimensional foliation by ��� We may choose z � x� to complete the
coordinate system and then we see that the ratio of functions �

�z
�
�V �� � 
�V �

in the set ��� is � � x� where as the ratio of �
�z

�g�
� �
�y�

�� is � � �� Hence x�� x�

��



are con�guration �at outputs �globally�� But alternatively another choice could
have been � � �

�x�
with corresponding candidates y� � x�� y� � x�� Choosing

z � x� we see that all the ratios in ��� are zero and hence equal� Hence x�� x�
are not �at outputs as they are di�erentially dependent� This example is simple
enough that the above conclusions can be reached by inspecting the equations
of motion for the system

�x� �
�V

�x�
� F� ����

�x� �
�V

�x�
� � ����

�x� �
�V

�x�
� F� ����

where F�� F� are the forces along x�� x� directions� The equation ���� alone
characterises all solution trajectories of system and substituting V � x�x� we
obtain	

�x� � x� � �� ���

It is clear from the equation that x�� x� are di�erentially dependent and hence
are not �at outputs� However it is also clear from the equations that x�� x� are
�at outputs since along solution curves	

x��t� �
d�x��t�

dt�

and x�� x� do not satisfy an ODE�
Also note that the system is globally controllable since it is globally �at�

However if V � � then the system is not con�guration �at and not even locally
accessible�

It is easy to see that translations by the group R� leave g and P invariant�
But Proposition  does not apply since dimD � n��� However as mentioned in
Remark � we see that G�equivariant �at outputs exist� In fact y � �x�� x�� are
G�equivariant	 although not all �con�guration� �at outputs are G�equivariant	
since #y � �f�x�� x��� x�� where f is an arbitrary smooth function with �f

�x�
�� �	

are not G�equivariant for a typical f 	 but are con�guration �at outputs�


 Conclusions and future work

We have presented a method for determining con�guration �atness of Lagrangian
control systems with n degrees of freedom and n � � controls� Our method is
constructive and provides a way for �nding con�guration �at outputs if they
exist� We assumed a Lagrangian of the form �kinetic energy minus potential��
We also assumed that the range of control forces only depends on con�guration�
These assumptions are not unreasonable since a wide class of systems fall into
this category� However n � � controls is a special case and is the simplest case

�



next to fully actuated �n controls� systems which are allways �at� In that sense
we regard this as a �rst step towards a general theory of con�guration �atness
of Lagrangian systems� The authors are currently working on generalising this
result to arbitrary number of controls�
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