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Abstract

We present a framework for applying the method of Proper Orthogonal Decomposi-
tion (POD) and Galerkin projection to compressible fluids. For incompressible flows,
only the kinematic variables are important, and the techniques are well known. In
a compressible flow, both the kinematic and thermodynamic variables are dynam-
ically important, and must be included in the configuration space. We introduce
an energy-based inner product which may be used to obtain POD modes for this
configuration space. We then obtain an approximate version of the Navier-Stokes
equations, valid for cold flows at moderate Mach number, and project these equa-
tions onto a POD basis. The resulting equations of motion are quadratic, and are
much simpler than projections of the full compressible Navier-Stokes equations.

Key words: Proper orthogonal decomposition; compressible flows; Galerkin
projection; model reduction
PACS: 47.40, 02.70.D, 47.11

1 Introduction

The tools of Proper Orthogonal Decomposition (POD) and Galerkin projec-
tion have been used for some time to obtain low-dimensional models of flu-
ids [1–3], but most of the applications have been to incompressible flows. This
paper presents a method for applying these techniques to compressible flows.

In an incompressible flow, the velocity is the only flow variable that is dy-
namically important. The pressure acts only to enforce the incompressibility
constraint, and may in fact be eliminated completely from the equations of
motion, as we review in section 3. By contrast, in a compressible flow, the pres-
sure becomes dynamically important, along with all of the other thermody-
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namic variables. As a result, additional evolution equations must be specified
for these new variables. Furthermore, even the choice of inner product is no
longer obvious, as it is not immediately clear how to combine both thermody-
namic and kinematic variables in a rational way (e.g., such that the projected
equations behave well, or such that the induced norm has a physical mean-
ing, such as energy). In addition, the equations of motion become much more
complicated, and Galerkin projections of the fully compressible Navier-Stokes
equations are rather unwieldy.

In this paper, we first give an overview of the general method of POD and
Galerkin projection, in the context of an abstract Hilbert space. We briefly
outline how these tools have been applied to incompressible flows in section 3,
and in section 4, we discuss the difficulties that arise for compressible flow,
and present the details of our new method. We introduce a family of energy-
based inner products, and present a simplified version of the compressible
Navier-Stokes equations, valid for flows with small temperature gradients and
moderate Mach numbers, that greatly simplifies the resulting Galerkin pro-
jections.

2 Model reduction

The tools of Proper Orthogonal Decomposition (POD) and Galerkin projec-
tion provide a systematic way for producing reduced-order models from data.
The central idea of POD is to determine a nested family of subspaces, of in-
creasing (finite) dimension, that optimally span the data, in the sense that the
error in the projection onto each subspace is minimized. Galerkin projection
then determines dynamics on each subspace, by orthogonal projection of the
governing equations.

In this section, we give an overview of these methods, in the context of an
abstract Hilbert space. The abstract setting is used for several reasons. In
subsequent sections, we will want to consider different inner products, and
keeping the exposition general allows one to see precisely where the depen-
dence on the inner product lies. This is especially useful for computations,
as one can write a single subroutine to compute the inner product, and if a
different inner product is desired, only the one routine needs to be changed. In
the usual development of POD [3,1], the standard L2 inner product is usually
assumed, and it is not always clear where this assumption has been used, and
what routines need to be modified if a different inner product is desired.
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2.1 Proper Orthogonal Decomposition

Let H be a Hilbert space, with inner product 〈·, ·〉. The goal is, given an en-
semble of data {uk ∈ H | k = 1, . . . ,m}, find a subspace S of fixed dimension
n < m, such that the error E(‖uk − PSuk‖) is minimized. Here, ‖ · ‖ is the in-
duced norm on H, PS is the orthogonal projection onto the subspace, and E(·)
denotes an average over k. The data {uk} could be thought of as an ensem-
ble of many different experiments, or as a time average, with uk representing
snapshots of a function u(t) at different times t = tk. Note that minimizing
the error E(‖uk − PSuk‖) is equivalent to maximizing E(‖PSuk‖2), the “en-
ergy” in the projection, since ‖u‖2 = ‖u − Pu‖2 + ‖Pu‖2 for any orthogonal
projection P .

For our purposes, the space H will consist of functions on some spatial do-
main Ω in which a fluid evolves, for instance H = L2(Ω). These functions
may be vector-valued, and in applications we will explicitly state which inner
product we use.

Solving this optimization problem leads to the eigenvalue problem

Rϕ = λϕ, (2.1)

where R : H → H is the linear operator given by

R = E(uk ⊗ u∗k). (2.2)

Here, u∗ ∈ H∗ denotes the dual of u, the functional given by u∗(·) = 〈·, u〉,
and ⊗ is the usual tensor product [4]. Thus, (u ⊗ v∗)(ψ) = u 〈ψ, v〉 for any
u, v, ψ ∈ H. It follows easily from the definition that R is self-adjoint, so the
eigenfunctions ϕ may indeed be chosen to be orthonormal. Furthermore, we
see from (2.1) by taking an inner product with ϕ that

λ = E
(
| 〈uk, ϕ〉 |2

)
, (2.3)

so the eigenvalue λ is the average energy in the projection of the ensemble
onto ϕ, where the energy is in the sense of the induced norm. From (2.3), we
conclude that R is positive semi-definite (λ ≥ 0), and the functions ϕj which
maximize E(‖PSuk‖2) are the eigenfunctions corresponding to the largest n
eigenvalues of R. These eigenfunctions are called POD modes.

2.1.1 Computation: method of snapshots

The method of snapshots provides an alternate way of computing the POD
modes, and is often more efficient than the direct method, where one directly
solves the eigenvalue problem (2.1).
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The main idea is to write the POD modes as linear combinations of the snap-
shots uk. This can always be done, because the range of R = E(uk ⊗ u∗k) is
contained within the span of the ensemble {uk}. Thus, any eigenfunction ϕ
may be written as

ϕ =
∑
k

ckuk (2.4)

for some coefficients ck ∈ R (or C). Define the average E(·) as a weighted
average over the snapshots uk

E
(
f(u)

)
=

m∑
k=1

αkf(uk),

where the weights αk > 0 satisfy
∑

k αk = 1 (typically, αk = 1/m, for equal
weighting). The eigenvalue problem Rϕ = λϕ may then be rewritten in terms
of the coefficients ck:

Uc = λc, (2.5)

where c = (c1, . . . , cm) and U is an m×m matrix with Uij = αi 〈uj, ui〉.

The direct solution of (2.1) involves solving an eigenvalue problem on the
space H, which may be infinite-dimensional. For instance, if the snapshots
uk ∈ H are data from a simulation, the dimension of H will be the number of
gridpoints (or spectral modes) in the simulation, typically large. By contrast,
the method of snapshots involves solving an m-dimensional eigenvalue prob-
lem (2.5), where m is the number of snapshots in the ensemble. The method of
snapshots is thus more efficient whenever the number of snapshots is smaller
than the number of gridpoints.

2.2 Galerkin projection

Consider a dynamical system which evolves in a Hilbert spaceH. In particular,
for u(t) ∈ H, u(t) satisfies

u̇ = X(u), (2.6)

where X is a vector field on H. For instance, for a partial differential equation
governing a variable u(x, t), defined on some spatial domain x ∈ Ω, H will be a
space of functions defined on Ω, and X will be a spatial differential operator.
Given a finite-dimensional subspace S of H, Galerkin projection specifies a
dynamical system which evolves on S and approximates (2.6) in some sense.
This approximate dynamical system is obtained by orthogonal projection of
the vector field X onto the subspace, and is denoted

ṙ = PSX(r), (2.7)

where r(t) ∈ S and PS : H → S is the orthogonal projection map.
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To apply this method to computations, we need to write (2.7) in coordinates.
Let {ϕk ∈ H | k = 1, . . . , n} be an orthonormal basis for the subspace S. (For
instance, such a basis may be obtained from POD on a set of data, as described
in the preceding section.) Writing r(t) in coordinates ak(t) with respect to this
basis, we have

r(t) =
n∑

k=1

ak(t)ϕk. (2.8)

From (2.7), we have PS(ṙ −X(r)) = 0, and the equations of motion become

ȧk(t) = 〈X(r(t)), ϕk〉 , k = 1, . . . , n, (2.9)

where we have used orthonormality of the ϕk.

For many types of equations, the ODEs given by (2.9) may be determined
analytically, in terms of the coordinates ak. This is particularly useful com-
putationally, as the inner product in (2.9) does not need to be computed at
every timestep. For instance, if X(u) is quadratic, given by

X(u) = L(u) +Q(u, u),

where L : H → H is linear and Q : H × H → H is bilinear, the projected
ODEs (2.9) become

ȧk(t) =
∑

i

ai(t)
〈
L(ϕi), ϕk

〉
+

∑
i,j

ai(t)aj(t)
〈
Q(ϕi, ϕj), ϕk

〉
,

where the inner products are constants (independent of t) which may be de-
termined before integrating the ODEs.

2.3 Stability and choice of inner product

It is well known that under some circumstances, Galerkin projections can
perform poorly, and even produce unstable equilibrium points and limit cycles
where the full system possesses stable equilibrium points and limit cycles.
Possible reasons for this are illustrated with an elegant example in [5]. We show
here that if an “energy-based” inner product is used (defined more precisely
below), then Galerkin projection preserves the stability of an equilibrium point
at the origin.

For simplicity, we restrict ourselves to the finite-dimensional case, where a
dynamical system ẋ = f(x) evolves on Rn. Suppose the origin is a stable
equilibrium point, and suppose that V (x) = xTQx is a quadratic Liapunov
function for this system, in some neighborhood U of the origin. That is, Q is
symmetric, positive definite, and V̇ (x(t)) ≤ 0 along trajectories, for x(t) ∈ U ,
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which implies

(f(x))TQx+ xTQf(x) ≤ 0, ∀x ∈ U. (2.10)

For instance, if the governing equation conserves energy or is dissipative, then
we may choose V (x) to be the total energy. Now, define an “energy-based”
inner product on Rn by 〈x, y〉 = xTQy, and consider an orthogonal projection
P onto some arbitrary subspace of Rn. Recall that an orthogonal projection
must be self-adjoint, and so

〈x, Py〉 = 〈Px, y〉 , ∀x, y ∈ Rn

=⇒ QP = P TQ.

The Galerkin projection of the equations is ṙ = Pf(r), where r is in the
subspace (so Pr = r). It follows that V (r) = rTQr is a Liapunov function for
the projected system as well, since

V̇ (r) = ṙTQr + rTQṙ

= f(r)TP TQr + rTQPf(r)

= f(r)TQ(Pr) + (Pr)TQf(r) ≤ 0 ∀r ∈ U

by (2.10), since Pr = r. Asymptotic stability may also be deduced if V̇ (x) is
strictly negative.

Thus, an “energy-based” inner product has the advantage that stability of an
equilibrium point at the origin (i.e., stability of the linearization) is preserved
by Galerkin projection. This is obviously not the case if a non-energy-based in-
ner product is used. For instance, using the standard Euclidean inner product,
orthogonal projection of the stable linear system

d

dt

x1

x2

 =

1 −1

3 −2


x1

x2


onto the x1 subspace gives ẋ1 = x1, which is unstable. Note, however, that an
energy-based inner product does not guarantee that stability of other equilib-
rium points will be preserved, nor that stability of limit cycles is preserved,
as we shall see in section 5.

3 Incompressible fluids

Before applying these methods to compressible flows, we first outline the well-
established methods for incompressible flows, and highlight the differences in
the next section.
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The definition of incompressibility is that the velocity u = (u, v, w) is di-
vergence free, div u = 0. The motion of the fluid satisfies the Navier-Stokes
equations [6], written in Cartesian coordinates as

Du

Dt
= −∇p+ ν∇2u, (3.1)

where ν is the viscosity, p is the pressure, and D/Dt = ∂/∂t + u · ∇ is the
material derivative. Velocities have been normalized by some velocity scale
U , lengths by a length scale L, time by U/L, pressure by ρU2 where ρ is
the density, and viscosity by ρUL (thus, ν is the reciprocal of the Reynolds
number). These equations may be written as

u̇ = N(u)−∇p (3.2)

where N(u) = −(u · ∇)u + ν∇2u.

For incompressible flows, we write the velocity u as an expansion in POD
modes ϕ(x), defined on a spatial domain Ω in which the fluid evolves:

u(x, t) =
n∑

j=1

aj(t)ϕj(x). (3.3)

Our Hilbert space H is just the space of smooth (C∞), divergence-free, vector-
valued functions on Ω, with the standard inner product

〈u,v〉 =
∫
Ω
u(x) · v(x) dV. (3.4)

(Additionally, we restrict the space H to contain only functions with finite
norm.)

Inserting the expansion (3.3) into the Navier-Stokes equations (3.2), and tak-
ing an inner product with ϕk gives

ȧk = 〈N(u),ϕk〉 − 〈∇p,ϕk〉 . (3.5)

The pressure term on the right-hand side may be rewritten

〈∇p,ϕk〉 =
∫
Ω

ϕk · ∇p dV =
∫
Ω

div(pϕk) dV =
∫

∂Ω
pϕk · n dS

where in the second equality we have used that div ϕk = 0. Thus, this term
depends only on the pressure on the boundary ∂Ω. Furthermore, if velocity
is zero along the boundary (for instance, at a wall, or in the farfield of an
open flow), then ϕk = 0 on ∂Ω, and the pressure term vanishes altogether.
If the boundary is not a wall, but rather an “artificial” boundary we impose
(i.e., we consider only a limited portion of the whole flow), then the pressure
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term represents the influence of the rest of the flow on the domain we are
considering, and must be specified as a boundary condition.

The technique for incompressible flows is well known. Many enhancements
to the basic theory exist (see [3] for a thorough discussion), but the essen-
tial elements are the same as given here. The main feature that is normally
included, but is not mentioned above, is that the velocity is usually decom-
posed into mean and fluctuating components (u = ū + u′). If the mean ū
is constant in time, the technique is the same as above, with the linear pro-
jection (3.3) replaced by an affine projection (as discussed in section 4.3 for
the compressible equations). The mean may also be slowly varying in time,
in which case it is usually modeled in terms of the fluctuations u′, which give
rise to Reynolds stresses, as discussed in [2]. This is an important distinction,
and gives rise to cubic equations, while the equations (3.5) are only quadratic.
Another enhancement to the basic theory is the modeling of the energy trans-
fer to the higher modes. In this paper, we take the mean flow to be constant
in time, without attempting to model the Reynolds stress contributions, and
we neglect the energy transfer to the higher modes. These extensions could
presumably be added to the compressible theory as well.

4 Compressible fluids

The main result of this paper is the application of the above techniques to com-
pressible flows. The distinction is a fundamental one. On a superficial level,
the constraint div u = 0 no longer holds. On a more fundamental level, in a
compressible flow, the thermodynamic variables are dynamically important,
and must be included in the actual dynamics, not merely as a constraint. For
incompressible flows, as discussed above, the pressure drops out completely,
or appears only as an imposed boundary condition, and the only dynamical
variable is the velocity. For compressible flows, this is not the case, and evolu-
tion equations must be given for one or more thermodynamic variables (e.g.,
ρ, p, entropy s, enthalpy h), as well as the velocity. This introduces further
questions of whether to treat these variables completely separately from the
velocity, or together as a single vector-valued “configuration” variable (e.g.,
q(x) = (ρ, u, v, w, p)(x)).

Both of these alternatives are considered in [7,8], in developing reduced-order
models for the compressible flow past a rectangular cavity. A scalar-valued
method was used, in which the flow variables are considered separately, as
coupled dynamical systems, with separate POD modes for each variable. This
method was compared to a vector-valued method, in which the flow variables
are taken together as a single configuration vector, with a single set of vector-
valued POD modes for the configuration space. The scalar-valued method ap-
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peared to offer no advantages, requiring higher-order models, and furthermore
demonstrating poor long-time behavior for the particular example considered.
Here, we consider only the vector-valued method.

To compute POD modes, we first need to define an appropriate inner product
on our configuration space—the standard inner product may not be a sensible
choice. For instance, if we use as flow variables q = (ρ, u, v, w, p), defined on
the fluid domain Ω, the standard inner product is

〈
q1,q2

〉
=

∫
Ω

(
ρ1ρ2 + u1u2 + v1v2 + w1w2 + p1p2

)
dV, (4.1)

which does not make dimensional sense, since one cannot add a velocity and
a pressure (one may, of course, nondimensionalize the variables, but then the
choice of nondimensionalization becomes critical). We introduce an inner prod-
uct suitable for compressible flows in section 4.2.

4.1 Governing equations

The fully compressible Navier-Stokes equations (see the Appendix) are signifi-
cantly more complicated than the incompressible equations, so we make some
approximations to obtain a simpler set of equations. Using assumptions valid
for cold flows at moderate Mach number, and with a careful choice of ther-
modynamic variables, we obtain quadratic equations, which makes Galerkin
projections particularly simple.

We consider a cold flow (Twall = T∞) and note that if the Mach number
is not too high, density gradients will remain small and will be dominated
by pressure changes [9]. This is consistent with the neglect of the viscous
dissipation and heat conduction in the energy equation, and thus we treat the
flow as isentropic. However, we retain the viscous diffusion in the momentum
equation, but in this term we assume dynamic and kinematic viscosities are
constant, again under the approximation that temperature gradients are small.
Under these assumptions, the equations of motion become

Dρ

Dt
+ ρ div u = 0

Du

Dt
+

1

ρ
∇p = ν∇2u

ds = 0,

(4.2)

where u is the velocity in three dimensions, ρ is the density, p is pressure,
s is entropy, and ν = µ/ρ̄ is a constant. We still have more variables than
equations, so to close the system we require an equation of state. With an
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equation of state, we may write the equations in terms of a single thermody-
namic variable, since the entropy is constant.

Using the ideal gas relation p = ρRT , and the Gibbs equation dh = Tds+dp/ρ
with ds = 0, the equations (4.2) may be written with the enthalpy h as the
only thermodynamic variable:

Dh

Dt
+ (γ − 1)h div u = 0

Du

Dt
+∇h = ν∇2u.

(4.3)

This procedure will work for any thermodynamic variable, but the enthalpy is
particularly convenient, because the equations (4.3) are quadratic. If we had
used the density, for instance, the momentum equation would become

Du

Dt
+ ργ−2∇ρ = ν∇2u.

For air, γ = 1.4, so the exponent γ − 2 in the above equation is fractional,
which would cause difficulty when we perform Galerkin projections, described
in section 4.3.

Another choice of thermodynamic variable which yields quadratic equations
is the local sound speed a. Using the ideal gas relation a2 = (γ − 1)h, the
equations (4.3) become

Da

Dt
+
γ − 1

2
a div u = 0

Du

Dt
+

2

γ − 1
a∇a = ν∇2u.

(4.4)

The equations (4.3) and (4.4) are equivalent, and we refer to them (in either
form) as the isentropic Navier-Stokes equations. We focus on equations (4.4)
in terms of sound speed, because it is straightforward to obtain a physically-
based inner product for these variables, as we see in the next section.

4.2 Inner products for compressible flow

In order to obtain vector-valued POD modes, and perform Galerkin projec-
tions as in the previous section, we must first define an inner product. Here we
introduce a family of inner products useful for compressible flow problems. As
mentioned earlier, the usual inner product (e.g., (4.1)) may not make dimen-
sional sense when both thermodynamic and kinematic variables are included.
Of course, one could simply nondimensionalize the variables, but then the
sense in which projections are “optimal” is rather arbitrary, and depends on
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the nondimensionalization (essentially the choice of “coordinates”), and hence
only indirectly on the underlying physics. Some choices of nondimensionaliza-
tion may be more relevant than others—for instance, [10] suggest a nondimen-
sionalization based on the variance of the density and velocity fluctuations in
a dataset used for POD.

The inner product presented here has a direct physical interpretation, in that
the “energy” defined by the induced norm is a meaningful physical quantity,
either the integrated stagnation energy or the integrated stagnation enthalpy.
There are several reasons for using an inner product based on the flow physics.
First, as shown in section 2.3, if an energy-based inner product is used, then
stability of an equilibrium point at the origin will be preserved by Galerkin
projection. Second, since the underlying phenomena and equations of motion
have a physical interpretation, it is natural to introduce a physically moti-
vated inner product as well. However, we point out that in many situations
an energy-based inner product may not be appropriate, for instance in jet
noise problems where acoustic waves of interest contain a very small fraction
of the energy. Other choices of inner products for these flows are considered
in [11,12].

For incompressible flows, the norm induced by the standard inner product
is directly related to the kinetic energy, with T = ‖u‖2/2. For compressible
flows, both thermodynamic and kinematic variables contribute to the total
energy. For instance, the stagnation (or total) enthalpy of the flow is given by

h0 = h+
1

2
(u2 + v2),

where h is the static enthalpy. Analogously, the stagnation energy is e =
E + 1

2
(u2 + v2), where E = h/γ is the internal energy per unit mass. (For the

remainder of the paper, we restrict ourselves to two spatial dimensions, but
the extension to three dimensions is obvious.) Motivated by these physical
quantities based on energy, we look for inner products which have induced
norms of the form

1

2
‖q‖2

α =
∫
Ω

(
αh+

1

2
(u2 + v2)

)
dV, (4.5)

where q is the vector of flow variables, and α > 0 is a constant. Note that the
right-hand side of (4.5) is not quadratic, because h appears linearly, but this
is easily remedied by transforming to the flow variables q = (u, v, a), since
a2 = (γ − 1)h. Thus, we define a family of inner products

〈q1,q2〉α =
∫
Ω

(
u1u2 + v1v2 +

2α

γ − 1
a1a2

)
dV, (4.6)

which has induced norm given by (4.5).
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Choosing α = 1 corresponds to using the integral of the stagnation enthalpy as
the norm, and taking α = 1/γ corresponds to using the stagnation energy as
the norm. However, note that neither the integral of the stagnation enthalpy or
the stagnation energy is actually a conserved quantity. The conserved quantity
is the total energy, given by

∫
Ω

(
ρE +

1

2
ρ(u2 + v2)

)
dV. (4.7)

(Of course, this is only conserved if there is no energy flux through the bound-
ary of Ω, as one obtains when, for example, the velocity vanishes on ∂Ω.)
Though this norm would perhaps be the most natural from an energy point
of view, it is not obvious how to choose configuration variables for which the
equations of motion are tractable. The choice q = (

√
ρE,

√
ρu,

√
ρv) may be

used to compute POD modes, but the physical significance of these variables
is not clear, and the equations of motion in these variables will of course be
quite involved.

4.3 Projected equations

Here, we compute the coefficients in the Galerkin projection of the isentropic
Navier-Stokes equations (4.4), which may be written in two dimensions as

ut = −uux − vuy − 2
γ−1

aax + ν(uxx + uyy)

vt = −uvx − vvy − 2
γ−1

aay + ν(vxx + vyy)

at = −uax − vay − γ−1
2
a(ux + vy).

(4.8)

Writing q = (u, v, a), the equations take the form

q̇ = νL(q) +Q(q,q), (4.9)

where

L(q) =


uxx + uyy

vxx + vyy

0

 , (4.10)

Q(q1,q2) = −


u1u2

x + v1u2
y + 2

γ−1
a1a2

x

u1v2
x + v1v2

y + 2
γ−1

a1a2
y

u1a2
x + v1a2

y + γ−1
2
a1(u2

x + v2
y)

 . (4.11)
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Shear layer Acoustic waves
Flow

Fig. 1. Basic configuration of a cavity flow.

Next, we expand q in terms of POD modes (or any other orthogonal basis
functions), as

q(x, t) = q̄(x) +
n∑

j=1

aj(t)ϕj(x), (4.12)

where q̄ is fixed, and typically taken to be the mean of all the snapshots used
for POD, though other choices are possible (e.g., a nearby steady solution of
Navier-Stokes). For the affine projection above, the mean q̄ must be subtracted
from the original data before the POD modes are computed. The resulting
Galerkin equations are given by

ȧk = νb1k + b2k +
n∑

i=1

(
νL1

ik + L2
ik

)
ai +

n∑
i,j=1

Qijkaiaj, (4.13)

where the coefficients

b1k = 〈L(q̄),ϕk〉 L1
ik = 〈L(ϕi),ϕk〉

b2k = 〈Q(q̄, q̄),ϕk〉 L2
ik = 〈Q(q̄,ϕi) +Q(ϕi, q̄),ϕk〉

Qijk =
〈
Q(ϕi,ϕj),ϕk

〉
are constants which may be computed before solving the reduced system. Note
that the affine terms in (4.13) vanish if q̄ is a steady solution of Navier-Stokes
(so that νL(q̄) +Q(q̄, q̄) = 0).

5 Example: cavity flow oscillations

To demonstrate the effectiveness of the approach described above, we show
some results of the method applied to the flow past a rectangular cavity. The
geometry of the flow is indicated in figure 1. Cavity flows often exhibit self-
sustained oscillations, usually explained by the following mechanism: small
disturbances in the shear layer at the leading edge are amplified exponentially,
and produce acoustic waves when they impinge on the downstream corner;
these acoustic waves propagate upstream, and excite further disturbances in
the shear layer, creating a natural feedback mechanism which often leads to
finite-amplitude oscillations.
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We have performed an extensive set of simulations of the two-dimensional
compressible flow, presented in detail in [13]. The fully compressible Navier-
Stokes equations were solved using 6th-order compact finite differences in
space and 4th-order Runge-Kutta in time, resulting in a scheme with very low
dispersion and dissipation, necessary to resolve acoustic waves. The flow was
two-dimensional, and hence laminar, and typical runs used roughly 500,000
gridpoints. The parameters for the run presented are L/D = 2, L/θ = 58,
Reθ = 69, M = 0.6, where L and D are the cavity length and depth, θ is the
momentum thickness of the boundary layer at the leading edge of the cavity,
M = U∞/a∞ is the freestream Mach number, and Reθ = ρ∞U∞θ/µ is the
Reynolds number based on θ.

We computed POD modes from the simulation data, using 51 snapshots taken
after transients had decayed. The initial condition for the simulation was a
Blasius boundary layer spanning the cavity at t = 0, and the snapshots were
taken at evenly spaced times between tU/L = 67.8 and 77.5. The mean of the
snapshots was subtracted from the ensemble before computing POD modes.
The inner product used in computing POD modes is given by equation (4.6),
with α = 1, with the integral evaluated over the portion of the computational
domain with −1 ≤ x/D ≤ 3, −1 ≤ y/D ≤ 2. The computational domain
extends well beyond this, but only the nearfield was used for computing POD
modes. Other values of the parameter α were examined in [7], and the results
were qualitatively identical to those with α = 1.

The first four POD modes are shown in figure 2, and together they capture
over 98.7% of the energy in the fluctuations (where the energy is in the sense
of the induced norm). The vorticity shows the structures in the shear layer,
and the dilatation reveals the presence of acoustic waves, radiated from the
downstream corner. Note that the modes occur in pairs, shifted in phase by
90◦, as is characteristic of flows with convecting structures.

We then project the isentropic Navier-Stokes equations (4.4) onto these POD
modes, as described in section 4.3, to obtain reduced-order models. Figure 3
shows time traces from several reduced-order models, retaining between 2
and 20 states, compared with projections of the snapshots from the full sim-
ulation. The initial condition for the reduced-order models was obtained by
projecting a snapshot from the full simulation onto the POD modes. For the
short times shown in Figure 3, the agreement is excellent: the frequencies and
amplitudes of the oscillations are captured very well by all of the models.

Figure 4 illustrates the long-time behavior of the models. All of the reduced-
order models possess a stable limit cycle except for the 2-mode model, which
has a (non-physical) stable fixed point at (−1.47,−3.26). For the higher-order
models, the final amplitude of the limit cycle agrees better with the data
from the full simulation as the number of modes increases from 4, to 6, to

14



(a) Mode 1 (47.15%) (b) Mode 2 (44.67%)

(c) Mode 3 (3.50%) (d) Mode 4 (3.42%)

Fig. 2. POD modes from cavity flow simulation: Vorticity (top) and dilatation (bot-
tom), and percent energy captured.

11 modes, but when more than 11 modes are retained, the behavior becomes
more complex and non-physical.

6 Discussion

We have presented a method for applying Proper Orthogonal Decomposition
and Galerkin projection to compressible flows. For Galerkin projection, we use
an approximate, isentropic version of the Navier-Stokes equations that is valid
for cold flows (small temperature gradients) at moderate Mach number, and
we have chosen appropriate flow variables so that only quadratic terms appear
in the equations. By contrast, the full compressible Navier-Stokes equations
contain cubic terms, and furthermore, the time derivatives may not be solved
for explicitly, which complicates Galerkin projections.
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An inner product is necessary for both POD and Galerkin projection, and we
have introduced an inner product that is physically meaningful, based on stag-
nation enthalpy or stagnation energy. This inner product thus has the property
that the stability of an equilibrium point at the origin will be preserved under
Galerkin projection, and furthermore it yields projected equations that are
easy to implement.

We have applied the method to a flow past a rectangular cavity, and have found
that the POD modes identify both vortical structures in the shear layer and
acoustic waves in the farfield. The method works well for the flow studied, at
low Reynolds number and moderate Mach number, capturing over 98% of the
energy in the fluctuations with the first four POD modes. Galerkin projections
of strikingly low dimension are obtained, and give results which closely match
those from the full simulations, even when as few as 4 modes are retained.

A Galerkin projection of fully compressible Navier-Stokes

A.1 Equations of motion

The fully compressible Navier-Stokes equations may be written as follows:

Dρ

Dt
+ div u = 0

ρ
Dui

Dt
= − ∂p

∂xi

+
1

Re

∂

∂xj

(
2Sij −

2

3
δij div u

)
ρ
DT

Dt
+ (γ − 1)ρT div u =

γ

Re

(
2SijSij −

2

3
(div u)2

)
+

γ

Re Pr
∇2T

where p = (γ − 1)ρT , and Sij = 1
2
(∂ui/∂xj + ∂uj/∂xi) is the rate-of-strain

tensor (the symmetric part of the velocity gradient). Here the usual compress-
ible nondimensionalization has been used, using a length scale L, the ambient
sound speed a∞, and ambient density ρ∞. Temperature is nondimensionalized
by a2

∞/cp, and pressure by ρ∞a
2
∞. These equations are of the form

∂ρ

∂t
= R(q), ρ

∂ui

∂t
= Ui(q), ρ

∂T

∂t
= Θ(q),
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where q = (ρ, u1, u2, u3, T ), and R, Ui, and Θ are nonlinear differential oper-
ators given by

R(q) = −(u · ∇)ρ− div u

Ui(q) = −ρ(u · ∇)ui −
∂p

∂xi

+
1

Re

∂

∂xj

(
2Sij −

2

3
δij div u

)
Θ(q) = −(γ − 1)ρT div u +

γ

Re

(
2SijSij −

2

3
(div u)2

)
+

γ

Re Pr
∇2T.

These equations may be written more concisely as

A(q)q̇ = f(q) (A.1)

where A(q) = diag(1, ρ, ρ) and f(q) = (R(q), U1(q),Θ(q)). Here, only one
spatial dimension is used, but the extension to higher spatial dimensions is
trivial. Note that A is affine in q, and may be written

A(q) = B + L(q) = diag(1, 0, 0) + diag(0, ρ, ρ)

Furthermore, f is cubic and may be written

f(q) = f1(q) + f2(q,q) + f3(q,q,q),

where f1,2,3 are multilinear functions (linear in each argument).

A.2 Galerkin projection

Now, let {ϕk} be a basis for the function space containing q, and express q
in terms of this basis:

q(t) =
∑
k

ak(t)ϕk. (A.2)

Inserting this expansion into the governing equation (A.1), we have[
B + L

( ∑
l

alϕl

)] ∑
k

ȧkϕk = f(q).

Taking an inner product with ϕj then gives

∑
k

ȧk

( 〈
ϕj, Bϕk

〉
+

∑
l

al

〈
ϕj, L(ϕl)ϕk

〉 )
=

〈
ϕj, f(q)

〉
. (A.3)

This equation may be solved for ȧk by inverting the n× n matrix on the left-
hand side (n is the number of basis elements, or modes). In matrix form, this
equation is

M(a)ȧ = f̃(a) (A.4)
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where a = (a1, . . . , an), and

M(a)jk =
〈
ϕj, Bϕk

〉
+

∑
l

al

〈
ϕj, L(ϕl)ϕk

〉
f̃j(a) =

〈
ϕj, f(q)

〉
=

∑
l

al

〈
ϕj, f1(ϕl)

〉
+

∑
l,m

alam

〈
ϕj, f2(ϕl,ϕm)

〉
+

∑
l,m,n

alaman

〈
ϕj, f3(ϕl,ϕm,ϕn)

〉
.

Note that all of the inner products may be computed beforehand, as they de-
pend only on the basis functions ϕj, not on the coefficients aj. In the constant-
density case (with ρ = 1), B = I and L = 0, so if the basis functions are
orthonormal (〈ϕj,ϕk〉 = δjk) then the matrix M is just the identity, and the
equations (A.4) reduce to ȧ = f̃(a).

Though in principle there is no difficulty in solving the full equations (A.4)
directly, one first needs to choose a suitable inner product. The approximate,
isentropic equations presented in section 4.1 have a natural choice of inner
product, and are simpler to implement than (A.4), since they are quadratic,
and do not involve inversion of a “mass matrix” M .
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