
Online Horizon Selection in Receding Horizon Temporal
Logic Planning

Vasumathi Raman

California Institute of

Technology

Pasadena, CA, USA

vasu@caltech.edu

Mattias Fält

Lund University

Lund, Sweden

faldt.mattias@gmail.com

Tichakorn

Wongpiromsarn

Thailand Center of Excellence

for Life Sciences

Bangkok, Thailand

tichakorn@tcels.or.th

Richard M. Murray

California Institute of

Technology

Pasadena, CA, USA

murray@cds.caltech.edu

ABSTRACT
Temporal logics have proven e↵ective for correct-by-con-
struction synthesis of controllers for a wide range of applica-
tions. Receding horizon frameworks mitigate the computa-
tional intractability of reactive synthesis for temporal logic,
but have thus far been limited by pursuing a single sequence
of short horizon problems to the current goal. We propose
a receding horizon algorithm for reactive synthesis that au-
tomatically determines a path to the currently pursued goal
at runtime, in response to a nondeterministic environment.
This is achieved by allowing each short horizon to have mul-
tiple local goals, and determining which local goal to pursue
based on the current global goal, currently perceived envi-
ronment and a pre-computed invariant dependent on each
global goal. We demonstrate the utility of this additional
flexibility in grant-response tasks, using a search-and-rescue
example. Moreover, we show that these goal-dependent in-
variants mitigate the conservativeness of the receding hori-
zon approach.

1. INTRODUCTION
Temporal logics have proved an e↵ective formalism for speci-
fying, verifying and synthesizing behaviors of a variety of hy-
brid systems. Algorithms for temporal logic synthesis enable
automated construction of discrete supervisory controllers
satisfying intricate temporal sequencing properties; these
discrete controllers have been successfully used to construct
hybrid controllers for several domains including robotics [6,
8], aircraft power system design [13] and smart buildings
[15].

Linear Temporal Logic (LTL) has proven e↵ective for such
correct-by-construction synthesis of controllers for a wide
range of applications. This is due in part to the existence of
e�cient algorithms for the Generalized Reactivity (GR(1))
fragment of LTL, based on finding a winning strategy in a
two player game between the controlled system and uncon-
trolled environment. However, scalability is still a challenge,
as these methods scale exponentially in the number of vari-
ables in the domain.

Receding horizon control is a common approach to battling
the curse of dimensionality in control problems and has been
shown to be e↵ective not only in terms of complexity, but
also in robustness with respect to exogenous disturbances
and modeling uncertainties [12]. The approach involves iter-
ative, short horizon solutions, using the currently observed
state to compute a control strategy for some manageable
time horizon in the future. Only the first step of the com-
puted strategy is implemented, and new calculations are per-
formed on the next horizon, using the resulting observations.

A receding horizon framework was recently introduced to
mitigate the computational intractability of reactive synthe-
sis for temporal logic [18]. The authors propose a reactive
synthesis scheme for specifications with GR(1) goals, which
relies on partitioning the state space into a sequence of short
horizon problems, such that the global problem is realizable
if each of the short horizon problems is realizable. Realiz-
ability of the short horizon specifications is determined sym-
bolically, but controllers are only extracted as needed, i.e.
if and when the respective partitions are reached. A major
limitation of this approach is that it relies on user input to
provide a priori a pre-determined sequence of short horizon
problems for reaching the currently pursued global goal, and
does not allow this path to change during execution. This
places strong restrictions on the short horizon problems, as
described in Section 2, requiring them to have a single point
of exit that is reachable in all adversarial environments.

In this paper, we introduce a receding horizon framework
that allows the path over short horizon problems to change

Submitted, 2015 International Conference on Hybrid Systems: Computation and Control (HSCC)
http://www.cds.caltech.edu/~murray/papers/rfwm15-hscc.html

automatically in response to the environment. As we illus-
trate in Section 4, this relieves the user of the burden of
defining paths over short horizons, and instead allows them
to input just the set of possible next short horizon problems
for each short horizon problem. Each short horizon problem
now has multiple exits, and the controller can choose one
in response to the environment at runtime. Our synthesis
algorithm provides this reactive strategy for switching be-
tween short horizon problems in a manner that achieves the
global goals. As we show in Section 4, another highly ad-
vantageous consequence of this approach is that it allows the
short horizon problems to be smaller in practice.

In addition to the approach in [18], which we here extend,
there have been a few other attempts at using receding hori-
zon control in the context of reactive synthesis from tem-
poral logic specifications. For example, the authors in [7]
also propose a receding horizon scheme for specifications in
synthetically co-safe LTL. In [5], the authors consider full
LTL but use an automata-based approach, involving poten-
tially expensive computations of a finite state abstraction
of the system and a Büchi automaton for the specification.
We circumvent these expensive operations using symbolic
techniques where possible during synthesis. The authors
of [5] also restrict their attention to deterministic systems,
i.e., those with non-adversarial, deterministic environments,
whereas we synthesize controllers for systems that are reac-
tive to a (possibly adversarially) changing changing environ-
ment. The authors in [15] also propose a receding horizon
solution to the problem of controller synthesis from signal
temporal logic specifications: absent once again from that
setting is the explicit notion of an adversarial environment,
although the receding horizon formulation provides some ro-
bustness to environmental uncertainty. Also relevant to this
work is that presented in [11], where the authors separate
feasibility from controller synthesis, and use metrics on the
underlying continuous space to produce short-term strate-
gies that can be chained together to provide globally correct
behavior. However, their approach still requires computing
the set of winning states for the global specification, whereas
we break the feasibility checking problem into short horizon
computations.

Contributions: Our contribution is a reactive synthesis
algorithm based on receding horizon control that advances
the state of the art for specifications in the GR(1) fragment:

● We define short horizon problems with multiple local
goals, and choose between local goals at runtime in
response to the environment, such that the global goals
are satisfied. We claim as a key novelty this automatic
reactive switching between short horizon problems to
satisfy high-level requirements.

● The reactive strategy for switching between short hori-
zon problems is derived by computing a goal-dependent
invariant for the short horizon problems, which pro-
vides initial conditions on the environment for which
each short horizon problem is winning (i.e. can reach
the goal).

● We demonstrate the utility of this additional flexibility
in grant-response tasks, via a search-and-rescue exam-
ple.

2. PRELIMINARIES
We address the problem of designing control software for a
plant operating in a potentially adversarial, a priori uncer-
tain environment. The guarantees we seek on the system
behavior are of the form, the plant satisfies property 's for
any valid initial state and any admissible environment; we
characterize initial state validity and environment admissi-
bility by specifications 'init and 'e, respectively.

We assume that the controlled state of the plant evolves
according to either a discrete-time, time-invariant dynamics

s(t + 1) = f(s(t), u(t)), u(t) ∈ U, ∀T ∈ N
or a continuous-time, time-invariant dynamics

ṡ(t) = f(s(t), u(t)), u(t) ∈ U, ∀T ≥ 0
where U is the set of admissible control inputs, and s(t), u(t)
are the controlled state and control signal at time t.

In order to apply formal synthesis techniques to continuous
systems like the above, we require a discrete abstraction of
the problem, and a formal language for specifying desired
properties. We use Linear Temporal Logic (LTL) as the
formal specification language.

2.1 Discrete Abstraction
When designing control software for a physical system such
as the one described above, which typically has infinitely
many states, a common approach is to construct a finite
transition system that serves as a discrete abstraction of
the system model. This abstraction must be such that the
infinite-state system can simulate it, i.e. any discrete plan
generated on the abstraction can be implemented on the
continuous system. See, e.g., [8, 4, 9, 16, 17, 10] for examples
of how such an abstraction can be constructed for various
types of dynamical systems.

We assume the availability of such a discrete abstraction of
the physical system, and let the system state in this abstrac-
tion be characterized by a finite number of boolean variables,
V = S ∪E; here S and E are disjoint sets that represent, re-
spectively, the set of plant variables that are regulated by
the control protocol and the set of environment variables
whose values may change arbitrarily throughout an execu-
tion. Given V , V ⊆ 2V is the finite set of states of the system:
a state corresponds to a truth assignment to the variables in
V . Similarly, let S and E be the sets of states of the plant
and environment, respectively.

2.2 Linear Temporal Logic
Syntax : Given a set of atomic propositions AP , boolean
operators for negation (¬), conjunction (∧), and disjunc-
tion (∨), and temporal operators next (#), always (�) and
eventually (3), an LTL formula is defined by the recursive
grammar:

' ∶∶= ⇡ � ¬' � ' ∨' � #' � �' � 3'.
Semantics: LTL is interpreted over infinite sequences of
truth assignments � ∶ N → 2AP . We say that a truth as-
signment � satisfies ⇡ ∈ AP at time t (denoted (�, t) � ⇡) if
⇡ ∈ �(t), i.e. � assigns ⇡ to True at time t. We say (�, t) �� ⇡

if ⇡ is assigned False at time t, i.e. ⇡ �∈ �(t). Note that since
we equate states with truth assignments in Section 2.1, we
can also write ⌫ � ⇡ or ⌫ �� ⇡ for ⌫ ∈ V.
The semantics of an LTL formula is defined recursively ac-
cording to the following rules

● (�, t) � ¬' i↵ (�, t) �� '
● (�, t) � ' ∧ i↵ (�, t) � ' and (�, t) �
● (�, t) � ' ∨ i↵ (�, t) � ¬(¬' ∧ ¬)
● (�, t) � #' i↵ (�, t + 1) � '
● (�, t) � 3' i↵ ∃t′ ≥ t s.t (�, t′) � '
● (�, t) � �' i↵ (�, t) � ¬3(¬')

We omit the definition of the until operator, but the reader
is referred to [3] for the full syntax and semantics of LTL.

LTL provides an expressive language for specifying prop-
erties typically studied in the control and hybrid systems
domains, including safety and stability, as well as useful gen-
eralizations; see e.g. [18] for a discussion of the types of such
properties expressible in LTL.

2.3 Reactive Synthesis
An LTL formula ' over V is realizable if there exists a finite
state strategy that, for every finite sequence of truth assign-
ments to E, provides an assignment to S such that every
resulting infinite sequence of truth assignments to V satis-
fies '. It is a well known result that such a strategy exists
if and only if there is a deterministic finite state automaton
that encodes it [14]. The synthesis problem is to find such
a finite state automaton when one exists.

Definition 1. A finite state automaton is a tupleA = (V, V
0

, �)
where

● V
0

⊆ V is a set of initial states.

● � ∶ V × E → V is the transition relation.

An automaton is deterministic if, for every v ∈ V and ev-
ery e ∈ E , ��(v, e)� = 1. Unless mentioned explicitly, all
automata considered in this work are deterministic. Let
�(v) = {�(v, e) � e ∈ E} denote the set of possible successor
states of state v.

Definition 2. Given an LTL formula ', deterministic au-
tomaton A' = (V, V0

, �) realizes ' if ∀� = v
0

v
1

v
2

... ∈ V!
such that v

0

∈ V
0

and vi+1 ∈ �(vi), � � '.
2.4 Generalized Reactivity(1)
Reactive synthesis for a general LTL specification is 2EXP-
TIME complete [14], but the authors of [2] present a tractable
algorithm for the Generalized Reactivity(1) (GR(1)) frag-
ment, which admits specifications of the form

�
� init ∧ � e ∧ �

i∈If
�3 f,i

�
� �⇒

�
�� s ∧ �

i∈Ig
�3 g,i

�
� ,
(1)

where

1. init, f,i and g,i are propositional formulas of vari-
ables from V ;

2. e is a Boolean combination of propositional formulas
of variables from V and expressions of the form # t

e

where t
e is a propositional formula of variables from

E that describes the assumptions on the transitions of
environment states; and

3. s is a Boolean combination of propositional formulas
of variables from V and expressions of the form # t

s

where t
s is a propositional formula of variables from

V that describes the constraints on the transitions of
controlled states.

We call the left hand side of this expression the assumptions,
and the right side the guarantees.

Problem 1 (Reactive Control Protocol Synthesis). Given
a system V and specification ' of the form (1), synthesize
a control protocol that generates a sequence of control sig-
nals u[0], u[1], ... ∈ U! to the plant to ensure that starting
from any initial condition, ' is satisfied for any sequence of
environment states.

3. RECEDING HORIZON SYNTHESIS
The main barrier to applying o↵-the-shelf reactive synthesis
algorithms such as the one in [2] to solve Problem 1 is that
it is subject to the curse of dimensionality. In the worst
case, the resulting finite state machine contains all possible
states of the system – this scales exponentially in the num-
ber of system variables. This renders the direct application
of reactive synthesis impractical for even moderately-sized
problems.

The general framing of the reactive synthesis problem re-
quires planning for all possible environment behaviors. How-
ever, we observe in many applications that plans are local,
in the sense that it is not necessary to plan with respect to
environment behaviors that do not a↵ect the current por-
tion of the plan. By incorporating information on the en-
vironment obtained at runtime, strategy extraction can be
delayed until it is needed. Inspired by the theory of reced-
ing horizon control, the authors in [18] present a strategy
for reducing the computational complexity by solving a se-
quence of smaller problems, each with a specific initial con-
dition. Then, at runtime, the automaton is extracted for
the currently-observed initial condition, and implemented
before switching to the next problem.

A major shortcoming of this approach is the need for the
sequence of problems to be pre-determined, and moreover
for each of these smaller problems to be realizable, subject
to any admissible environment. This e↵ectively restricts the

path to the global goal to a single path through smaller prob-
lems, reducing robustness to vagaries of the environment. In
this section, we present an approach that enables this path
to change in a reactive fashion. This has two consequences:

1. reactive switching between short horizon problems en-
ables these problems themselves to be smaller, since
they do not have to account for all possible environ-
ment behaviors, and

2. goal-dependent invariants reduce conservativeness per
a single global invariant, without loss of soundness.

3.1 Online Selection of Short Horizons
Denote the index set of goals as Ig = {1, . . . , n} for some
natural number n, and define a corresponding ordered set(1, . . . , n), which represents the sequence in which the progress
properties g,1, . . . , g,n will be satisfied.

For each i ∈ Ig, suppose there exists a collection of subsetsCi = {Wi
0

, . . . ,Wi
p} such that Wi

j ⊆ V for all j ∈ {0, . . . , p}1,
and a propositional formula �i over variables in V , such that

(a) Wi
0

∪Wi
1

∪ . . . ∪Wi
p = V,

(b) init ⇒ �1 is a tautology, i.e., any state ⌫ ∈ V that
satisfies init also satisfies �1,

(c) g,i is satisfied for any ⌫ ∈ Wi
0

, i.e., once the system
reaches any state in Wi

0

, it accomplishes the goal corre-
sponding to g,i,

(d) ((⌫ ∈Wi
0

) ∧ �i)⇒ �(i+1) mod n is a tautology, and

(e) Pi ∶= (Ci,� g,i) is a partially ordered set defined such

that Wi
0

� g,i Wi
j ,∀j �= 0.

We call �i the invariant associated with goal i ∈ Ig. For

each i ∈ Ig, define a short-horizon mapping F i ∶ Ci → 2Ci
such that Wi

k � g,i Wi
j for all j �= 0 and Wi

k ∈ F i(Wi
j).

Informally, every Wi
k ∈ F i(Wi

j) is closer to the goal g,i

than Wi
j for j > 0.

Formally, with the above definitions of �i, Wi
0

, . . . ,Wi
p andF i, we define a short-horizon specification i

j associated
with Wi

j for each i ∈ Ig and j ∈ {0, . . . , p} as

 i
j � �(⌫ ∈Wi

j) ∧ �i ∧ � e ∧ �k∈If �3 f,k�
⇒ �� s ∧ 3�Wi

k
∈Fi(Wi

j)(⌫ ∈Wi
k) ∧ ��i� ,

(2)
where ⌫ denotes the state of the system and e, f,k and
 s are defined as in (1).

We assume that each i
j is realizable. An automaton Ai

j

realizing i
j provides a strategy for going from a state ⌫ ∈Wi

j

1For the simplicity of the presentation, we assume that there
is a common p for all i ∈ Ig. In general, p depends on i.

to a state ⌫′ ∈ Wi
k for some Wi

k ∈ F i(Wi
j) while satisfying

the safety requirements � s and maintaining the invariant
�i associated with goal i ∈ Ig.
Receding Horizon Strategy : For each i ∈ Ig and j ∈{0, . . . , p}, construct an automaton Ai

j realizing i
j . Let ⌫

denote the current state of the system. The receding horizon
strategy is described in Algorithm 1.

Algorithm 1: Receding horizon strategy

1 i := 1;
2 while 1 do

3 I ∶= {̃i ∈ {1, . . . , n} � ⌫ ∈W˜i
0

};
4 while I = Ig do

5 Make a transition according to automaton Ai
0

;

6 I ∶= {̃i ∈ {1, . . . , n} � ⌫ ∈W˜i
0

};
7 while i ∈ I do

8 i ∶= (i + 1) mod n;

9 Set the index j such that ⌫ ∈Wi
j ;

10 while ⌫ �∈Wi
0

do

11 K ∶= {k ∈ {0, . . . , p} � ⌫ ∈Wi
k and Wi

k � g,i Wi
j};

12 while K = � do

13 Make a transition according to automaton Ai
j ;

14 K ∶= {k ∈ {0, . . . , p} � ⌫ ∈Wi
k and Wi

k � g,i Wi
j};

15 j ∶= k for some k ∈K;

Algorithm 1 ensures that the goals corresponding to g,1, . . . , g,n

are accomplished in the predefined order. Once the goal cor-
responding to g,n is reached the process repeats, ensuring
that for each i ∈ Ig, a state satisfying g,i is visited infinitely
often in the execution. Here i represents the index of the
goal that the system is currently trying to reach, and j repre-
sents the index of automaton Ai

j that the system is currently
executing.

We now explain Algorithm 1 in more detail.

● Line 3 updates I to be the set of indices of goals satis-
fied by the current state ⌫. Note that some states may
satisfy multiple goals.

● Lines 4–8 consider the case where the system reaches
the current goal (i ∈ I). If all the goals are satisfied by
the current state (I = Ig), we execute automaton Ai

0

until the system reaches a state that does not satisfy
some goal (Line 4-6). Then, Line 7-8 updates i to the
index of the next goal for the system to reach.

● Line 9 updates the index j of automaton Ai
j that the

system is currently executing. Note that since for any
i ∈ Ig, the union of Wi

0

, . . . ,Wi
p is the set V of all the

states, given any ⌫ ∈ V, there exist j ∈ {0, . . . , p} such
that ⌫ ∈Wi

j .

● In Lines 10–15, the system works through the partial
order ({Wi

0

, . . . ,Wi
p},� g,i) associated with the cur-

rent goal until it reaches the current goal (⌫ ∈ Wi
0

).
Lines 11–15 are where the system executes the current
automaton Ai

j until it reaches a state ⌫′ ∈Wi
k for some

Wi
k � g,i W i

j . That is, ⌫′ is a state that is “closer” to
the current goal, where the “distance” to the current
goal is defined by the partial order ({Wi

0

, . . . ,Wi
p},� g,i). Once ⌫′ ∈Wi

k is reached, the system starts execut-
ing automaton Ai

k. This process is repeated until the
current goal is reached.

Theorem 1. Suppose i
j is realizable for each i ∈ Ig, j ∈{0, . . . , p}. Then the receding horizon strategy ensures that

the system is correct with respect to the specification (1), i.e.,
any execution of the system satisfies equation (1).

Proof. Consider an arbitrary execution � = ⌫
0

⌫
1

. . . of the
system that satisfies the assumption part of (1). We want
to show that the safety property s holds throughout the
execution and a state satisfying g,˜i is reached infinitely

often for all ĩ ∈ Ig.
Since init⇒�1 is a tautology, it follows that ⌫

0

� �1 and
the assumption part of 1

0

as defined in (2) is satisfied. Line

4–6 are executed only if ⌫
0

∈ W˜i
0

for all ĩ ∈ Ig, i.e., ⌫0 sat-
isfies all the goals. In this case, A1

0

is executed. There are
two possibilities. First, the while loop in Lines 4–6 never

terminates. In this case, we get that ⌫l ∈W˜i
0

for all l ≥ 0 and
ĩ ∈ Ig, i.e., each goal g,˜i is reached infinitely often. In addi-

tion, since the assumption part of 1

0

is satisfied, A1

0

ensures
that the safety property s holds throughout the execution.
Thus, we only have to consider the case where the while loop
in Lines 4–6 terminates. Let ⌫l, l > 0, be the state of the

system at which the loop terminates. We know that ⌫l �∈W˜i
0

for some ĩ ∈ Ig, i.e., ⌫l does not satisfy some goal. Since the
assumption part of 1

0

is satisfied, A1

0

ensures that ⌫
˜l � s

for all l̃ ∈ {0, . . . , l} and ⌫l � �1.

Next, consider Lines 7–8. Suppose l ≥ 0 is the index such
that ⌫l is the state of the system at which the execution
enters Line 7. From the previous paragraph, we get that
⌫l � �1. Note that the while loop is executed only if the
current state is at the current goal, i.e., ⌫l ∈ W1

0

. In this
case, the index i is updated, according to Lines 7–8, to the
index of the next goal to be satisfied. It is easy to check that

since ⌫l � �1, and �
˜i is defined such that ((⌫ ∈W˜i

0

) ∧ �˜i)⇒
�(˜i+1) mod n is a tautology for all ĩ ∈ Ig, it must be the case
that at the termination of the while loop, ⌫l � �i.

Next, consider Lines 10–15. Since ⌫l � �i and i remains
constant in this loop, we can follow the proof in [17] to show
that this loop terminates at some state ⌫l′ such that ⌫

˜l � s

for all l̃ ∈ {l, . . . , l′}. In addition, ⌫l′ ∈Wi
0

; hence, ⌫l′ � g,i.
The proof is based on showing that when eachAi

j is executed
(in Line 13), the assumption part of its specification i

j is
satisfied. As a result, Ai

j ensures that s and �
i are satisfied

throughout its execution. In addition, the finiteness of the
set {W

0

, . . . ,Wp} and its partial order condition ensures that
the system makes progress towards and eventually reaches
the current goal.

At this point, the next iteration of the most outer loop
starts. We can repeat the above proof to show that the
system eventually reaches the goal associated with each it-
eration. In addition, between each pair of successive goals,

the safety property s is always satisfied. Since the goal
associated with each iteration is updated following the se-
quence (1, . . . , n), we can conclude that each goal g,˜i, ĩ ∈ Ig
is reached infinitely often.

Remark 1. It is possible to relax the requirement that a
sequence (1, . . . , n) of goals is pre-defined. For example, we
can define a set FG ⊆ Ig of indices of possible first goals
(rather than having to start with goal 1 as described earlier).
In addition, for each goal i ∈ Ig, we can define a set NGi of
possible next goals (rather than having (i+1) mod n as the
only possible next goal). Condition (b) above then needs
to require that init ⇒ �j is a tautology for all j ∈ FG.
Furthermore, condition (d) above is modified to ensure that
at the point where the current goal is reached, the invariant
associated with each possible next goal is satisfied: ((⌫ ∈Wi

0

) ∧ �i) ⇒ �j is a tautology for all i ∈ Ig and j ∈ NGi.
At run time, the first goal out of all the possible choices in
FG and the next goal out of all the possible choices in NGi

can be picked arbitrarily. A su�cient condition to ensure
that all the goals are reached infinitely often is that each of
the goals is visited within one cycle (in any arbitrary order).

3.2 Implementation
In order to apply the approach described in Section 3.1, we
require as input, for every progress property g,i, the collec-
tion Ci, partial order � g,i and short-horizon mapping F i.

Then we synthesize a collection of automata Ai
j and use Al-

gorithm 1 to switch between them during execution. We
now describe a method of constructing F i given a collectionCi, and discuss in detail the continuous execution paradigm,
including ramifications of the environment assumptions be-
ing violated while executing some Ai

j .

For each goal index i ∈ Ig, we first construct a graph Gi =(V,E) whose nodes are the elements of Ci, i.e. V = Ci. For
each Wi

j and each W ⊆ Ci, we determine realizability of
the specification in (2) with F(Wi

j) = W; we can do this
in an e�cient manner by not considering W for which we
have already considered W ′ ⊆W, since the latter represents
a strictly weaker specification. If this specification is real-
izable, we add to E the edge (Wi

j ,Wi
k) for each Wi

k ∈ W.
With this graph, we define Wi

k � g,i Wi
j if there is a shorter

path to Wi
0

in the graph G from Wi
j than from Wi

k. Then
we define

F(Wi
j) = {Wi

k ∈ Ci s.t (Wi
j ,Wi

k) ∈ E and Wi
k � g,i Wi

j}.
If F(Wi

j) = � for some Wi
j ∈ G, we recompute the invariant

�i. Otherwise, we can then apply the approach in Section
3.1 using this F i.

It remains to define an execution engine for implementing
a transition in automaton Ai

j in Line 13 (or Ai
0

in Line 5)
of Algorithm 1. The continuous execution should simulate
the discrete transition, as defined formally in, e.g. [1]. Ex-
amples of how such a control signal can be computed from
the discrete plan can be found in, e.g., [18, 4, 9]. The exe-
cution engine maintains the current discrete state ⌫ ∈ V and
the next discrete state on the selected transition, ⌫′ ∈ V. At
each time step, it receives the currently observed (continu-
ous) system state s — note that this state should correspond
to the abstract state ⌫. It determines a control signal that

ensures that the continuous execution of the system accord-
ing to the dynamics in Section 2 eventually reaches a con-
tinuous state corresponding to ⌫′, while remaining in states
that correspond to {⌫, ⌫′}.
Since the continuous controller simulates the abstract plan,
it follows from Theorem 1 that the continuous execution is
guaranteed to preserve correctness of the system.

Note that for each short-horizon problem specified by a for-
mula of the form (2), the corresponding automaton Ai

j is
guaranteed to satisfy the guarantee part if and only if the
environment and initial condition respect the assumption
part. If one of these assumptions is violated, the specifica-
tion in (2) is trivially satisfied. However, when we identify
that an assumption has been violated, we would like to rem-
edy the solution to work under the new assumptions.

We can removeWi
j from the graphG and check that F(Wi

k) ≠� for all remaining Wi
k ∈ Ci. If so, we can still use the syn-

thesized automata Ai
k for k ≠ j, as long as the initial condi-

tion in the global specification, init does not include states
in Wi

j . This is in contrast to the approach in [18], which
appeals to a higher-level planner to return a new sequence
of short horizons to the current goal when the environment
assumptions are violated in one of the short horizon prob-
lems. Unlike that approach, we do not have to re-compute
the pre-order F if one of the short horizon problems fails
in this manner, since we may have other paths to the goal
populated by realizable short horizon problems. This results
in fewer calls to the higher-level planner that generates F .
Note that if we have already passed the very first state of
the global execution, we can still safety remove Wi

j even if
it is part of the initial condition init. However, that if any
states in Wi

j satisfy init, we cannot directly reuse the so-
lution for subsequent executions since we have to be able
to start execution from Wi

j ; in this case, we need to start
afresh with a new partition of the states Ci.
4. EXAMPLE
We demonstrate our framework by applying it to a search-
and-rescue scenario.

Example 1. Consider the workspace depicted in Figure 1,
where the floor plan is divided into 16 rooms. A subject,
who needs to be rescued, can exist in any room. The robot’s
task is to patrol the rooms for subjects, i.e. to “rescue” any
subjects by going to the corresponding room.

Boolean variable Ri,j is true if the robot is in the room at the
intersection of row i and column j. Similarly, Si,j is true if
the subject is in the corresponding room. The specification
can now be expressed as follows:

● We want to always eventually rescue every subject:�3gi = �3(Si,j ⇒ Ri,j).
● We assume that the subject, once seen, will not disap-
pear until it is rescued: �(Si,j ∧ ¬Ri,j)⇒ #Si,j), and
will disappear when rescued � ((Ri,j ∧ Si,j)⇒ #¬Si,j).
● We assume that there is only one subject at a time:�(Si,j ⇒ ¬Sk,l)∀i, j, k, l ∈ [1,4], (k, l) ≠ (i, j)

R
1,1 R

1,2

R
2,1 R

2,2

�

⋮ �
R

2,2

Figure 1: Workspace for Example 1

● A finer discretization of each room, splitting the rooms
into several sub-locations and introducing additional
dynamics, would make the motivation for a receding
horizon approach more apparent. However, this has
been omitted here for a simplified presentation, and we
assume that the robot (directly) moves from a room
to any adjacent room:

� (Ri,j ⇒ #N(Ri,j)) ,
where

N(Ri,j) = �
(k,l)∈{(i,j),(i±1,j),(i,j±1)}∩[1,4]2

Rk,l.

● We allow for the possibility that the robot will not be
able to transition between two rooms, possibly because
of the presence of obstacles in the originating room.
We denote the transition between two adjacent rooms
being blocked by B(i,j),(k,l):
� �B(i,j),(k,l) ⇒ ¬((Ri,j ∧#Rk,l) ∨ (Rk,l ∧#Ri,j))� ,
where Rk,l ∈ N(Ri,j),Ri,j ≠ Rk,l. We allow one tran-
sition between two adjacent rooms to be blocked:

�
i,j,k,l,i′,j′,k′,l′∈[1,4],(i,j,k,l)≠(i′,j′,k′l′)

�(B(i,j),(k,l) ⇒ ¬B(i′,j′).(k′,l′)),

and assume that they will not change when a subject
is not rescued

� � �
i,j∈[1,4]

(Si,j�¬Ri,j)�⇒
� �

i′,j′,k′,l′∈[1,4],(k′,l′)≠(i′,j′)
�B(i′,j′),(k′,l′) ↔ #B(i′,j′),(k′,l′)��.

● Finally, we require that a subject is always rescued
within a maximum of 6 steps after it appears (�(T <
6)), where the time T is counted according to:

�((�i,j∈[1,4](Ri,j ∨ ¬Si,j)⇒ (#T = 0)),�(�i,j∈[1,4](Si,j ∧ ¬Ri,j)⇒ (#T = (T + 1)).
Note that although we have limited our presentation so
far to Boolean variable domains, finite integer domains
such as that of T are straightforward to implement
using a binary encoding, with a number of Boolean
variables logarithmic in the size of the domain.

The specifications can be summarized as

'e
s = �

i,j∈[1,4]
�(Si,j�¬Ri,j)⇒ #Si,j)

�
i,j∈[1,4]

�(Ri,j�Si,j)⇒ #¬Si,j

� �((�i,j∈[1,4](Ri,j ∨ ¬Si,j)⇒ (#T = 0)),� �(�i,j∈[1,4](Si,j�¬Ri,j)⇒ (#T = (T + 1))),�
i,j,k,l∈[1,4],

i′,j′,k′,l′∈[1,4](i,j)≠(i′,j′),(k,l)≠(k′l′)

�(B(i,j),(k,l) ⇒ ¬B(i′,j′),(k′,l′))

�
i′,j′,k′,l′∈[1,4],(k′,l′)≠(i′,j′)

��� �
i,j∈[1,4]

(Si,j�¬Ri,j)�
⇒ �B(i′,j′),(k′,l′) ↔ #B(i′,j′),(k′,l′)� �

�
i,j,k,l∈[1,4],(k,l)≠(i,j)

�(Si,j ⇒ ¬Sk,l)

's
s = �

i,j∈[1,4]
� (Ri,j ⇒ #N(Ri,j))

�
i,j∈[1,4]

�(B(i,j),(k,l) ⇒
¬((Ri,j�#Rk,l) ∨ (Rk,l�#Ri,j)))�

i,j,k,l∈[1,4],(k,l)≠(i,j)
�(Ri,j ⇒ ¬Rk,l)

� �(T < 6),

's
p = �

i,j∈[1,4]
�3(Si,j ⇒ Ri,j),

which together with the initial condition

'init = (¬ �
i,j∈[1,4]

Si,j) ∧ (T = 0),
defines the full specification as = ('init ∧'e

s)⇒ ('s
s ∧'s

p).
We will now show how our framework can be used to solve
this problem e�ciently. We focus on the case where we want
to fulfil g

1,1, and the subject is in the corresponding room,
i.e. S

1,1 is true. We define the setsW = {W
1,1,W1,2,W2,1...}

as:

● W
1,1 = {⌫ ∈ V � ⌫ � R

1,1 ∨ ¬S1,1}
● Wi,j = {⌫ ∈ V � ⌫ � Ri,j ∧ S1,1}, for (i, j) ≠ (1,1).

We then define the mapping F(W), as illustrated in Figure
2, as follows, with the mappings for j > i defined symmetri-
cally:

● F(W
1,1) =W1,1

● F(W
2,1) = F(W2,2) =W1,1

● F(W
3,1) = F(W3,2) = {W2,1,W2,2}

● F(W
3,3) =W2,2

● F(W
4,1) = F(W4,2) = {W3,1,W3,2}

Figure 2: This figure illustrates the mapping F used

in solving the example. Each arrow from Ri,j to Rk,l

represents that Wk,l ∈ F(Wi,j). The di↵erent colors

indicate the ordering � g1,1
.

● F(W
4,3)={W3,2,W3,1}

● F(W
4,4) =W3,3

Finally, we define the ordering asWi,j � 1,1 Wk,l if and only
if max(i, j) <max(k, l).
It is now possible to automatically find a su�cient invariant.
We start at the goalW

1,1 and iterate backwards though the
mappings, finding su�cient conditions for reachability for
each of the sets Wi,j .

● For the last set W
1,1, we need �W1,1 = (T < 6) to

satisfy all conditions.

● To assure that we can reach W
1,1 with �W1,1 fromW

2,1, we need the additional condition at W
2,1 that

�W2,1 = (T < 5 ∧ ¬B(2,1),(1,1)) ∨ (T < 3).
● For W

2,2, we will be able to go to W
1,1 with �W1,1 , if

�W2,2 = (T < 4)
● For W

3,1, we have two options, either go to W
2,1 with

�W2,1 or to W
2,1 with �W2,2 . It is clear that this is

possible if �W3,1 = (T < 2) ∨ (T < 4 ∧ ¬B(3,1),(2,1)).
By continuing this iteration it becomes clear that the invari-
ant

�g1,1 =�
i,j

((⌫ ∈Wi,j) ∧�Wi,j),

will guarantee realizability of the short horizon problems as
well as 'init ⇒ �g1,1 . The same idea can be used for the
other goals gi,j to show realizability for the full problem.
It should be noted that the robot is allowed to move when
setting T = 0, which has the consequence that it is possible
to reach a target two rooms away at T = 1. This sometimes is
important for achieving the task within the time bound of 6
in this example. We could restrict motion when resetting the
timer if we wanted to be more conservative in this respect.

Figure 3 depicts a solution to the above problem for two
environments: one in which the solid red face is blocked and

Figure 3: Example of solution with and without

blocking. Dashed black lines indicates relevant parts

of the mapping. Thick red line indicates that the

blue solution is blocked, necessitating the red solu-

tion.

one in which is is not: the choice between the two paths is
automatic based on the approach presented in Section 3.

A key advantage of using the framework described in Section
3 is that we can keep the sets inW relatively small compared
to the full problem size. The final high level path taken
through short horizon problems is decided online, and can
therefore depend on the current state of the environment. If
we restrict �F(Wi)� = 1 as in [18], we could be required to
group all rooms at a similar distance from the goal in the
same set Wi to allow for di↵erent paths to the goal. Doing
so enlarges the the short horizon problems and fails to fully
exploit the benefits of the receding horizon framework. This
e↵ect is magnified when the number of rooms is very large,
and when the robot motion planning problem within a room
is non-trivial – it would be impractical to consider all rooms
at the same distance from the goal in a single problem. Using
the approach we have presented, however, we can restrict the
search to a few rooms closest to the current position, and
choose a subsequent short horizon based on the observed
environment.

5. DISCUSSION
We have presented a reactive synthesis framework based on
receding horizon control, reducing a synthesis problem over a
large domain into a set of significantly smaller problems, and
automatically selects the next short-horizon problem for the
set of all possibilities, based on the observed environment.
We presented an example illustrating the approach, and dis-
cuss how our method allows the short horizon problems to
be smaller in practice than previous attempts at receding
horizon control for temporal logic.

This work represents a step towards improving the robust-
ness of the receding horizon framework. Instead of providing
a single path to each goal that must work in any environ-
ment, the user can provide a set of possibilities, and our
synthesis algorithm will automatically determine a feasible
path at runtime.

6. ACKNOWLEDGEMENTS
The first author is supported by TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

7. REFERENCES
[1] R. Alur, T. A. Henzinger, G. La↵erriere, and G. J.

Pappas. Discrete abstractions of hybrid systems.
Proceedings of the IEEE, 88(7):971–984, 2000.

[2] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and
Y. Sa’ar. Synthesis of reactive(1) designs. Journal of
Computer and System Sciences, 78(3):911 – 938, 2012.
In Commemoration of Amir Pnueli.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[4] D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi,
and G. J. Pappas. Valet parking without a valet. In
2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, October 29 -
November 2, 2007, Sheraton Hotel and Marina, San
Diego, California, USA, pages 572–577, 2007.

[5] X. C. Ding, M. Lazar, and C. Belta. LTL receding
horizon control for finite deterministic systems.
Automatica, 50(2):399–408, 2014.

[6] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J.
Pappas. Temporal logic motion planning for dynamic
robots. Automatica, 45(2):343 – 352, 2009.

[7] E. A. Gol and M. Lazar. Temporal logic model
predictive control for discrete-time systems. In
Proceedings of the 16th international conference on
Hybrid systems: computation and control, HSCC
2013, April 8-11, 2013, Philadelphia, PA, USA, pages
343–352, 2013.

[8] M. Kloetzer and C. Belta. A fully automated
framework for control of linear systems from temporal
logic specifications. IEEE Transaction on Automatic
Control, 53(1):287–297, 2008.

[9] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas.
Where’s waldo? sensor-based temporal logic motion
planning. In ICRA, pages 3116–3121, 2007.

[10] J. Liu and N. Ozay. Abstraction, discretization, and
robustness in temporal logic control of dynamical
systems. In Proceedings of the 17th International
Conference on Hybrid Systems: Computation and
Control, HSCC ’14, pages 293–302, New York, NY,
USA, 2014. ACM.

[11] S. C. Livingston and R. M. Murray. Just-in-time
synthesis for reactive motion planning with temporal
logic. In 2013 IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, May
6-10, 2013, pages 5048–5053, 2013.

[12] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam,
N. Petit, W. B. Dunbar, and R. Franz. Online control
customization via optimization-based control. In In
Software-Enabled Control: Information Technology for
Dynamical Systems, pages 149–174.
Wiley-Interscience, 2002.

[13] P. Nuzzo, H. Xu, N. Ozay, J. Finn,
A. Sangiovanni-Vincentelli, R. Murray, A. Donze, and
S. Seshia. A contract-based methodology for aircraft
electric power system design. Access, IEEE,
PP(99):1–1, 2013.

[14] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’89, pages 179–190,
New York, NY, USA, 1989.

[15] V. Raman, M. Maasoumy, A. Donzé, R. M. Murray,
A. Sangiovanni-Vincentelli, and S. Seshia. Model
predictive control with signal temporal logic
specifications. In IEEE Conference on Decision and
Control (CDC), 2014.

[16] P. Tabuada and G. J. Pappas. Linear time logic
control of discrete-time linear systems. IEEE Trans.
Automat. Contr., 51(12):1862–1877, 2006.

[17] T. Wongpiromsarn, U. Topcu, and R. Murray.
Receding horizon temporal logic planning for
dynamical systems. In Decision and Control, 2009
held jointly with the 2009 28th Chinese Control
Conference. CDC/CCC 2009. Proceedings of the 48th
IEEE Conference on, pages 5997–6004, Dec 2009.

[18] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon temporal logic planning. IEEE
Trans. Automat. Contr., 57(11):2817–2830, 2012.

