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Abstract. We present a theory of contracts that is centered around
reacting to failures and explore it from a general assume-guarantee per-
spective as well as from a concrete context of automated synthesis from
linear temporal logic (LTL) specifications, all of which are compliant
with a contract metatheory introduced by Benveniste et al. We also
show how to obtain an automated procedure for synthesizing reactive
assume-guarantee contracts and implementations that capture ideas like
optimality and robustness based on assume-guarantee lattices computed
from antitone Galois connection fixpoints. Lastly, we provide an example
of a “reactive GR(1)” contract and a simulation of its implementation.

Keywords: Design by contracts · Modeling uncertainties · Formal spec-
ifications · Reactive synthesis.

1 Introduction

Automating correctness and improving productivity motivate the development
of formal contracts in the compositional design of large and complex engineer-
ing systems (e.g., [20]). Abstractly speaking, a contract [5] is a su�ciently un-
ambiguous specification of a system that allows for a certain level of freedom5

in implementation. Considering the collaborative nature of modern design and
manufacturing, a contract must also clearly describe the requirements of the en-
vironment that the system being specified is intended to operate in so that when
the system and its environment are interconnected, i.e., allowed to interact, the
desired behavior materializes.10

A premise central to the field of formal methods is the idea that the mathe-
matical model being verified is the “right” abstraction of the system in question.
Oftentimes, especially for physical systems, this is not the case since the added
details would make the model too large to be verified e�ciently, if at all [13].
Model uncertainties, environmental disturbances, simplifying assumptions etc.15

must be accounted for separately, often using heuristics. In the reactive syn-
thesis setting [6], attempts have been made to automatically generate systems
that satisfy specifications with some measure of robustness to certain classes of
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uncertainties. For instance, [17] exploits “locality” to compute modal µ-calculus
fixpoints [3] that enable patching system strategies in the presence of updated in-20

formation about the game graph. Similarly, [10] discusses a way to recover from
a finite number of unexpected actuation or sensing errors with pre-computed
safe strategies that attempt to bring the system back to the nominal control tra-
jectory. In addition to making specific assumptions on the environment, these
methods also rely on the fact that such recovery strategies are always feasible25

for the original set of objectives. On the specification side of things, [4] repre-
sents an elementary and direct means to add “reparation” handling to contract
automata. Unfortunately, the obligation to define contract states and transitions
explicitly does not make the automaton approach amenable to expressing and
extracting complex properties.30

Consider a standard assume-guarantee style design specification 'S for a
parking garage system S operated by robot valets of the form 'S := A ) G
(see [24] for a concrete specification in TLA+), where A encodes a set of input
constraints or assumptions such as garage topology, quantity of the valets, as
well as their quality, such as how fast they can park and retrieve cars, and G35

consists of guarantees the system must provide in the event that the constraints
in A are satisfied, such as an upper bound on the maximum wait times for
customers. Under this assume-guarantee framework, any system that satisfies
the requirement

unless a constraint in A is violated, all guarantees in G are provided40

is said to implement the contract. We argue that this formalism often results in
a system that is

1. fragile: this contract is not robust to disturbances: if a car runs out of fuel
and thereby invalidates the assumption on the performance of the valet as-
signed to it, are other valets suddenly allowed to indiscriminately or even45

completely abandon their responsibilities? According to 'S , the answer is
yes even though the “intuitively correct” answer is that they should not.

2. underpromising : the guarantee must often be very conservative when it must
hold against the worst case assumptions as well the most forgiving ones:
consider an abnormally slow valet biasing the guaranteed worst wait time.50

3. maladaptive: since there is only one assumption and guarantee pair (A,G),
it is not possible to adapt to changes in A nor to update guarantees in G.
Even if more pairs are allowed, there is no clear procedure on how to specify
controlling or switching between specific assumptions and guarantees when
such an opportunity arises.55

To address these issues, we propose a contract formalism that explicitly takes into
account the notion of uncertainty in the system being modelled and emphasizes
its obligation to adapt to possible changes in the behavior of the environment.
The structure of the paper is as follows: in the first part of Section 2, a standard
formal definition of assume-guarantee contracts is given as a point of reference.60

In the second part of Section 2, the idea of “generative e↵ects” is introduced and
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used to motivate our framework. In Section 3, our theory of reactive contracts
is presented and contrasted with the non-reactive formalism. In Section 4, we
specialize this theory to the context of GR(1) games and derive a procedure
for formulating and synthesizing their reactive contracts. In Section 5, we apply65

results from Section 4 to a concrete example/simulation and explore the notion
of optimality and robustness.

2 Contracts and E↵ects

2.1 Assume-guarantee contracts

For the sake of conciseness, we will only cover assume-guarantee contracts de-70

fined over a common set of Boolean variables V called the alphabet. One will
see that a more detailed variant with local alphabets where a variable can also
be labelled either as input or output is indeed more expressive (e.g., the notion
of closedness/openness can be directly defined) but not required to introduce
the notion of reactivity. For any set X, let X! be the set of infinite sequences75

generated from X, namely {hxii1i=0 | xi 2 X}, X⇤ be the free monoid on X,
and 2X be the powerset of X. Define X1 as X⇤ [X!. In accordance with the
metatheory presented in [5], which will, from this point on, be referred to as
“the metatheory”, we term any pair of collections of environments and imple-
mentations a contract. The theory of assume-guarantee contracts is a model of80

this metatheory and can be described as follows.

Definition 1 (Behaviors and Assertions). A behavior � is an element of
B := (2V)!. An assertion A is a subset of B, namely, A 2 2B.

We lift the set of all assertions 2B to a Boolean algebra by defining a unary
operator ¬ and two binary operators ^,_ on it in the standard way: if A,A1, A285

are assertions, then ¬A := B \ A, A1 _ A2 := A1 [ A2, A1 ^ A2 := A1 \ A2.
The induced partial ordering relation  on 2B is simply the subset relation
✓. Additionally, we define the secondary binary operator ) in A1 ) A2 as a
shorthand for ¬A1 _A2.

A component M is an assertion designated as such. Usually, the assertion90

characterizing a component is restricted to a subset of V, which can be thought
of as input/output variables associated with that component. This is due to the
fact that most components are intended to be interconnected with others. If M1

and M2 are components, the interconnection binary operator � is defined by
M1 � M2 := M1 ^ M2. It is clear that � is commutative and associative, and95

that the set of all components is closed under it. We note that depending on how
the variables and assertions making up the components being interconnected are
defined, � can assume the meaning of either a parallel, series, coproduct, or feed-
back connection [8]. In fact, the definition of contracts (and the corresponding
algebra) restricts components satisfying them in a way that renders transparent100

the meaning of their interconnection.
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Definition 2 (Contracts). An assume-guarantee contract C is a pair of as-
sertions (A,G), called the assumption and the guarantee respectively. The set of
environments of C, denoted by EC, captures all components E such that

E  A (1)105

In other words, EC = 2A. The set of implementations of C, denoted by MC,
consists of all components M such that

8E 2 EC .M � E  G (2)

Example 1. Let V = {x, y} and C = (A,G) where A := {� | x 2 �i , i mod 2 6=
0} and G := {� | y 2 �i , i mod 2 = 0}. Let �1 := h{y}, {x},?, {x},?, . . .i and110

�2 := h{y}, {x}, {y}, {x}, . . .i. If E := {�1,�2} then E 2 EC because �1,�2 2 A.
Let M1 := {�1} and M2 := {�2}. Then M1 62 MC because M1 �E = {�1} 62 G.
However, one can check that M2 2 MC . Note that if M3 := ?, then M3 2 MC as
well. The interpretation here is that M3 satisfies the assume-guarantee semantics
of C vacuously.115

Since 2B is a Boolean algebra (and hence a Heyting algebra [7]), we infer from
inequality (2) and the definition of � that 8E 2 EC .M  ¬E _ G. Choosing
E = A in inequality (1) gives M  ¬A _ G. The converse is also true because
¬E _G is antitone in E. Thus, we have shown

Proposition 1. Given C = (A,G), a component M satisfies M 2 MC if and120

only if
M  A ) G (3)

Proposition 1 characterizes implementations M of C as those components whose
behaviors either do not conform to the behaviors specified in A or are compatible
with G. Specifically, it says that MC = 2A)G. Since125

A ) (A ) G) = ¬A _ (¬A _G) = ¬A _G = A ) G, (4)

inequalities (1) and (3) yield

Proposition 2. If C = (A,G) and C⇤ = (A,A ) G), then MC = MC⇤ and
EC = EC⇤ .

It may be seen from equation (4) why any assume-guarantee contract of the130

form C = (A,A ) G) is called saturated. By the metatheory, we will consider
contracts that have the same sets of environments and implementations to be
equal, and so by Proposition 2, every contract C has a unique saturated canonical
form C⇤. This saturated form is often convenient to use when doing contract
algebra. In particular, it can also shed light on the meaning of the conjunction135

operation, which motivates our development of “reactive contracts”. To describe
the conjunction, we will need the idea of contract refinement.

Definition 3. We say contract C1 = (A1, G1) refines a contract C2 = (A2, G2)
and write C1 � C2 if MC1 ✓ MC2 and EC2 ✓ EC1 .
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Clearly, � is a binary relation that is reflexive and transitive and hence is a140

preorder for the set of all contracts on B. Again, since any two contracts that
have the same sets of environments and implementations are considered equal,
� is a partial order. The conjunction of two contracts C1 and C2, denoted by
C1 ^ C2, is a contract that is their largest common lower bound (or meet) with
respect to �. Formally, C1 ^ C2 := sup{C | C � C1 ^ C � C2}. For any contract C,145

we have EC = 2A and MC = 2A)G. Therefore, if C  C1, C2, then by Definition 3,
MC ✓ MC1\MC2 = 2A1)G1\2A2)G2 = 2(A1)G1)^(A2)G2) and 2A1_A2 = 2A1[
2A2 = EC1 [EC2 ✓ EC (since the intersection/union of powersets of two sets is the
powerset of their intersection/union). By the fact that (A1 ) G1) ^ (A2 ) G2)
is saturated, we have C1^C2 = (A1_A2, (A1 ) G1)^(A2 ) G2)). By induction,150

one can show the following

Proposition 3. If for i = 1, 2, . . . , n, Ci are assume-guarantee contracts, then

^n
i=1Ci = (_n

i=1Ai,^n
i=1Ai ) Gi) (5)

Note that we can apply an analogous argument to the disjunction of contracts
(defined as their join) to conclude that the set of all saturated contracts forms a155

complete lattice. Equation (5) shows that the “parametric contract” formalism
given in [15] is exactly the result of applying the conjunction operation to the
constituent contracts. That is, if M is an implementation of the conjunction
^iCi containing � such that � 2 E where E is an environment of ^iCi, then
there exists at least a k 2 {1, 2, . . . , n} such that � 2 Ak and for all such k,160

� 2 Gk. In other words, for any behavior � in which the environment satisfies
any assumption Ak in {A1, A2, . . . , An}, the system must react by providing
the corresponding guarantee Gk. Thus in contract conjunctions, 1) the reactions
are defined by pairing each Ak with the corresponding Gk and 2) Ak ) Gk

must hold over the sequence � in its entirety. The second restriction is partially165

relaxed in the “dynamic contract” formalism, used for instance in [16], where
assumptions are allowed to change over fixed time intervals. Our reactive contract
framework will 1) remove the one-to-one restriction to allow for a more flexible
assumption-guarantee pairing process, 2) enforces immediate guarantee reactions
to assumption changes directly on each element � 2 B, and 3) enables automated170

synthesis. To motivate this development, we will briefly go over the idea of
generative e↵ects.

2.2 Generative e↵ects

The principle of semantic compositionality states that “the meaning of an ex-
pression is a function of the meanings of its parts” [22]. One may attempt to175

interpret this view in the context of system engineering when they replace “ex-
pressions” with “systems” and “meanings” with “properties”. Let S be the space
of systems, � : S ⇥ S ! S be a system-valued infix operator termed intercon-
nection, C be the set of all properties, and CS := {� | � : S ! C} consisting
of functions mapping each system to a property it satisfies. In general, given180

� 2 CS and �, it would be helpful if we can find a binary operation + such that
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�(S1 � S2) = �(S1) + �(S2). Sometimes, for the right classes of systems, prop-
erties, and interconnections, such a + operator does, in fact, exist. For example,
+ can be constructed from a multiplication operation followed by a comparison
operation for dynamical systems characterized by the notation of “finite-gain L185

stability” that are interconnected by feedback [14]. Sources of failures to capture
such a + operator may also arise from to poor choice of �, inexact modelling,
lack of observability, mechanical fatigue etc. For example, consider a game in
which two fair coins c1 and c2 are tossed independently and a reward is given
every time both come up the same (both heads or both tails) and let � be the190

property: there is a “pattern” for winning. Then if we only observe c1 or c2
separately, because the coins are fair, there is no “pattern”.

Generative e↵ects are properties resulting from interactions of composed sys-
tems that cannot be explained by observing individual components [1]. For en-
gineering systems, it makes sense to safeguard against the unpredictability of195

these e↵ects with contingency planning as opposed to simply relying on cer-
tain assumptions to hold and blaming the environment when they do not. Our
metatheory-compliant formulation of reactive contracts will formalize this idea.

3 Reactive Contracts

3.1 Reactivity200

Let B be as before. For each � 2 B and i, j 2 N : 0  i < j, we denote
by �i!j the subsequence of � spanning from �i up to but not including �j ,

namely h�iij�1
k=i , and by �i!1 the infinite sequence h�ki1k=i. For A ✓ B and

k � 0, denote by Prefk(A) the set of all prefixes of behaviors in A of length k,
Prefk(A) := {�0!k | � 2 A} and Pref(A) := [1

k=0Prefk(A), the set of all prefixes205

of A. Let · be the sequence concatenation operation mapping from (Pref(B) ⇥
Pref(B)) [ (Pref(B)⇥ B) to Pref(B) [ B defined in the obvious way.

Definition 4 (Witness). Let � 2 B, A ✓ B and i, j 2 N�0 [ {1} : i < j.
We say that � is a witness for A from i up until j and write � |=i!j A if
�i!j 2 Pref(A) [ A. If j 6= 1, we consider the witness relation as being strict210

and write � |=s
i!j A if � |=i!j A but � 6|=i!j+1 A. If j = 1, the witness relation

is always strict.

To describe and keep track of assumption changes, we appeal to the notion of
assigning signatures (or labels) to each behavior that undergoes those changes.

Definition 5 (Signature). Given a set of assertions A ✓ 2B, an A-signature215

is any nonempty sequence ↵ = h↵kimk=0 2 A1 where m 2 N>0[{1}. If m < 1,
we say � 2 B is a witness for ↵ and put � |= ↵ if there exists a partitioning
sequence hikimk=0 in N�0 satisfying 0 = i0 < i1 < . . . < im such that with
im+1 := 1, we have

8k 2 {0, 1, . . . ,m}.� |=ik!ik+1 ↵k. (6)220
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We say that � is a strict witness for the signature ↵ and write � |=s ↵ if the
witness relation in equation (6) is strict. Analogously, if m = 1, then � |= ↵ if
there exists a (strictly monotone) partitioning sequence hiki1k=0 in N�0 satisfy-
ing i0 = 0 and equation (6) with {0, 1, . . . ,m} replaced by N�0.

In general, a given � 2 B may be a strict witness for more than one signature225

in A1. For example, if A = {A1, A2} where A1 \ A2 6= ?, then any behavior
� 2 A1 \ A2 satisfies � |=s hAji for j 2 {1, 2}. This may still be the case even
when A1 \A2 = ?. For V = {x, y}. A1 = {{x}}! and A2 = {{y}}! [ {�} where
� satisfies �k = {x} for k = 0 and �k = {y}, otherwise. Then � |=s hA1, A2i
and � |=s hA2i. This non-uniqueness makes it unclear as to which assumption230

change sequence should be considered and how/when to properly react to it.
Being able to restrict the set of assumptions so that this does not happen is
necessary because in order to react at all, the system must be able to know which
assumption to operate under next. The following proposition gives a su�cient
condition.235

Proposition 4. Let A be a collection of assertions, then

8↵ 2 A1.8� 2 B.� |=s ↵ ) (8� 2 A1.� |=s � ) � = ↵) (7)

if
8A1, A2 2 A.A1 6= A2 ) Pref1(A1) \ Pref1(A2) = ?. (8)

Proof. Assume that A satisfies (8). Let ↵,� 2 A1 and � 2 B be such that
� |=s ↵ and � |=s �. Let m 2 N [ {1} be the length of ↵. By the fact that
�0 2 Pref1(↵0) \ Pref1(�0) and 8A 2 A.A 6= ↵0 ) Pref1(A) \ Pref1(↵0) = ?,
we conclude ↵0 = �0. Suppose that up to n < m, ↵k = �k for all k satisfying
0  k  n. We will show that ↵n+1 and �n+1 are defined and equal to one
another. Indeed, since n < m, the (n+ 1)th term of ↵, ↵n+1, exists. Let hikimk=0
be a partitioning sequence for � |=s ↵ given by Definition 5. By strictness and the
induction hypothesis, we have �in!(in+1+1) 6|= ↵n = �n. Since � |=s �, it follows
that �n+1 exists as well. From � |=s ↵, if n + 2  m, we have � |=s

in+1!in+2

↵n+1 and, in particular, �in+1 2 Pref1(↵n+1) \ Pref1(�n+1), which by (8) yields
↵n+1 = �n+1. If n+ 2 > m, then � |=s

in+1!1 ↵n+1, arguing similarly, we arrive
at the additional conclusion that � also has length m. This implies (7). ut

Any A that satisfies (8) is called initially disjoint. Hence, Proposition 4 says that240

if A is a set of assertions that are initially disjoint then any behavior is a strict
witness for at most one A-signature. Let BA := {� 2 B | 9↵ 2 A1.� |=s ↵}, the
set of behaviors that haveA-signatures. IfA is initially disjoint, then the function
UA : BA ! A1 mapping each � 2 BA to the unique signature UA(�) 2 A1

for which it is a witness is well-defined. Finally, for any M ✓ BA, we denote by245

UA(M) the set of signatures generated by M , namely, {UA(�) | � 2 M}.

3.2 Contracts

Definition 6 (Reactive contracts). A reactive assume-guarantee contract C
is a 4-tuple (A,G,�, R) such that
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1. A,G ✓ 2B are called the assumption and guarantee sets respectively. A is250

required to be initially disjoint.
2. � ✓ A1 is called the contingency set, consisting of assumption change sce-

narios that may happen.
3. R ✓ (A⇥ G)1 is called the reaction set.

Observe that A and G are not necessarily of the same cardinality and that255

from each r 2 R, we can obtain an unique A-signature by “projecting away the
G dimension”. We denote the projection function by ⇧A : R ! A1 so that
⇧A(hAk, Gkimk=0) := hAkimk=0 for any hAk, Gkimk=0 2 R.

Definition 7 (Environment). An environment for a reactive contract C =
(A,G,�, R) is any E ✓ BA such that UA(E) ✓ �, namely each � 2 E is a strict260

witness for some A-signature in �.

Thus, for a reactive contract, assumptions about its environment’s behaviors
are allowed to change according to the contingency specified in �. As these
assumptions change, the system should provide the corresponding guarantees as
specified by the reaction set R. We characterize R via the following definitions.265

Definition 8 (Reactive satisfaction). Let � 2 B, r = h(Ak, Gk)imk=0 2 R, we
say that � reactively satisfies r and write � |=⇢ r if the following hold

1. � |=s ⇧A(r) with the partitioning sequence hikimk=0.
2. (a) If m < 1, then 8k 2 {0, 1, . . . ,m}.�ik!ik+1 |= Gk with im+1 := 1.

(b) otherwise, 8k 2 N�0.�ik!ik+1 |= Gk.270

Definition 9 (Implementation). An implementation of a reactive contract
C = (A,G,�, R) is any M ✓ B such that for any environment E of C, we have

8� 2 (M \ E).9r 2 R.� |=⇢ r ^⇧A(r) = UA(�).

Intuitively, an implementation consists of all behaviors � in which either the
assumptions do not change according to �, i.e., UA(�) 62 �, or the system reacts275

according to instructions specified by the set R, namely there exists a reaction
r 2 R, such that � reactively satisfies r, in which the system tries its best to
satisfy the guarantee corresponding to the current assumption for as long as the
latter holds and is required to immediately adapt to any new assumption and
commit itself to the new obligation. Let us compare this machinery to “standard”280

assume-guarantee contracts. First, we mention that the following holds.

Proposition 5. Corresponding to each any standard assume-guarantee contract
C = (A,G) is a reactive assume-guarantee contract Cr = (A,G,�, R) with A =
{A},G = {G},� = {hAi} and R = {h(A,G)i} such that C = Cr in the sense
that they have same sets of environments and implementations.285

Recall that any parametric assume-guarantee contract is simply the conjunction
of a set of “standard” assume-guarantee contracts (which is again a standard
assume-guarantee contract) by Proposition 5, there is a reactive version for it.
In particular, when all assumptions are initially disjoint, we have the following
the generalization of Proposition 5.290
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Proposition 6. If n � 1, {A1, A2, . . . , An} is a set of initially disjoint asser-
tions and for i 2 {1, 2, . . . , n}, Ci = (Ai, Gi) are assume-guarantee contracts,
then there exists a reactive assume-guarantee contract Cr such that ^n

i=1C = Cr.

Proof. Let Cr = (A,G,�, R) be defined with

– A := {A1, A2, . . . , An}295

– G := {G1, G2, . . . , Gn}
– � := {hA1i, hA2i, . . . , hAni}
– R := {h(A1, G1)i, h(A2, G2)i, . . . , h(An, Gn)i}

Then, E 2 EC if and only if

, 8� 2 E.� 2 _n
i=1Ai

, 8� 2 E.9i 2 {1, 2, . . . , n}.� 2 Ai

, 8� 2 E.9i 2 {1, 2, . . . , n}.UA(�) = hAii ✓ �

which holds if and only if E 2 ECr . Also, M 2 MC , 8� 2 M.� 2 ^n
i=1(Ai )

Gi). Since the Ai’s are initially disjoint, and therefore disjoint, there are two
cases: either � 2 ^n

i=1¬Ai, in which case UA(�) 62 �, or there is an Ai such that
� 2 Ai^Gi, in which case, � |=⇢ h(Ai, Gi)i and UA(�) = ⇧A(h(Ai, Gi)i) = hAii.
This implies M 2 MCr . On the other hand, M 2 MCr implies 8� 2 M , either
� |=⇢ h(Ai, Gi)i for some i 2 {1, 2, . . . , n}, which by Definition 8, implies that
� 2 Ai ^Gi, or UA(�) 62 �, which implies that � 2 ^n

i=1¬Ai. ut

The following example shows the greater flexibility o↵ered by reactive con-
tracts over parametric ones.300

Example 2. Let A1, A2 be initially disjoint and C = (A1 _ A2, (A1 ) G1) ^
(A2 ) G2) and C̃r = (Ã, G̃, �̃, R̃) where Ã = {A1, A2}, G̃ = {G1, G2}, �̃ =
{hA1i, hA2i, hA1, A2i}, R̃ = {h(A1, G1)i, h(A2, G2)i, h(A1, G1), (A2, G2)i}. We can
see C̃r � C from the fact that by Proposition 6, C = Cr = (A,G,�, R) where
A = Ã, G = G̃, � = {hA1i, hA2i}, and R = {h(A1, G1)i, h(A2, G2)i}. With305

the inclusion of h(A1, G1), (A2, G2)i in R̃, C̃r is receptive to environments whose
behaviors exhibit a change in assumptions from A1 to A2 and requires imple-
mentations to adapt accordingly by changing their guarantee from G1 to G2. On
the other hand, Cr only specifies the set of implementations to be those behaviors
in which either neither A1 or A2 is satisfied or at least a pair (Ai, Gi) is always310

satisfied.

In a similar manner to standard assume-guarantee contracts, we can talk about
the (saturated) canonical form of reactive assume-guarantee contracts. First, let
R , (A ⇥ G)1, the set of all (A ⇥ G)-signatures and � ) R := {r | r 2
R^⇧A(r) 62 �}[R, the set of all (A⇥ G)-signatures that are either a reaction315

in R or have an assumption change sequence not specified in the contingency �.
The proof of the following proposition is given in the appendix.

Proposition 7. If C = (A,G,�, R) is a reactive contract, then the canonical
form of C defined as C? := (A,G,�,� ) R) satisfies C? = C.
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One may ask what the conjunction is for reactive contracts. The following320

proposition, proved in the appendix, provides an answer to that question

Proposition 8. Let there be canonical reactive contracts C1, C2 such that C1 =
(A1,G2,�1, R1), C2 = (A2,G2,�2, R2) and A1[A2 is initially disjoint, then the
metatheoretic conjunction is C1 ^ C2 = (A1 [A2,G1 \ G2,�1 [�2, R1 \R2).

Now we will move on to show how this formalism can be applied reactive325

synthesis.

4 Reactive Contracts for GR(1) Games

Reactive synthesis refers to the automatic correct-by-construction synthesis of a
reactive system from formal specifications. Linear temporal logic (LTL) is a lan-
guage whose formulae are built from a finite set of logical (e.g, ¬,^,_), temporal330

(e.g., ⇤,⌃ for “always” and “eventually”) operators and atomic propositions [9].
An LTL formula can be used to check a system trace for satisfaction of prop-
erties such as “always eventually atom prop will be true” (⇤⌃atom prop) or
“atom prop must always hold” (⇤atom prop). In general, synthesis from LTL
specifications is 2EXPTIME-complete [26]. Fortunately, an expressive subset of335

LTL has been identified and shown to allow for relatively e�cient synthesis algo-
rithms with cubic time complexity [19]. This subset is called General Reactivity
of Rank 1 (GR(1)) and o↵ers the following specification format:

(✓e ^⇤⇢e ^ ^0im⇤⌃Je
i )| {z }

A

) (✓s ^⇤⇢s ^ ^0in⇤⌃Js
i )| {z }

G

(9)

The formula in (9) is to be interpreted on a 2-player turn-based game between an340

environment e and a system (implementation) s over a set of variables V that can
be decomposed as Ve[Vs. A round of the game consists of two turns with the first
being taken by the environment to set values for variables in Ve and the second
taken by the system to set values for variables in Vs. By the end of each round,
all variables in V will have been assigned a value. Such a valuation of V defines a345

game state. A play is an infinite sequence of states. In (9), for p 2 {e, s}, ✓p is a
constraint over the set of initial states, ⇢p is a safety constraint over the current
and the next states, and Jp

i is a liveness constraint specifying a set of states
that are required to always eventually be visited. Without loss of generality, we
can assume the variables in V are Boolean, in which case the contract formalism350

discussed earlier captures (9) exactly. That is, the set B = (2V)! consists of all
possible plays of the game and (9) is a GR(1) contract of the form (A,A ) G)
for which the powerset of the set of all plays in which the antecedent A holds is
the set of all environments and the powerset of the set of all plays in which the
antecedent A fails or the consequent G holds is the set of all implementations.355

A GR(1) contract is said to be realizable if the system has a strategy such that
no matter what the environment does, the resulting plays are implementations
of the contract. Note that the number 1 in “GR(1)” refers to the fact that the
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underlying liveness implication ^0im⇤⌃Je
i ) ^0in⇤⌃Js

i is considered to
be 1 Streett pair. Observe, therefore, that the set of GR(1) contracts is not360

closed with respect to the contract algebra defined above. In fact, taking the
conjunction of k GR(1) contracts in the sense of the metatheory can result in a
single GR(k) contract (defined as having a conjunction of k Streett pairs [25])
instead.

Being of the form (A,A ) G), GR(1) contracts are certainly not reactive: as365

mentioned, a play in which the system successfully incapacitates the environment
from fulfilling its obligations in the antecedent is considered to be an implemen-
tation. This vacuous satisfaction may result in unintended behaviors: in fact,
there has recently been work aimed at finding “environmentally-friendly” imple-
mentations that allow the environment to satisfy its promises [18]. Of course, a370

designer may attempt to mitigate this problem by making the contract reactive,
to which end, they will need to somehow come up with a proper characteriza-
tion of the sets A, G, �, and R. Relatively speaking, the one that is often the
“easiest” to characterize among these is G because system designers usually have
some idea of a set of basic services the system should provide. In addition, they375

can also think of a set of less desirable but still acceptable services that the sys-
tem may resort to when a failure occurs. The set A can be less straight forward
to construct because it is di�cult to predict failures by the very definition of
generative e↵ects. In addition, the multiple possible configurations (some may
be unreachable) of the system/environment at which a failure happens often de-380

termine the possibility of recovery and therefore should be considered. For many
such reasons, system designers may only come up with a set of fragmentary, per-
haps very specific and incomplete assumptions and guarantees that they think
may be relevant. In so far as A and G are fragmentary and the relationships
between their elements are unknown, one is not quite ready to specify � and R.385

The contract synthesis question becomes: how do we synthesize from these sets
of coarse assumptions and guarantees a compact and fundamental road map for
specifying reactivity?

We observe that a key relation between elements of A and G is that of realiz-
ability since after all including an unrealizable pair in a reaction from R does not390

guarantee an implementation. More importantly, this relation can be e�ciently
computed for GR(1) games as part of the same synthesis algorithms mentioned
earlier. From this point on, we will denote by R ✓ A⇥G the realizability relation
that satisfies (A,G) 2 R if and only if (A,G) is realizable. From R, an answer
to the above question may be found in the form of a Galois connection between395

2A and 2G .

Definition 10 (Galois connection). Given two partially ordered sets (A,A)
and (G,G), an (antitone) Galois connection between these two sets consists of
a pair of maps ⇤ : A ! G and ⇤ : G ! A such that for any a 2 A and g 2 G

a A g⇤ , g G a⇤400

where a⇤ and g⇤ denote the applications of ⇤ and ⇤ to a 2 A and g 2 G.
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Define the “forward” map ⇤ by ⇤ : SA 7! {G | 8A 2 SA.(A,G) 2 R} and the
“pullback” map ⇤ by ⇤ : SG 7! {A | 8G 2 SG .(A,G) 2 R}. One can verify that
these maps satisfy the requirement of Definition 10 and therefore form a Galois
connection. It is well know that the compositions of Galois connection operators,405

namely, ⇤�⇤ and ⇤�⇤ are dual closure operators and give rise to fixpoint pairs
that form isomorphic complete lattices when ordered by set inclusion [11]. In
our case, the one that comes from the coarse assumptions will be called the
assumption lattice and the other the guarantee lattice.

Each of these fixpoint pairs is of the form (SA, SG) where SA is the largest410

subset of A, each element of which is realizable with all guarantees in the subset
SG of G and vice versa. Observe that since each assumption in SA is realizable
with all guarantees in SG , we can take the disjunction of all fragmentary as-
sumptions in SA to form a single new assumption that is also realizable with
any guarantee from SG . Dually, when actions taken in the GR(1) games are415

reversible (hence the ability to satisfy two liveness goals separately implies the
ability to satisfy them jointly), we can get a single guarantee from SG by taking
the conjunction of all its guarantees. In fact, we can get a smaller representation
of the fixpoints with some preprocessing. We can simplify SG (SA) to S0

G (S0
A)

by subtracting from it all guarantees (assumptions) contained in any descendant420

(ancestor) of the node corresponding to SG (SA) on the guarantee (assumption)
lattice. Note that operation may result in an empty set (and if that is the case,
we will denote it by the symbol “^” (“_”) as in Fig. 2). Thus, these new and
compact fixpoints (S0

A, S
0
G) allow us to define new sets of assumptions and guar-

antees A0 and G0 with complete lattice structures that can be used to specify �425

and R. On the assumption lattice, the greater elements represent assumptions
that are more favorable to the system and conversely on the guarantee lattice,
the greater elements are more “di�cult” for the system to satisfy (see Fig. 2).
In other words, descending any chain from the assumption lattice is equivalent
to experiencing more and more restrictive assumptions that may be associated430

with more severe failures. A chain on the guarantee lattice however represents
all possible guarantees that can be realizable if the largest element of the chain
is realizable.

Note that the potentially most costly step in the described procedure is the
computation of the realizability relationR even though this should often be done435

o✏ine during the design/planning process. It is, nevertheless, easy to parallelize
and also optimize this computation using a priori knowledge about A and G
(to be discussed in the next section). In addition, full knowledge of R may not
be necessarily for most applications and for that reason it can be incrementally
refined. The following case study will demonstrate this method.440

5 Case Study: a Reactive GR(1) Contract on 3 Islands

Fig. 1 contains two screenshots from a simulation in [23] that describes a re-
active GR(1) game involving two land robots that navigate and manipulate an
uncertain gridworld environment consisting of 3 islands connected by 2 bridges
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Fig. 1. Two screenshots from an implementation of a reactive GR(1) contract. The
simulation and synthesis code is available at [23].

in order to satisfy some liveness objectives. In the left screenshot, the “trans-445

porter” robot (blue) is shown carrying a crate across the black bridge, which
only deploys when at least one of the red buttons (which may unexpectedly fail)
is held down by either robot (in this scene, the “supervisor” robot). The brown
bridge is always available but, like the buttons, can suddenly go out of service
(see right screenshot). The crate (movable only by the transporter robot) can450

only be picked up from the black square patch (a factory) and deposited at either
the silver or yellow square patches (shipping ports), after which it will respawn
at the black patch. The set of coarse guarantees G consists of 7 elements:

– box r2 far (resp., box r2 near): the supervisor robot stands on the yellow
(resp., silver) square patch to supervise the dropping o↵ of the crate there455

infinitely often.
– box far (resp., box near): the crate gets dropped o↵ at the yellow (resp.,

silver) square patch infinitely often (possibly without the supervisor robot
being present).

– r2 far (resp., r2 near, r2 home): the supervisor robot patrols the yellow460

(resp., silver, black) square patch infinitely often.

The set A that coarsely characterizes possible operating scenarios is constructed
in an semi-automatic manner by taking the conjunction of all variables appearing
in elements of the product set obtained from the sets {r1 home, r1 near, r1 far},
{r2 home, r2 near, r2 far}, and 2{bridge,button1,button2}. An element of A can be465

r1 home^r2 far^bridge^button1, denoting the condition that the transporter
robot r1 is on the “home” island (the one with the black patch), the supervisor
robot r2 is on the “far” island (yellow patch) and the button on the island with
the silver patch, button2, is broken. We observe that A has 72 elements and
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is initially disjoint. The Galois connection calculation will reduce this relatively470

large number of cases to only 9 in A0 as can be seen from Fig. 2.
A brute-force calculation of R on A ⇥ G (which has 72 ⇥ 7 elements) using

slugs[12] on a laptop with an Intel i7-4720HQ processor and 16GB of RAM
took approximately 40 minutes. It took about 3 seconds to generate the lattices
using a fixpoint calculation algorithm from [21]. Some of these calculations for475

R are redundant and can be inferred from the others: for example, if a guaran-
tee is not realizable from an assumption, then it will not be realizable from the
same assumption conjoined with a new failure. Note also that since all actions
performed by the two robots in this example are reversible, if under an assump-
tion, two liveness guarantees can be realized separately, their conjunction will480

also be realizable. This observation will also be used to synthesize one of the
most basic forms of reactive contracts, namely: an “optimal” reactive contract,
in which the reaction R is defined to consist of all finite and infinite sequences
whose elements are of the form (↵, �) where ↵ is an assumption from a node on
the assumption lattice and � is the conjunction of the corresponding guarantee485

on the guarantee lattice together with all guarantees contained in its descendant
nodes. The contigency � is defined to be the sequences obtained by projecting
away � from any sequence in R. In Fig. 2, if ↵ = bridge ^ (r2 far _ r2 near)
then � = ⇤⌃r2 near ^⇤⌃r2 far.

Fig. 2. Order isomorphic assumption (left) and guarantee (right) lattices of Galois
fixpoints computed from coarse assumptions and guarantees. The bottom element on
the assumption lattice corresponds to the worst case scenario where any assumption
can hold and the one on the guarantee lattice corresponds to “no guarantee”.

Consider a scenario in which we are given the lattices A0 and G0 and a set490

F ✓ F where F consists of Boolean variables encoding all impending failures
(in the 3 island scenarios, F = {button1, button2, bridge}) along with a set
gmin ✓ G0 consisting of baseline guarantees that we would like the system to
maintain. Algorithm 1 shows that we can use the assume-guarantee lattices to
find an implementation that is robust against F while maintaining at least gmin495

starting from an initial configuration Ainit. In line 2 of the algorithm, a check is
performed to see if the initial configuration Ainit is a valid assumption, if not an
error will be thrown (line 3). In line 5, the algorithm finds the least node on G0

such that � and its descendants contains gmin (this always exists and is unique
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Algorithm 1 Find robust reactive GR(1) implementation for prioritized failures

1: function findRobustImplementation(A0,G0, Ainit, F, gmin)
2: if Ainit 62 [↵2A0↵ then
3: error out: “initial state is not in contract!”
4: else
5: �  supG0 gmin

6: ↵ the A0 node corresponding to �
7: ↵inv  ↵ _ (_a2ancestors(↵)a) with variables in F replaced by False and

variables in F \ F replaced by True

8: if isRealizable(Ainit, � ^ ↵inv) then
9: �0  largest guarantee such that isRealizable(Ainit, �

0 ^ ↵inv)
10: return getStrategy(Ainit, �

0 ^ ↵inv)
11: else
12: error out: “robust strategy doesn’t exist!”

by the completeness of G0). Line 6 defines ↵ as the corresponding node to � on500

A0. Hence, ↵ _ (_a2ancestors(↵)a) corresponds to the most relaxed assumption
for which gmin can be guaranteed. In other words, all configurations from which
gmin can be satisfied are contained in it. In line 7, an invariant constraint ↵inv is
computed from ↵_(_a2ancestors(↵)a) by assuming all failures in F have occurred.
This represents configurations from which � can still be guaranteed. In line 8,505

a check is performed to see if it is possible to satisfy � while maintaining ↵inv.
If the answer is yes, the algorithm attempts to find a better guarantee than �
(possibly using bisection) and will return a robust strategy that guarantees it
(lines 9�10), otherwise it will throw an error saying that such a robust strategy
does not exist (line 12).510

In the 3 island example, if we start out at an initial configuration where at
least one robot is not on the “home” island (the one with the black patch), gmin

is anything, and F = {button1} then algorithm 1 will return a robust strategy
with �0 = G0 (all guarantees) which never allows both robots to be on the “home”
island at the same time. In particular, if gmin = {box r2 far} then ↵inv will be515

equal to r1 far | r1 near | r2 far | r2 near.

6 Conclusion and Future Work

In this work, we have developed a metatheory-compliant contract framework
that focuses on specifying a system’s reactions to antecedent failures and related
it to a reactive synthesis setting involving GR(1) contracts. We have also looked520

at automating the process of synthesizing and simplifying reactive contracts by
computing fixpoint pairs of a certain Galois connection between the system’s
assumption and guarantee sets and carried out a simulated case study that
concretizes our ideas. In the future, we will look into 1) exploring and developing
methods to automate the process of finding coarse assumptions with [2] as a525

possible starting point 2) studying compositions of systems specified by reactive
contracts as well as the propagation of failures through these compositions.
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7 Appendix

Proposition 7. If C = (A,G,�, R) is a reactive contract, then the canonical605

form of C defined as C? := (A,G,�,� ) R) satisfies C? = C.

Proof. First, by Definition 7, it is clear that EC = EC? . Also, M 2 MC is equiv-
alent to

8E 2 EC .8� 2 (M \ E).9r 2 R.� |=⇢ r ^⇧A(r) = UA(�)

, 8E 2 EC? .8� 2 (M \ E).9r 2 R.� |=⇢ r ^⇧A(r) = UA(�)

, 8E 2 EC? .8� 2 (M \ E).9r 2 � ) R.� |=⇢ r ^⇧A(r) = UA(�)

which is equivalent to M 2 MC? . Note that the forward direction of the last
“,” follows from the fact that R ✓ � ) R. The reverse direction holds because
for any � 2 M \ E where E 2 EC? = EC , we have UA(�) 2 �, which implies
that for any r0 2 {r | r 2 R ^ ⇧A(r) 62 �}, we obtain � 6|=s ⇧A(r0) by the
initial disjointness of A. By the first condition of Definition 8, we have � 6|=⇢ r0.
Therefore, the r that satisfies � ) R must satisfy r 2 R. ut
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Proposition 8. Let there be canonical reactive contracts C1, C2 such that C1 =
(A1,G2,�1, R1), C2 = (A2,G2,�2, R2) and A1[A2 is initially disjoint, then the
metatheoretic conjunction is C1 ^ C2 = (A1 [A2,G1 \ G2,�1 [�2, R1 \R2).

Proof. Let E1 2 EC1 and E2 2 EC2 ,

8i 2 {1, 2}.Ei 2 ECi

, 8i 2 {1, 2}.UAi(Ei) ✓ �i

, 8i 2 {1, 2}.UA1[A2(Ei) ✓ �i

(A1 [A2 is initially disjoint and conversely, �i only consists of Ai-signatures)

) 8i 2 {1, 2}.UA1[A2(Ei) ✓ �1 [�2

, 8i 2 {1, 2}.Ei 2 EC1^C2

Hence610

EC1 [ EC2 ✓ EC1^C2 (10)

Implementation-wise, if M 2 MC1^C2 then for any environment E of C1 ^ C2,

8� 2 (M \ E).9r 2 (R1 \R2).� |=⇢ r ^⇧A1[A2(r) = UA1[A2(�)

) 8� 2 (M \ E).8i 2 {1, 2}.9r 2 Ri.� |=⇢ r ^⇧A1[A2(r) = UA1[A2(�)

, 8� 2 (M \ E).8i 2 {1, 2}.9r 2 Ri.� |=⇢ r ^⇧Ai(r) = UA1[A2(�)
(since r 2 Ri, the assumption parts of r must be from Ai)

, 8� 2 (M \ E).8i 2 {1, 2}.9r 2 Ri.� |=⇢ r ^⇧Ai(r) = UAi(�)
(since A1 [A2 is initially disjoint)

, 8i 2 {1, 2}.8� 2 (M \ E).9r 2 Ri.� |=⇢ r ^⇧Ai(r) = UAi(�)
(by interchanging universal quantifiers)

) 8i 2 {1, 2}.8E0 : E0 2 ECi .8� 2 (M \ E0).9r 2 Ri.� |=⇢ r ^⇧Ai(r) = UAi(�)
(by (10))

, 8i 2 {1, 2}.M 2 MCi

Therefore MC1^C2 ✓ MC1 \MC2 . And thus we have C1^C2 � C1, C2. To see that
C1^C2 is really the meet, observe that that the contigency of any reactive contract
C0 that simultaneously refines C1 and C2 must at least contain �1[�2 (otherwise
there would be at least an environment of C1 or C2 that is not an environment of
C0, namely, the environment containing a behavior with the missing signature)
and that the size of the environment set grows as we add more elements to the
contigency. Dually, the reaction of C0 must not contain anything that is not in
R1\R2. Because, it it does, then since C1 and C2 are canonical, the projection of
a signature not in R1 \R2 must be in �1 [�2. But this implies that there is an
implementation of C0 having that signature but is not a shared implementation
of both C1 and C2. ut


