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Abstract

Lagrangian control systems that are differentially flat with flat outputs
that only depend on configuration variables are said to be configuration
flat. We provide a complete characterisation of configuration flatness for
systems with n degrees of freedom and n — 1 controls whose range of con-
trol forces only depends on configuration and whose Lagrangian has the
form of kinetic energy minus potential. The method presented allows us
to determine if such a system is configuration flat and, if so provides a con-
structive method for finding all possible configuration flat outputs. Our
characterisation relates configuration flatness to Riemannian geometry.
We illustrate the method by two examples.
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1 Introduction
Roughly speaking an underdetermined system of ordinary differential equations
Fr@ et e a2y =0, k=1,...,n<N

is differentially flat if there is a smooth locally 1-1 correspondence between
solutions #(t) of the system and arbitrary functions y(t), of the form

2(t) = gt y(t), ...,y 1)),
y(t) = h(t, (1), ... 2 D)),

where (y',...,y") € R and p = N — n. Here g, h are smooth maps, y*) is the
kt" derivative of y, and [, ¢ are integers. The variables 3/ are referred to as flat
outputs. The special class of systems given by

= fit et uP), i=1,..n

are more familiar to control theorists and the flat outputs depend on states,
inputs, and derivatives of inputs

yj:hj(t,x,u,u(l),...,u(q)), j=1,...,p.

For a detailed discussion of differential flatness see Fliess et al. [3, 4], Martin
[9], Pomet [12], van Nieuwstadt et al. [20] and Rathinam and Sluis [13].

The importance of flatness to control applications lies in the fact that it
provides a systematic and relatively simple way to generate solution trajectories
between two given states. One uses the maps ¢ and h to transform between
original system space (states as well as inputs) and the smaller dimensional flat
output space. See van Nieuwstadt and Murray [19] and Murray et al. [11] for
more details.

For example consider the “kinematic car” shown in Figure 1. Ignoring dy-
namics we assume the velocity of the mid point between rear wheels and the
steering velocity are directly controlled. Then the system is differentially flat
with the coordinates of the midpoint between rear wheels providing the two flat
outputs (see Tilbury et al. [18]). Given any trajectory for this point one can
determine the entire motion of the car: the tangent to the trajectory determines
the orientation of the car and the curvature (second derivative) determines the
orientation of the front wheels. Hence all feasible paths of the vehicle can be
parametrised in terms of the trajectories of the flat output point. A given set
of initial and final configurations of the car then determine two end points and
first and second order derivatives at these end points for feasible trajectories of
the flat output point. One could choose any trajectory for the flat output point
that satisfies these end conditions and obtain a feasible trajectory for the car
that passes through the given initial and final conditions. In this example flat
outputs are rather obvious. This is not the case with many other examples and
one needs a theoretical tool to provide a systematic way of finding them if they
exist.
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Figure 1: Path Planning for Kinematic Car

In the case of single input systems a complete characterisation of differential
flatness is available, see e.g. Shadwick [15]. In that case, flatness is the same as
static feedback linearizability. See also [2]. In the framework of exterior differen-
tial systems, checking for flatness of a single input system reduces to calculating
“derived systems” and checking certain rank and integrability conditions. See
van Nieuwstadt et al. [20], Sluis [16] and Sluis and Tilbury [17]. For multi-input
systems no complete theory exists.

Many interesting examples of mechanical systems are differentially flat and
in most known examples flat outputs have been found that depend only on
the configuration variables but not on their derivatives. We refer to such flat
outputs as “configuration flat outputs” and systems possessing such outputs
as “configuration flat”. For instance, the above example of kinematic car is
configuration flat. All Lagrangian systems that are fully actuated (number of
controls equals number of degrees of freedom) are configuration flat with all the
configuration variables as flat outputs. See [11] for a catalogue of other exam-
ples. The reasons for studying configuration flatness are as follows. Firstly it is
a simpler case than the general case of differential flatness and is possibly the
first thing to study if one were to be able to relate the mechanical structure
with differential flatness. For instance configuration controllability of mechan-
ical systems has already been studied and related to the mechanical structure
(see Lewis and Murray [8]). Secondly the smaller the number of derivatives of
configuration variables the flat outputs depend upon the simpler the numeri-
cal implementation of the transformations involved in trajectory generation. In
this paper we completely characterise configuration flatness for a special class of
mechanical systems. The class under consideration involves systems whose dy-
namics is described by Lagrangian mechanics with a Lagrangian function of the
form “kinetic energy minus potential”. Also the number of independent controls
is assumed to be one less than the number of degrees of freedom (the simplest
case next to fully actuated systems) and the possible range of control forces only
depends on the configuration and not on the velocity. We describe an algorithm
for deciding if such a system is configuration flat and if it is so, we describe a
procedure for finding all possible configuration flat outputs. We do not consider
systems with nonholonomic constraints. The kinematic car example hence does
not fall into the class of systems under our consideration.

The paper is organized as follows. Section 2 introduces some concepts from



Lagrangian control systems theory and also provides a definition of configuration
flatness. Section 3 introduces some concepts from Riemannian geometry that
are necessary for our theory and also states and proves the main proposition
and outlines an algorithm for coordinate calculations to check configuration
flatness. Section 4 explores how system symmetries relate to symmetries of the
flat outputs. Finally Section 5 gives two examples to illustrate the theory.

2 Lagrangian control systems and configuration
flatness

Consider a Lagrangian system with configuration manifold ) of dimension n and
a Lagrangian L : TQ — R. When no external (generalised) forces are applied,
the motion of this system satisfies the Euler-Lagrange equations, written in
coordinates (¢1,...,¢") as

d OL, 9L _ . ._

E(a_q'i)_ﬁ_qi_ ) n. (1)

In a control situation external control forces are applied and it is natural to
think of forces as covectors on the manifold ). In other words, for a configura-
tion ¢ € @ the total external force acting on the system can be represented by
an element of 77 (). This is because forces naturally pair with velocities, which
can be thought of as elements of 7@, to give instantaneous power. The possible
range of control forces lies in a subspace of 7;7() which may depend on position
q as well as velocity v,. In other words the control forces can be described by a
horizontal valued codistribution P C T*(7T'Q), and p = dim P is the number of
independent controls. For an interesting and wide class of systems this subspace
only depends on configuration ¢ and hence can be described by a codistribution
P C T*@Q of dimension p. For the rest of the discussion we shall only consider
this case. All feasible paths (solutions) of such a system are characterised by

the following underdetermined system of ODEs in coordinates (¢',. .. ¢"):
.. d 0L oL
H—(=—=)—7—)=0, k=1,... n— 2
ak(dt(aq-l) 3(]2) ) ) yn—p ( )
where a’, 6%, for k=1,...,n— p span the annihilator of P, denoted ann P.

It is useful to think in terms of the associated submanifold & C J?(R, Q) of
the second order jet space (see [14]), which geometrically describes such a second
order system of equations. & has codimension n — p and in local coordinates
(t,q,4,q) is cut out by the common zeroes of the functions

z( 0L "j_|_ 0*L 27 a_L)
oot T gag T T 9

Let ¢ € @ be apoint and let y : U C ¢ — IR be a submersion locally defined
around ¢. Let y = (y*,...,y?). Wesay y', ..., yP are differentially independent

k=1,... , n—p.



around ¢ if y*,...,%? do not have to satisfy an ODE along solutions local to
q. More precisely, when restricted to &, dy*,... dy?, dy", ... doyP, dyt, ..., diyP
are linearly independent for generic points on 7T2_1(V) N & where V C U is an
open neighbourhood of ¢ and w5 : J%(R,Q) — @ is the standard projection.
If dyt, ... dy?, dyt, ... dyP,dyt, . .., di? are linearly dependent when restricted
to &, for points on 7T2_1(V) N & where V C U 1s an open neighbourhood of ¢
then y*,...,y" are differentially dependent around gq.

Suppose y',...,y* are differentially independent around ¢. If there are
functions f? and a neighbourhood W of ¢ such that along a generic solution
c:R—>W CQ,

dT

(zi oc)(t) = fi((yoc)(t), ) ..,w(yoc)(t)), i=1,...,n—p (3)

where z1, ..., 2”7P are any complementary coordinates to y', ..., 4", then y*, ..., 4°
are said to be configuration flat outputs around ¢ and the system is configuration
flat around ¢. In other words, given y*(¢), ...,y (t) we can determine a (locally)
unique trajectory for the Lagrangian system (2).

We present the following lemma which will be of use later.

Lemma 1 Let ¢ € @, U an open neighbourhood of ¢, and y : U — R? be a
configuration flat output. Then generically the set of solutions ¢ : R — U that
project down to the same curve y o ¢ are all isolated.

Proof By definition of flatness along generic solutions, given y(¢) the com-
plementary coordinates z(t) are locally uniquely determined by equations (3).

3 Mechanical systems with n degrees of freedom
and n — 1 controls

Consider the mechanical system whose Lagrangian is given by

Le) = 2(v.0) = V om0, ()
where g is the Riemannian metric (assumed to be non degenerate) corresponding
to kinetic energy and V' is the potential energy function on @ and 7¢ : 7'Q — @
is the tangent bundle projection. Suppose the number of controls p = n — 1,
in other words dim P = n — 1. In this section we shall present a method for
determining if this system is configuration flat. If the system is configuration
flat our approach provides us with a constructive method for finding all possible
(configuration) flat outputs.

Before proceeding further we present some concepts from Riemannian ge-
ometry. Given a metric ¢ we have a notion of differentiation of objects on the
manifold such as functions, vector fields, differential forms and tensors along a



given vector field Z. This is the covariant derivative V given by the Levi-Civita
connection (see [1]). Vz denotes covariant derivative along a vectorfield Z and
is related to parallel (with respect to metric) transport of objects along the in-
tegral curves of Z. The covariant derivative of a function f along 7 denoted
Vz [ is just the familiar directional derivative Z(f) or the Lie derivative. But
covariant derivative of a vectorfield X along Z denoted VzX is not the same
as the Lie derivative [Z, X]. Some properties of V are

Vz(Xi+X2) = VzXi+VzXy (5)
Vz(fX) = VzX+2Z(HX (6)
VizX = [fVzX (7)
VX -VxZ = [2Z,X] (8)

where X, X1, X3, Z are arbitrary vector fields and f is an arbitrary function on
the manifold. In a coordinate system (q,...,¢") on manifold @ the covariant
derivatives are calculated with the aid of Christoffel symbols F;k where ¢, 5, k =
1,...,n and Christoffel symbols are defined by
0 ;, 0
Vi g = g ®)
From the properties (8) of V it follows that F;k = sz. F;k can be computed
from metric g by the formula

m_ l(agik Ogij 3gjk) im N
kT oV g T agk dqt

y o m=1

, (10)

gy

where g““gkj = (5}: (g** are components of the inverse of matrix g;5). Then the

covariant derivative of vectorfield X = X* % along 7 = 77 6%]— is given by
; .0 IXk 0
VzX = 22X 77— 11
Z dq¢) Oq* (11)

Jk dq
For the mechanical system under consideration let us define an associated
distribution D by

D =span{{,Vz¢ © 7 € X(Q)}, (12)

where ¢ is any vector field such that ann P = span{{} and X(@) is the set of all
smooth vector fields on Q.

It 1s easy to check that D doesn’t depend on the choice of £ € ann P. By
the linearity of covariant derivative it follows that

D=span{{,Vo & :i=1,...,n} (13)

aqt
where (g1, ..., ¢") are any set of coordinates. Hence D is easily calculated using
equations (10), (11) and (13). The following proposition characterises configu-
ration flat outputs 4!, ..., 4" by conditions on ker Ty, which in coordinates is

the null space of the Jacobian of the map y.



Proposition 2 Let ¢ be a point on @, U an open neighbourhood of ¢ and
suppose y : U C @ — IRP is a submersion. If y',... " are configuration flat
outputs, then

glker Ty, D) = 0. (14)

Conversely if g(ker Ty, D) = 0 and if certain regularity condition holds at ¢ then
y', ..., y¥ are configuration flat outputs around g.

The regularity condition 1s that the ratios of functions in the following set
should not all be the same at g¢:

{Val9(&, 2)) : 9(€,2), Vi(9(V2,22,€)) - 9(V 2, 22,€), Vy (E(V)) : V), (15)

where 7, 71, 75 are arbitrary vector fields around ¢ that are y-related to some
vectorfield on R? and &, i are fixed nonvanishing vector fields such that ann P =
span{¢} and ker Ty = span{n}.

Remark 3 Proposition 2 states the conditions for configuration flatness in in-
trinsic geometric terms. In coordinates the algorithm for deciding if the system
is configuration flat is as follows. Calculate D using equation (13). If D = T'Q
then system is not configuration flat, since for any y, one can find some vector
field 7 € D = TQ, such that g(ker Ty, Z) # 0. Suppose dimD < n — 1. Then
choose a one dimensional distribution, say spanned by a vectorfield 7, that is
orthogonal to D. Since a one dimensional distribution is integrable locally, one
can find independent functions y!,...,4? (p = n — 1) around ¢ that “cut out”
the leaves of the corresponding foliation. These will be flat outputs provided
the regularity conditions are met.

The regularity conditions can be checked in coordinates as follows. Choose
a function z that completes y', ..., 4" to a coordinate system. Then y', ..., 4°
will be flat outputs if the following ratios of functions are not all identically
equal in a local neighbourhood:

0 0 0 .
0 0 0 .
E(g( ﬁﬁ—y‘j’g)):g(vﬁﬁ—y‘j’g))’ jakzla"'ap (16)

0
- (E0) ).

If these are all identically equal that means y', ... 4" are differentially depen-
dent and another one dimensional distribution must be tried.

Remark 4 It is readily seen that configuration flatness is determined primarily
by the kinetic energy metric ¢ since the role of potential function V' only enters
via the regularity conditions. This explains why in many known examples (see
[11]) the presence or absence of gravity does not alter the configuration flat
outputs but only the solution curves where singularities occur. However, we
present an example in next section where the potential function plays a crucial
role via the regularity conditions.



Proof (of Proposition 2) : Given a submersion y : @ — R”, one can choose
a local coordinate chart on () such that y is the canonical submersion of R” onto
RP. Let the corresponding coordinates on @ be (¢',...,¢"). Then, y/(q) = ¢/
forj=1,...,p=n—1. Let & = aia%, span ann P. Then all solutions of the
system satisfy the single ODE

i( 3L) B oL
dt " dqt g’

ai(

) = 0. (17)

Suppose in these coordinates g is given by g;;. Then we can rewrite equation

(17) as

Ogir ;. 10¢ik ... ov
DIk i g~ 29k o o '
0¢? 2 d¢t oq*

a* (9354’ + ) =0. (18)

Using the formula (10) for the Christoffel symbols and using ¢/ = y/ for j =
1,...,p to separate the terms involving ¢"” and ¢", we rewrite equations (18) as,

a'(gi; 7 + ijgmiy]yk + B + 9ind" + T gmi(6")° + L gmiy’ ") =0 (19)

where range of summation of various indices is clear.

Necessity: Suppose y are flat outputs. Then it follows that the coefficient of ¢”
in the above ODE must to be zero. Otherwise we can rewrite the equation as

dq¢”

o =fy,9,9,4",4d")

for some smooth function f, and by existence theorem of solutions to ODEs,
given any curve y(¢) we get a 2-parameter family of solutions ¢(¢) (parametrised
by initial conditions ¢ (¢o), ¢ (t0)) that project to y(¢) and they are not isolated
from each other and hence by Lemma 1 y cannot be flat, contradicting our
assumption. So a’g;, = 0 and this leaves us with an ODE of the form

AW)(§")? + By, 9)d" + Cly, 9,4, ¢") = 0.

A similar reasoning tells us that the term ¢™ should be absent, in other words
A(y) =0 and B(y,y) = 0. Here A and B are given by,

A= aifffngmi B= aiF%gmiM.

Observe that B is linear in terms y with coefficients that are functions only of
(y,q™). Hence the condition B = 0 can be written as n — 1 equations that set
the coefficients of % to be zero. The equation A = 0 has the same form as
these, and we get the following n equations:

aiFTgimIO, j=1,...,n.

n



So all together flatness of y implies the following equations,

aigin
aTlgim = 0, j=1,...,n (20)
If ker Ty = span{n}, then in our choice of coordinates n = /\agn where A i1s some
nonvanishing function on Q. Hence, g(&,7) = a'g;, = 0 by the first condition,
where & = aia%, spans ann P. Also since
0 ox 0
=AY — + — —
V%n I Pgm +3q3 Hqn’

1t follows that

g(V%nf) = Aa'TY) gim + WG Gin = 0.

But, by derivation property,
Vz(g(&m) = (Vza)(&n) +9(Vz&n) +9(& Van)

and since Vzg = 0 for any 7 € X(Q) (by the property of Levi-Civita connection)
and since g(n,€&) = 0 it follows that

g(V%an):o, j=1...,n.
By linearity of V it follows that

g(VzEm) =0, VZ€X(Q).

Hence, ker T'y 1s orthogonal to D.

Sufficiency: Conversely, if ker Ty 1s orthogonal to D, previous reasoning shows
that, in the same coordinate system the equations (20) hold. As seen before
these imply that the solution curves of the system are given by the ODE

E(q",y,9,4) =0,

where

E=dgi;ii +agimU i i +d g(‘;
This is not sufficient for flatness of y', ..., ¥* since it is possible that y', ..., y*
are differentially dependent and this happens when E does not depend on ¢”.
More precisely y*, . .., y* are differentially dependent around ¢ when there exists
a neighbourhood V' of ¢ such that gﬁ is identically zero on (751 (V) N{E =
0}) € J*(R,Q) where m : J?(R,Q) — @ is the standard projection. The
functions £ and gﬁ are both affine in y and quadratic in y with the coefficients




functions only of (y, ¢"*) and E depends on g non trivially since metric g is non
degenerate. Hence 2Z is either identically zero on 75 *(¢)N{E = 0} or it is non

AE
aqm™
on w5 *(¢) N{FE = 0} if and only if it is a multiple of F as a polynomial in § and
y for points on 71'2_1((]). Hence the regularity condition we impose is that (’?ﬁ 18
a not a multiple of F as a polynomial in ¢ and g for points on 71'2_1((]). Then
1t would follow from continuity and implicit function theorem that for generic
points on 75 (V) N {E = 0} where V is some neighbourhood of ¢, ¢ can be
locally solved for in terms of y, y, y, implying flatness around g¢.

Rest of the proof is concerned with showing that this condition translates to
the regularity condition stated in the proposition. It is sufficient to show that
(’?ﬁ is a multiple of F as polynomialsin y, y with the ratio being a smooth func-
tion on @ is equivalent to the set of ratios of functions (15) all being identically
equal in a neighbourhood of q.

Let 5 span ker T'y. Then n = /\a‘zn
let &€ = aia%, span ann P. Suppose (’?ﬁ
neighbourhood of ¢ on (. Considering coefficients of 3/ terms we get

g™
zero for generic points on 75 ' (¢)N{E = 0}. Further more

is identically zero

for some nonvanishing function A. Also

= fFE for some function f defined in a

o . . .
W(algij) =fdgy; j=1,...,p (21)

Also observe that any vectorfield Z on @) 1s y-related if and only if it has the

form Z7 (y) a%]— + 7" (y,q") a‘;n . Hence

a y i
Vin(9(&, 2)) :AW(ZM gi5)
o -
= /\Z]@(a gij) = AfZ7a" gij,

where we have used a’g;, = 0 and equation (21). Hence equation (21) is equiv-
alent to

Valg(€, 2)) = Afg(&, 2), (22)

where 7 is any arbitrary y-related vectorfield.
Considering coefficients of ¢/ ¢* we get

Assuming equation (21), this is equivalent to

Va(9(Vz,22,€)) = fAg(Vz, 22,€), (24)

where Zy, Z, are arbitrary y-related vectorfields. This is because substituting
7 = Zf(y)a% + Z] (y, q”)agn for I = 1,2 we get

; 0 YA 0
— k m
9(Vz,22,8) = Z{ZZH(ija:g—mag) + 7 3—3;»9(@,5),



where we have used a'g;, = 0, a'T™kngip, = 0 (since ker Ty is orthogonal to
k
D) and g?ﬁ =0fork=1,...,p. Hence

Vi(9(Vz,7%2,8))
. o . a7k o .
_ k g m 2 g
= \Z{ 75 3 (a'gim L) + A7} o o7 (@’ gix)
= M2 Z5a’ gim Uy + A F 21 a—yj.a ik

where we have used equations (21) and (23). This simplifies to
vn(g(lesz)) = Afg(vZ1Z2a€) (25)

Finally considering the coefficients of the terms independent of y and y we get

g , ,0v , 0V
o o) =1 g
Clearly this 1s equivalent to
Vo (E(V)) = AfE(V), (26)
completing the proof. |

4 Systems with n degrees of freedom, n — 1 con-
trols and symmetry

In this section we shall consider systems of the type considered in last section
that also exhibit symmetries. We shall suppose that a Lie group G acts on our
configuration space ) with action ®; corresponding to h € (G and that

drg=g, B P=P VYheQ. (27)

In other words the kinetic energy of the system as well as the range of control
forces both are invariant under the group action. However we do not assume
that V is invariant under the group action. Many mechanical systems fall under
this category. Rigid body systems moving in Euclidean space actuated by body
fixed forces are typical examples where the group is G = SFE(3), even though
the equations of motion often do not have SE(3) as a symmetry group since
potential forces due to gravity break the symmetry. But since V plays a very
limited role in configuration flatness we may expect that when the system is
configuration flat that it would be possible to find flat outputs that reflect this
symmetry. We believe this to be true and shall prove it for the case dim D =
n — 1. The general case dim D < n — 1 has not yet been resolved completely

(see Remark 8).

10



Lemma 5 Consider a system satisfying (27). Let D be defined as in (12). Then
®,. D =D.

Proof Let £ span ann P. Clearly ®p, (ann P) = ann P. Hence ®,,& =
Ap€ € D where Ap is some smooth function. Since & is an isometry by (27),
it follows that @y, (Vz€) = Vs, z (P, &) by properties of V (see, for example,
[5] page 161). Hence

D, VzE =Va,, z(Ar€)
=MVes,, 26+ (Va,, z )€ € D. (28)

So we have @, D C D. Since @, is a diffeomorphism, the result follows by
dimension count. |

Let y : @ — RP be a map defined locally around ¢ € ). We shall say

y', ..., 1P are G-equivariant if

Dy, ker Ty = ker T'y.

This means level sets of y are mapped to level sets by the group action.

Proposition 6 Consider a system satisfying (27). Suppose dim D =n — 1 and
that the system is configuration flat. Then the flat outputs are G-equivariant.

Proof Follows from the fact that ker Ty 1s the orthogonal complement to
D and Lemma 5. |

Remark 7 The case dim D = n — 1 is not as restrictive as it may seem. Typi-
cally dim D = n, implying that the system is not configuration flat. When the
system is configuration flat (dim D < n — 1), most likely dim D = n — 1. In fact
many examples of systems that are configuration flat fall into this category in-
cluding the first example in next section as well as the “ducted fan with stand”
in [19] and the “planar coupled rigid bodies” example in [13].

Remark 8 In the case when dim D < n — 1, given the system is flat with flat
outputs y : ¢ — RP around ¢ € @, it is possible to construct outputs y : Q — RP
around ¢ that are G-equivariant and satisfy g(ker T'g, D) = 0. But it hasn’t been
resolved whether it is possible to construct g in such a way that it also satisfies
the regularity conditions (15). The authors are currently trying to resolve this
technical issue but suspect that at least in typical cases this construction should
work. The second example in next section falls into the case dim D = n—2 and
we see that it possesses (G-equivariant flat outputs.

5 Examples

In this section we shall consider some examples to illustrate the theory developed
in the previous section.

11



Figure 2: Underwater vehicle in R?

5.1 Underwater Vehicle

We shall study a simple model of an underwater vehicle that is controlled by
a force applied through a fixed point P on the body whose magnitude and
direction can be independently controlled.

Only the motion in the vertical plane is considered and hence our config-
uration space is SE(2) = R? x S1. This is reasonable when the vehicle has
symmetries about 3 orthogonal planes. In addition if we assume that the centre
of buoyancy is coincident with centre of mass, the kinetic energy is given by

1 1 1. .
§(m + ém) (&, cos @ — &gsin 9)2 + §(m —dm) (&1 sin 0 + &4 cos 9)2 + 5[(9)2,
(29)

where (z1,x2) are horizontal and vertical coordinates of the centre of mass G,
¢ is the orientation (measured clockwise) of line PG with respect to horizontal
axis, m = M + (m1+m2)/2 and dm = (my —ms)/2 where M is the mass of the
vehicle and m; and ms are added mass terms that take into account inertia of
the fluid, and 7 is the effective moment of inertia taking into account the fluid.
This model assumes an incompressible; irrotational flow and neglects viscosity
effects. It 1s assumed that the motion of the fluid is entirely due to that of
the solid. The body and the fluid together are considered to form a dynamical
system and the kinetic energy is the combined energy of body and fluid. See
[7] and [6] for details. The analysis in [7] assumes a neutrally buoyant model,
but we need not make this assumption since this only alters the form of the
potential function but does not affect the kinetic energy. In fact for the first
part of the analysis we shall not assume any specific form for potential V. If
the vehicle is in air (strictly speaking vacuum) my = mg = 0, so m = M and
dm = 0 and the kinetic energy takes the familiar form

LOm()? 4 () + 10))

12



where [ 1s the usual moment of inertia and the model is the same as that of
VTOL (see [10]).

The metric ¢ in coordinates 1, 22,8 is given by the matrix

m -+ dm cos 20 —émsin 20 0
—émsin 20 m—dmcos20 0

0 0 I
The control forces lie in the codistribution

P =span{d(z; + Rcosf),d(x2 — Rsind)}
= span{dz; — Rsin 0#df, dxs — Rcos db}

and £ = (,?—9 + Rsinﬁaix1 + Rcos 96%2 spans ann P where R is the length of PG.

The Christoffel symbols F;k can be computed from g using equation (10).
Then using formula (11) we see that

mdm 0 om

0
o f=———— —sin20— — ——— (¢ 20) —
vmg m? — (dm)? St Or1  m?— ((5m)2( Mt mcos )3362
Rémcos@i
I oo
om 0 mém . 0
V%E’——m(—6m+mc0829)a—m+msm298—m
B Rémsin@é
I oo
mRcos@ O mRsing 0O
vaa_og_m—i—émﬁ—xl_m—i—ém@—xz (30)

It can be seen by computation that the above vector fields together with &
span the full tangent space for generic points and generic parameter values
m,dm, I, R. Since by equation (13)

D= span{V%g, V%& vaa—ogag}a

it follows that D = T'Q) for generic points on ¢ and for generic parameter values
and hence the system is not configuration flat for generic parameter values
regardless of the potential energy function.

However for the case dm = 0, we see that

D = span{Rcos gﬁixl — Rsin 63;2‘2’ Rsin 93;2‘1 + Rcos 93;2‘2 + %}
Hence dim D = 2 and 5 = (,?—9 — mI—R sin 96%1 — mI—R cos 96%2 spans the orthogonal

complement to D. Since D has codimension 1, up to a diffeomorphism there is
at most 1 set of flat outputs. One set of functions that “cut out” the foliation
due to 7 1s

= ! cost =yt sing
Y1 = I MR COS U, Yo = X9 MR sinv.
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To ensure that y;,y» are indeed flat outputs we must check the regularity con-

ditions (16). Let us choose z = # as a complementary coordinate to yi, ya.
Then,
9 _ 9 9 _9
Oy B duy’ Jya B dus’
L S D S
9z~ mR0m  mRT x| 96
Hence
0 0 0 )
e (g(&, %)) g(&, %) = —sinz :cosz
0 0 0 i
e (g(&,@)) 3g(5,@):cosz:smz. (31)

So at any point ¢ = (y1, Y2, #) these two ratios are unequal. This ensures that
Y1, y2 are indeed flat outputs everywhere.

When the vehicle is in air (strictly speaking vacuum) dm = 0, and in this
case it is already known to be flat (see [10, 11]). We have just shown that up
to a diffeomorphism these are the only configuration flat outputs. Also we have
covered the case of underwater vehicle of spherical shape (since then m; = ms)
and this result 1s independent of any assumptions we make on the potential
function V.

Now let us suppose the system i1s moving under gravity in air and the po-
tential energy is given by V = mgxs where g ~ 9.8 m/s? is the acceleration due
to gravity. Then the solutions of the system in coordinates y;, y2, z satisfy the

ODE
Y1 8in z 4+ Yo cos z 4+ gecos z = 0.

So along generic solution curves we get,

z(t) = tan™! —yz..—i— g
Y
or
z(t) = tan~! —yz,,—i_ g 4+
Y

The exception being the singularity at y3 = 0,42 + g = 0. Note that this
singularity is not a point on ¢ but corresponds to a submanifold in the jet
space J2(IR, @), the space with coordinates (¢,q, ¢, ) and such singularities are
very common in practical examples. We still want to regard such systems as
flat and this 1s the reason why our definition of flatness refers to generic curves
as opposed to all curves. Also note that though potential V' does not affect the
flat outputs of the system it influences where the singularities occur.
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We also see that the general system (no assumptions on §m) possesses an
SFE(2) symmetry when the potential function is ignored. If we consider translat-
ing and rotating our spatial frame of reference the expression for kinetic energy
as well as the the expression for P are invariant. We may state this more pre-
cisely as follows. Consider the following action of SE(2) on @ = SE(2). Given
h = (a1, a2, ¢) € SE(2) the action ®, corresponds to first rotating the spatial
frame counter clockwise by ¢ about its origin and then with respect to this frame
translate the frame without rotation by (—ay, —as). Hence if ¢ = (21, 22,0) € Q
then

Dy(q) = (w1cos ¢ + wasing + ay, —x18in ¢ + xosin g + as, 0 + ¢).
The corresponding tangent map 7'®;, is given by

0 — COS qbi —|—sinqz$i
6l‘1

3—1‘1 6l‘2
d . d d
EP — _Sln¢3_1‘1 +COS¢8—1‘2

d d

— = —. 2
20 " o0 (52)
It 1s easy to verify this preserves g. Recalling that £ = % 4+ Rsin 96%1 +

Rcos 96%2 spans ann P, we see that ®p,& = ¢, implying &} P = P. In particular
these statements are true for the dm = 0 case as well. Hence by Proposition 6 the

flat outputs are G-equivariant. This is indeed true since n = (,?—9 — mI—R sin 96%1 —
mI—R cos 96%2 spans ker Ty and @y, 1 = 7.

5.2 Particle in force field

This example does not necessarily correspond to an engineering example, but
illustrates the regularity conditions. We consider a particle of unit mass moving
in 3 dimensional Euclidean space in the presence of a potential field V = zoxz3.
Hence the kinetic energy metric is given by the 3 x 3 identity matrix in orthog-
onal coordinates x1, x2, £3. Suppose we control independently the forces along
z1 and x3 directions. Hence P = span{dxy,dzs} and £ = % spans ann P. We
see that Christoffel symbols are all zero by (10) (which is a feature of Euclidean

space) and using (11) and (13) we obtain D = span{aiﬁ} and hence the or-

thogonal complement to D is span{ 6‘21 , aixa} which is two dimensional. Hence

we have infinitely many “candidates” for flat outputs that are not equivalent
via a diffeomorphism. But these “candidates” may not satisfy the regularity
conditions (16). Following the method outlined in Remark refremalg we pick
some 7, say 1 = .- which 1s orthogonal to D. Then y; = z1,ys = xo are a
possible choice of corresponding “candidates” for flat outputs (since they cut
out the one dimensional foliation by 1). We may choose z = z3 to complete the
coordinate system and then we see that the ratio of functions %(5(‘/)) SE(V)
in the set (16) is 1 : 23 where as the ratio of %(g(&’, 6%2)) is 0 : 1. Hence 21,25
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are configuration flat outputs (globally). But alternatively another choice could
have been n = 6%1 with corrgspo.nding candidates y; = x2,y> = x3. Choosing
z = 21 we see that all the ratios in (16) are zero and hence equal. Hence 2, 23
are not flat outputs as they are differentially dependent. This example is simple
enough that the above conclusions can be reached by inspecting the equations

of motion for the system

oV

. oV
ro — 8—932 =0 (34)
. oV
r3 — a—% = F3 (35)

where Fy, F3 are the forces along 1,23 directions. The equation (34) alone
characterises all solution trajectories of system and substituting V = zox3 we
obtain,

.l.‘z — X3 = 0. (36)

It is clear from the equation that x4, x5 are differentially dependent and hence
are not flat outputs. However it is also clear from the equations that xq, z9 are
flat outputs since along solution curves,

dzl‘z(t)

walt) =~

and x1, z2 do not satisfy an ODE.

Also note that the system is globally controllable since it is globally flat.
However if V' = 0 then the system is not configuration flat and not even locally
accessible.

It is easy to see that translations by the group R3 leave g and P invariant.
But Proposition 6 does not apply since dim D = n—2. However as mentioned in
Remark 8 we see that G-equivariant flat outputs exist. In fact y = (1, z2) are
(-equivariant, although not all (configuration) flat outputs are G-equivariant,
since § = (f(x1,%3), x2) where f is an arbitrary smooth function with (,?—af: + 0,
are not G-equivariant for a typical f, but are configuration flat outputs.

6 Conclusions and future work

We have presented a method for determining configuration flatness of Lagrangian
control systems with n degrees of freedom and n — 1 controls. Our method is
constructive and provides a way for finding configuration flat outputs if they
exist. We assumed a Lagrangian of the form “kinetic energy minus potential”.
We also assumed that the range of control forces only depends on configuration.
These assumptions are not unreasonable since a wide class of systems fall into
this category. However n — 1 controls is a special case and is the simplest case
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next to fully actuated (n controls) systems which are allways flat. In that sense
we regard this as a first step towards a general theory of configuration flatness
of Lagrangian systems. The authors are currently working on generalising this
result to arbitrary number of controls.
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