
Bisimulations for Reasoning about Input-to-State Stability Properties of
Hybrid Systems

Pavithra Prabhakar
California Institute of Technology

& IMDEA Software Institute
pavithra@caltech.edu

Jun Liu
California Institute of

Technology
liu@caltech.edu

Richard M. Murray
California Institute of

Technology
murray@caltech.edu

Abstract— In this paper, we investigate pre-orders for reason-

ing about input-to-state stability properties of hybrid systems.

We define the notions of uniformly continuous input simulations

and bisimulations, which extend the notions in previous work

to include inputs. We show that uniformly continuous input

bisimulations preserve incremental input-to-state stability of

hybrid systems, and thus provide a basis for constructing

abstractions for verification. We show that Lyapunov function

based input-to-state stability analysis can be cast in our frame-

work as constructing a simpler one-dimensional system, using a

uniformly continuous input simulation, which is input-to-state

stable, and thus, inferring the input-to-state stability of the

original system.

I. INTRODUCTION

Input-to-state stability is an important component when
studying robustness of systems with respect to input. In
this paper, we investigate pre-orders, namely, a reflexive,
transitive ordering, on systems for reasoning about stability
with respect to inputs in the context of verification of input-
to-state stability properties of hybrid systems.

Hybrid systems are systems exhibiting mixed discrete-
continuous behaviors, and typically arise due to the in-
volvement of digital computers to control physical systems.
With the ubiquitous use of embedded processors in safety-
critical applications such as aeronautics, automotives, indus-
trial process control, robotics and others, ensuring reliable
performance of these systems is essential. Hence, scalable
verification of hybrid systems has gained prominence in
recent years. However, the problem has remained stubbornly
challenging owing to the mixed discrete continuous behav-
iors.

Scalable verification relies on being able to construct
abstractions or “simplications” of a system efficiently, which
can then be verified easily. The notions of simulation and
bisimulation, introduced in the context of concurrent pro-
cesses [16], to study equivalences between processes, have
been the basis for designing abstraction and minimization
techniques for analysis of a variety of discrete-time prop-
erties [15]. Properties expressible in temporal logics, such
as, Linear Temporal Logic, Computation Tree Logic and µ-
calculus are known to be invariant under bisimulation, in that,
if two systems are known to be bisimilar, then either both of
them satisfy the property or none of them satisfy the property.
Hence, one can reduce the analysis of a system to that of
a simpler system which is bisimilar. Similarly, the weaker
notion of simulation preserves the property in one direction,

that is, if a system A is simulated by a system B and B
satisfies the property, then A satisfies the property. Properties
in a safe fragment of the above logics are preserved by
simulation in the above sense.

Even in the hybrid setting, bisimulations have been used
to design algorithms for analysis of various classes of
systems. Some of these classes include Timed automata
[1], O-minimal hybrid automata [14], [4] and STORMED
hybrid systems [20]. More recently, approximate notions of
simulation and bisimulation have been proposed [7], [6] and
used in the analysis of reachability and safety properties [8],
[18].

However, when one turns to the analysis of stability prop-
erties, it has been shown that bisimulations do not suffice. In
particular, it was shown in [5] that Lyapunov stability with
respect to a set of equilibrium points is not preserved by
bisimulations. Hence, additional continuity constraints were
imposed on the bisimulation relation to achieve invariance
under Lyapunov stability. In [17], it was shown that for
stability with respect to a set of trajectories, the continuity
constraints imposed by [5] do not suffice to preserve stability.
Hence, the notion of uniformly continuous bisimulation
was introduced, and Lyapunov and asymptotic stability of
trajectories were shown to be invariant under this notion. In
this paper, we extend these results to the case with inputs.

Current techniques for proving stability of systems is
based on estabilishing the existence of Lyapunov functions.
Automation of these techniques for stability analysis essen-
tially depends on automating the search for the Lyapunov
functions. While the exact charaterization of the existence
and form of Lyapunov functions are know in the pure
continuous case, for linear and certain classes of non-linear
systems, the same is not true even for the linear case in
the hybrid setting [13], [3]. This work is aimed towards
developing an abstraction refinement framework for analysis
of stability properties. And, the task is challenging even for
the case of linear hybrid systems. Establishing pre-orders
which preserve stability properties is a first step towards
constructing simpler systems for the verification of stability
properties.

We define a notion of incremental input-to-state stability
for hybrid systems along the analogous notion for trajectories
as introduced in [2]. A slight deviation is our notion of
distance between executions for which we use the notion
of graphical distance introduced in [9]. However, our results

Submitted, 2012 Conference on Decision and Control (CDC)
http://www.cds.caltech.edu/~murray/papers/plm12-cdc.html

are not sensitive to the particular definition of distance. We
introduce the notion of uniformly continuous input simula-
tions and bisimulations which extend the classical notion
of bisimulations for systems with input, and the uniform
continuity constraints introduced in [17]. We show that in-
cremental input-to-state stability is invariant under uniformly
continuous input bisimulation. We also obtain that input-to-
state stability is invariant under uniformly continuous input
bisimulations as a special case of our results.

We examine whether the notion introduced is a reasonable
pre-order for reasoning about input-to-state stability proper-
ties. In particular, we ask whether we can hope to construct
simpler systems which are related to the original system
by uniformly continuous input simulations/bisimulations, and
show that the simplification is input-to-state stable. In order
to justify the claim, we show that Lyapunov function based
analysis of input-to-state stability can be cast as constructing
simpler one-dimensional systems which are input-to-state
stable, where the Lyapunov function serves as a uniformly
continuous input simulation between the original system and
the one-dimensional system.

II. PRELIMINARIES

a) Notation: Let R and R+ denote the set of reals and
non-negative reals, respectively. Let R1 denote the set R+[
{1}, where 1 denotes the largest element of R1, that is,
x < 1 for all x 2 R+. Also, for all x 2 R1, x + 1 = 1.
Let N denote the set of all natural numbers {0, 1, 2, · · · },
and let [n] denote the first n natural numbers, that is, [n] =

{0, 1, 2, · · · , n�1}. Let PreInt denote the set consisting of
all closed intervals of the form [0, T], where T 2 R+, and
the infinite interval [0, 1). Given an x 2 Rn, we use |x|
to denote the Euclidean norm of x. And, given a function
f : A ! Rm, we use ||f ||1 to denote sup

a2A

|f(a)|.
b) Functions and Relations: Given a function F , let

Dom(F) denote the domain of F . Given a function F :

A ! B and a set A

0 ✓ A, F (A

0
) denotes the set {F (a) | a 2

A

0}. Given a binary relation R ✓ A ⇥ B, R

�1 denotes the
set {(x, y) | (y, x) 2 R}. For a binary relation R, we will
interchangeably use “(x, y) 2 R” and “R(x, y)” to denote
that (x, y) 2 R.

c) Sequences: A sequence � is a function whose do-
main is either [n] for some n 2 N or the set of natural
numbers N. We denote the domain of a sequence as SeqDom .
Length of a sequence �, denoted |�|, is n if Dom(�) = [n] or
1 otherwise. Given a sequence � : N ! R and an element
r of R1 we use

P1
i=0 �(i) = r to denote the standard limit

condition lim

N!1
P

N

i=0 �(i) = r.
d) Extended Metric Space: An extended metric space

is a pair (M, d) where M is a set and d : M ⇥ M ! R1 is
a distance function such that for all m1, m2 and m3,

1) (Identity of indiscernibles) d(m1, m2) = 0 if and only
if m1 = m2.

2) (Symmetry) d(m1, m2) = d(m2, m1).
3) (Triangle inequality) d(m1, m3)  d(m1, m2) +

d(m2, m3).

When the metric on M is clear we will simply refer to M

as a metric space.
Let us fix an extended metric space (M, d) for the rest

of this section. We define an open ball of radius ✏ around
a point x to be the set of all points which are within a
distance ✏ from x. Formally, an open ball is a set of the
form B

✏

(x) = {y 2 M | d(x, y) < ✏}. An open set is a
subset of M which is a union of open balls. Given a set
X ✓ M , a neighborhood of X is an open set in M which
contains X . Given a subset X of M , an ✏-neighborhood of
X is the set B

✏

(X) =

S
x2X

B

✏

(x). A subset X of M is
compact if for every collection of open sets {U

↵

}
↵2A

such
that X ✓ S

↵2A

U

↵

, there is a finite subset J of A such that
X ✓ S

i2J

U

i

.
e) Set Valued Functions: We consider set valued func-

tions and define continuity of these functions. We choose
not to treat set valued functions as single valued functions
whose co-domain is a power set, since as argued in [11], it
leads to strong notions of continuity, which are not satisfied
by many functions. A set valued function F : A B

is a function which maps every element of A to a set of
elements in B. Given a set A

0 ✓ A, F (A

0
) will denote the

set
S

a2A

0 F (a). Given a binary relation R ✓ A⇥B, we use
R also to denote the set valued function R : A B given
by R(x) = {y | (x, y) 2 R}. Further, F

�1
: B A will

denote the set valued function which maps b 2 B to the set
{a 2 A | b 2 F (a)}.

f) Continuity of Set Valued Functions: Let F : A B

be a set valued function, where A and B are extended metric
spaces. We define upper semi-continuity of F which is a
generalization of the “�, ✏ - definition” of continuity for single
valued functions [11]. The function F : A B is said to
be upper semi-continuous at a 2 Dom(F) if and only if

8✏ > 0, 9� > 0 such that F (B

�

(a)) ✓ B

✏

(F (a)).

If F is upper semi-continuous at every a 2 Dom(F) we
simply say that F is upper semi-continuous. Next we define
a “uniform” version of the above definition, where, analogous
to the case of single valued functions, corresponding to an ✏,
there exists a � which works for every point in the domain.

Definition. A function F : A B is said to be uniformly
continuous if and only if

8✏ > 0, 9� > 0 such that

8a 2 Dom(A), F (B

�

(a)) ✓ B

✏

(F (a)).

Given an ✏ > 0, we call a � > 0 satisfying the above
condition, a uniformity constant of F corresponding to ✏.
We refer to uniform upper semi-continuity as just uniform
continuity, because it turns out that the two notions of upper
and lower semi-continuity coincide with the addition of
uniformity condition, i.e., uniform upper semi-continuity is
equivalent to uniform lower semi-continuity.

Next, we state some properties about upper semi-
continuous and uniformly continuous functions.

Proposition 1: Let F : A B be a set-valued upper
semi-continuous function. Then:

• F

�1 is also an upper semi-continuous function.
• If A is compact, then F is also uniformly continuous.

g) Class K, L, K1 and KL functions: A continuous
function ↵ : [0, a) ! [0, 1) is said to belong to class K if
it is strictly increasing and ↵(0) = 0. It is said to belong to
class K1 if a = 1 and ↵(r) ! 1 as r ! 1. A continuous
function ' : [0, 1) ! [0, 1) is said to be of class L if it
is monotonically decreasing and lim

s!1 '(s) = 0. A class
KL function is a class K function with respect to the first
argument and class L with respect to the second argument.

III. HYBRID SYSTEMS WITH INPUT

In this section, we present a general formalism for repre-
senting hybrid systems with inputs, called hybrid input tran-
sition system. Hybrid systems are systems exhibiting mixed
discrete-continuous behaviors. We represent the continuous
behavior using a pair of input and state trajectories which
capture the values of input and state over an interval of
time; and represent the discrete behavior using transitions
which capture instantaneous changes to the state due to
impulse inputs. We will not concern ourselves with the exact
representation of the models, see for example the hybrid
automaton model [10]. However, our abstract model captures
the behaviors arising from a hybrid automaton model.

A. Trajectories

A trajectory a over a set A is a function ⌧ : PreInt ! A.
We denote the set of all trajectories over A as Traj(A). Let
us define a function Size : Traj(A) ! R1 which assigns
a size to the trajectories. For ⌧ 2 Traj(A), Size(⌧) = T if
Dom(⌧) = [0, T] and Size(⌧) = 1 if Dom(⌧) = [0, 1).

Given a relation R ✓ A1 ⇥ A2 and trajectories a1 2
Traj(A1) and a2 2 Traj(A2), we say that a1 and a2 are
related by R, denoted R(a1,a2) if Dom(a1) = Dom(a2)

and for every t 2 Dom(a1), R(a1(t),a2(t)). We use R(a1)

to denote the set {a2 | R(a1,a2)}.
A input-state trajectory specifies the state evolution on

an input signal. Let us fix an input space U and a state
space S. An input-state trajectory over a pair (U, S) is a
pair of trajectories (u, s) from Traj(U) ⇥ Traj(S) such that
Dom(u) = Dom(s). We call u an input trajectory and s

a state trajectory. We will use ISTraj(U, S) to denote the
set of all input-state trajectories over (U, S). We extend
Size to input-state trajectories in the natural way, namely,
Size(u, s) = Size(u) = Size(s).

We use First((u, s)) to denote the initial state, that is,
s(0), and if Size(s) is defined, then we use Last((u, s))

to denote s(Size(s)). Given a state trajectory s, we use
States(s) to denote the set of states occuring in s, namely,
{s(t) | t 2 Dom(s)}. Also, for a input-state trajectory we
use States((u, s)) to denote States(s). Similarly, for an input
trajectory u, we use Inputs(u) to denote the set of inputs
occuring in u, namely, {u(t) | t 2 Dom(s)}.

B. Transitions
A transition specifies the instantaneous change in a state

resulting from an impulse input. A transition over a pair
(U, S) is an element of U ⇥(S⇥S). A transition (u, (s1, s2))

denotes the fact that if an input impulse u is applied to the
system in state s1, then the system state changes to s2. We
will use represent a transition (u, (s1, s2)) as s1

u�! s2.
We denote the set of all transition over a pair (U, S) as
Trans(U, S).

We define Size on a transition (u, (s1, s2)), on a element
u 2 U and on a pair of states (s1, s2) to be 0. As before,
given ⌧ = (u, (s1, s2)), we use First(⌧) and Last(⌧) to
denote the state of the system before and after the tran-
sition, namely, First(⌧) = s1 and Last(⌧) = s2. Also,
First((s1, s2)) = s1 and Last((s1, s2)) = s2. Similarly,
States((s1, s2)) = States((u, (s1, s2))) = {s1, s2}. And,
Inputs(u) = {u}, for an input u.

C. Hybrid Input Transition Systems
We can now define a hybrid input transition system as

consisting of sets of input-state trajectories and transitions.
Definition. A hybrid input transition system (HITS) H is

a tuple (S, U,⌃, �), where S is a set of states, U is a set
of inputs, ⌃ ✓ Trans(S) is a set of transitions and � ✓
ISTraj(U, S) is a set of input-state trajectories.

We will just use hybrid system or hybrid transition system
to refer to the above entity. Next, we define an execution of a
hybrid transition system, which is a behavior of the system.
An execution is a finite or infinite sequence of trajectories
and transitions which have matching end-points.

Definition. An execution of a hybrid input transition sys-
tem H is a sequence � : SeqDom ! ⌃ [� such that for
each 0  i < |�| � 1, Last(�(i)) = First(�(i + 1)). Let
Exec(H) denote the set of all executions of H.

We can view an execution as a pair consisting of an
input signal and state signal. Let � 2 Exec(H). Then for
each i 2 Dom(�), �(i) = (u

i

, s

i

), where either (u

i

, s

i

)

is an input-state trajectory or a transition. Let �

u and �

s

be sequences whose domain is the same as � such that
�

u

(i) = u

i

and �

s

(i) = s

i

. Then we also use (�

u

, �

s

)

to denote the execution �.
Given a set of executions T and an input signal �

u, we
use T |

�

u to denote the set of all executions in T whose
state signals can result from application of the input signal
�

u. Formally, T |
�

u
= {�

s | (�u

, �

s

) 2 T }.
We extend first and last to executions and state signals

in the natural way, that is, the first of the first element
in the sequence and the last of the last element if the
sequence is finite. Formally, for an execution or a state signal
�, First(�) = First(�(0)) and Last(�) is defined only if
Dom(�) = [n] for some n 2 N and is equal to Last(�(n)).
Similarly, States(�) =

S
i2Dom(�) States(�(i)). Also, for an

input signal �

u, Inputs(�u

) =

S
i2Dom(�u) Inputs(�u

(i)).
The functions are extended to sets of trajectories, state
signals and executions in a natural manner. Let States(H) de-
note States(⌃)[States(�) and Inputs(H) denote Inputs(⌃)[
Inputs(�).

h) Graph of an execution: In order to define distance
between executions, we interpret the input and state signals
as sets called the graphs which have information about the
linear ordering between the states and inputs at various times.
The set corresponding to a state signal �

s consists of triples
(t, i, x) such that x is a state that is reached after time t has
elapsed along the execution, and i is the number of discrete
transitions that have taken place before time t. Similarly, the
set corresponding to an input signal �

u consists of triples
(t, i, u) such that the input u was applied at time t, and the
number of impulse inputs applied before time t is i.

Definition. For an input or state signal � and j 2 Dom(�),
let T

j

=

P
j�1
k=0 Size(�(k)) and K

j

= |{k | k < j, �(k)

is not a trajectory}|. The graph of the signal �, denoted
gr(�), is the set of all triples (i, t, x) such that there exists
j 2 Dom(�) satisfying the following:

• t 2 [T

j

, T

j

+ Size(�(j))]].
• If �(j) is a trajectory, then i = K

j

and x = �(j)(t�T

j

).
• If �(j) is not a trajectory, then

– if � is a state signal and �(j) = (x1, x2), then
either i = K

j

and x = x1, or i = K

j

+ 1 and
x = x2.

– if � is an input signal and �(i) = u, then i = K

j

and x = u.

D. Metric Hybrid Input Transition System

In order to reason about stability of a system, one needs a
notion of distance between behaviors of the system. Hence,
we extend the definition of the hybrid system with a metric
on the states and inputs which can then be extended to
distance between signals and executions.

A metric hybrid input transition system is a hybrid input
transition system whose state and input spaces are equipped
with a metric. A metric hybrid input transition system (MHS)
is a pair (H, d1, d2) where H = (S, U,⌃, �) is a hybrid
input transition system, and (S, d1) and (U, d2) are extended
metric spaces. The metric d1 on the state space can be lifted
to state signals executions and d2 to input signals, which will
then be used to define input-to-state stability notions. Before
defining this extension, recall that given an extended metric
space (M, d), the Hausdorff distance between A, B ✓ M ,
also denoted d(A, B), is given by the maximum of

{sup

p2A

inf

q2B

d(p, q), sup

p2B

inf

q2A

d(p, q)}.

We extend d to triples used in the definition of graphs.
Definition. For (t1, i1, x1), (t2, i2, x2) 2 R+ ⇥ N ⇥ M , let

d((t1, i1, x1), (t2, i2, x2)) = max{|t1�t2|, |i1�i2|, d(x1, x2)}.

Now we can define the distance between state signals and
input signals.

Definition. Let (H, d1, d2) be a metric hybrid input
transition system with H = (S, U,⌃, �). The distance
between state signals �

s

1, �
s

2, denoted as d1(�
s

1, �
s

2), is
defined as d1(gr(�

s

1), gr(�
s

2)), and the distance between

s0

s1

s2 s3

s

0
3

s

0
2

s

0
1

s

0
0

t0 t1 t2 t3

�

�

0

Tuesday, March 6, 2012

Fig. 1. Graphical Distance between Executions.

input signals �

u

1 , �

u

2 , denoted d2(�
u

1 , �

u

2), is defined as
d2(gr(�

u

1), gr(�u

2)).
Distance between execution as defined above, called

graphical distance, captures the notion that two executions
are close if their states are close at approximately same times.
The notion of graphical distance is borrowed from [9], where
it has been argued that allowing a wiggle time is necessary
when one considers hybrid executions. Graphical distance
between two executions is illustrated in Figure 1. Note that
the two executions � and �

0 are not close at all times t,
for example, at a time t 2 (t1, t2), the states are very far.
However, for every time t and corresponding state s of �,
there exists a time t

0 2 [t � ✏, t + ✏] such that s is close to
the state of �

0 at time t

0. For example, s2 is close to s

0
2 and

times t1 and t2 are close.
In order to define convergence, we need the distance

between suffixes of signals starting from some time T .
Given a subset G of R+ ⇥ N ⇥ A and a T 2 R+, let us
denote by G|

T

the set {(t, i, x) 2 G | t � T}. Given two
signals �1, �2 and a T 2 R+, we define d(�1|T , �2|T) to be
d(gr(�1)|T , gr(�2)|T).

IV. INCREMENTAL INPUT-TO-STATE STABILITY OF
HYBRID INPUT TRANSITION SYSTEMS

In this section, we define a notion of incremental input-to-
state stability of hybrid input transition systems. Our defini-
tion of input-to-state stability is motivated by the following
definition of incremental input-to-state stability of [2]. Let T
be a set of input-state trajectories over (Rm

,Rn

) such that
for each ⇣ 2 Rn and input trajectory u, there exists a unique
element (u, s) 2 T with First(s) = ⇣. Given ⇣ and u, let us
denote the unique trajectory s by x(⇣,u). Then the definition
of incremental input-to-state stability from [2] is as follows:

Definition.(�ISS for input-state trajectories) The set of
input-state trajectories T is said to be incrementally input-
to-state stable if there exists a KL function � and a K1
function � such that for any t � 0, any ⇣1, ⇣2 and any couple
of input trajectories u1, u2, the following is true:

|x(⇣1,u1)(t)�x(⇣2,u2)(t)|  �(|⇣1�⇣2|, t)+�(||u1�u2||1).

The above definition forces the following properties of the
system T :
(C1) The system is Lyapunov stable “uniformly” in the

input. For every ✏ > 0, there exists a � > 0, such that

for every input trajectory u, and for all initial states
⇣1, ⇣2, the following holds for every t � 0.

|⇣1 � ⇣2| < �) |x(⇣1,u)(t) � x(⇣2,u)(t)| < ✏.

Note that � depends only on ✏, in particular, it is
independent of the input trajectory u.

(C2) The system converges “uniformly” in the input. For
every ✏ > 0, there exists a T � 0, such that for every
⇣1, ⇣2 and input signal u,

|x(⇣1,u)(t) � x(⇣2,u)(t)| < ✏, 8t > T.

Note that T depends only on ✏ and is independent of
u.

(C3) The system is input-to-state stable “uniformly” in the
initial state. For every ✏ > 0, there exists a � > 0 such
that for all input signals u1,u2 and initial state ⇣, the
following holds for every t � 0:

||u1 � u2||1 < �) |x(⇣,u1)(t) � x(⇣,u2)(t)| < ✏.

Note the independence of � with respect to ⇣.
In fact, it is straightforward to check that the conditions C1�
C3 implies incremental input-to-state stability as given in the
above definition.

Proposition 2: A set of input-state trajectories T is �ISS
iff it satisfies Conditions (C1) � (C3).

Next, we formalize the definition of incremental input-to-
state stability for hybrid input transition system using the
above observation. A slight deviation is our definition of
distance between trajectories, for which we use the graphical
distance introduced in [9] for hybrid trajectories. However,
the results in the paper are not sensitive to the particular
definition of distance, in that, the results hold even when
one considers the distance between two executions to be
the supremum of the pointwise distance between states and
inputs. We define Valid(T) = {(�

u

, ⇣) | 9�

s

, First(�s

) =

⇣, (�

u

, �

s

) 2 T }. And InSig(T) = {�

u | 9�

s

, (�

u

, �

s

) 2
T }.

Definition.(�ISS for Hybrid Systems) Given a hybrid input
transition system H and a set of executions T ✓ Exec(H),
we say that H is incrementally input-to-state stable (�ISS)
with respect to the set of executions T , if the following hold:
(D1) for every ✏ > 0, there exists a � > 0, such that the

following holds for every input signal �

u:

8(�

u

, �

s

) 2 Exec(H), d1(First(�s

), First(T |
�

u
)) < �

) 9(�

u

, �̂

s

) 2 T , d1(�
s

, �̂

s

) < ✏

(D2) there exists a � > 0 and a function T : R
>0 ! R

>0

such that the following holds for every input signal �

u:

8(�

u

, �

s

) 2 Exec(H), d1(First(�s

), First(T |
�

u
)) < �)

9(�

u

, �̂

s

) 2 T , 8✏ > 0, 8t � T (✏), d1(�
s|

t

, �̂

s|
t

) < ✏.

(D3) for every ✏ > 0, there exists a � > 0 such that for every
input signal �

u and state ⇣ with (�

u

, ⇣) 2 Valid(T),
the following holds:

8�̂

u

, [d2(�
u

, �̂

u

) < �) 8(�̂

u

, �̂

s

) 2 Exec(H),

[First(�̂s

) = ⇣) 9(�

u

, �

s

) 2 T ,

First(�s

) = ⇣, d1(�
s

, �̂

s

) < ✏]]

V. INPUT (BI)-SIMULATIONS

In this section, we define the notion of pre-order under
which, we will show in the next section, �ISS is invariant.

First, we define the notion of input (bi)-simulation, which
is an extension of the classical notion of (bi)-simulation with
inputs for hybrid input transition systems. Our definition is
closely related to the definition of (bi)-simulation defined in
[12].

Definition. Given two hybrid input transition systems
H1 = (S1, U1, ⌃1, �1) and H2 = (S2, U2, ⌃2, �2), a pair
of binary relations (R1, R2), where R1 ✓ S1 ⇥ S2 and
R2 ✓ U1 ⇥ U2, is called a input simulation relation from
H1 to H2 if:

• for every (s1, s2) 2 R1, the following hold:
– For every state s

0
1 and input u1 such that

(u1, (s1, s
0
1)) 2 ⌃1, there exist a state s

0
2 and

an input u2 such that R1(s
0
1, s

0
2), R2(u1, u2) and

(u2, (s2, s
0
2)) 2 ⌃2.

– For every input-state trajectory (u1, s1) 2 �1 such
that First(s1) = s1, there exists an input-state
trajectory (u2, s2) 2 �2 such that First(s2) = s2,
s2 2 R1(s1) and u2 2 R2(u1).

We denote the fact that (R1, R2) is an input simulation
relation from H1 to H2 by H1 �(R1,R2) H2. Further,
(R1, R2) is an input bisimulation relation between H1 and
H2 if both (R1, R2) and (R

�1
1 , R

�1
2) are input simulation

relations, that is, H1 �(R1,R2) H2 and H2 �(R�1
1 ,R

�1
2) H1.

We can show that input bisimulation does not preserve
incremental input-to-state stability of systems. Essentially,
one can use the counter-example from [17] with input space
U = {0}. Hence, we strengthen the pre-order with uniform
continuity conditions.

A. Uniformly Continuous Input (Bi)-Simulation

We will assume H1 and H2 are metric input transition
systems.

Definition. A pair (R1, R2) is a uniformly continuous input
simulation from H1 to H2 if (R1, R2) is an input simulation
from H1 to H2 and R1, R

�1
1 , R2 and R

�1
2 are uniformly

continuous. We denote the fact that (R1, R2) is a uniformly
continuous input simulation from H1 to H2 by H1 �C

(R1,R2)H2.
Definition. A pair (R1, R2) is a uniformly continuous

input bisimulation between H1 and H2 if both (R1, R2) and
(R

�1
1 , R

�1
2) are uniformly continuous input simulations.

Given a hybrid input transition system H = (S, U,⌃, �),
and a pair (R1, R2), where R1 ✓ S⇥S

0 and R2 ✓ U⇥U

0 for
some S

0 and U

0, then define (R1, R2)(H) to be the hybrid
input transition system (S

0
, U

0
, ⌃

0
, �

0
), where:

• ⌃

0
= {(u

0
, (s

0
1, s

0
2)) | 9(u, (s1, s2)) 2 ⌃, u

0 2
R2(u), s

0
1 2 R2(s1), s

0
2 2 R1(s2)}.

• �

0
= {(u

0
, s

0
) | 9(u, s) 2 �,u

0 2 R2(u), s

0 2 R1(s)}.
Proposition 3: Let H = (S, U,⌃, �) be a hybrid input

transition system. Let (R1, R2) be a pair with R1 ✓ S ⇥ S

0

and R2 ✓ U ⇥ U

0. Then we have the following:
1) (R1, R2) is an input bisimulation between H and

(R1, R2)(H).
2) If the relations R1, R2, R

�1
1 and R

�1
2 are uniformly

continuous, then (R1, R2) is a uniformly continuous
input bisimulation between H and (R1, R2)(H).

Next, we show that uniformly continuous input simula-
tions define a pre-order on systems.

Theorem 1: Let (H, d1, d2),(H0
, d

0
1, d

0
2) and (H00

, d

00
1 , d

00
2),

where H = (S, U,⌃, �), H0
= (S

0
, U

0
, ⌃

0
, �

0
) and H0

=

(S

00
, U

00
, ⌃

00
, �

00
), be three metric hybrid transition systems.

• Then, H �(Id1,Id2) H, where Id1 = {(s, s) | s 2 S} and
Id1 = {(u, u) | u 2 U}.

• And also, if H �C

(R1,R2)
H0 and H0 �C

(R0
1,R

0
2)

H00, then
H0 �C

(R0
1�R1,R

0
2�R2)

H00, A � B = {(x, z) | 9(x, y) 2
A, (y, z) 2 B}
VI. INCREMENTAL INPUT-TO-STATE STABILITY

PRESERVATION

In this section, we present the main result of the paper,
namely, that incremental input-to-state stability is invariant
under uniformly continuous input bisimulations.

We need a technical consistency condition between the
input bisimulation relations and the reference executions.

Definition. A pair of relations (R1, R2), where R1 ✓ S1⇥
S2 and R2 ✓ U1 ⇥ U2, is said to be semi-consistent with
respect to the sets of executions T1 and T2 over (S1, U1)

and (S2, U2), respectively, if the following hold:
(A1) For every (�

u

1 , ⇣1) 2 Valid(T1), there exists (�

u

2 , ⇣2) 2
Valid(T2) such that R2(�

u

1 , �

u

2) and R1(⇣1, ⇣2).
(A2) For every (�

u

2 , �

s

2) 2 T2, for every �

u

1 2 R

�1
2 (�

u

2) and
⇣1 2 R

�1
2 (First(�s

2)) such that (�

u

1 , ⇣1) 2 Valid(T1),
there exists �

s

1 with First(�s

1) = ⇣1, R1(�
s

1, �
s

2) and
(�

u

1 , �

s

1) 2 T1.
(A3) R2(u) is a singleton for every u 2 Inputs(T1).
(A4) R

�1
1 (s) is singleton for every s 2 States(T2).

(A5) For every �

u

1 , R1(First(T1|�u
1
)) = First(T2|

R2(�u
1)).

(A6) There exists � > 0 such that for every x 2
B

�

(First(T1)), there exists a y such that R1(x, y).
(R1, R2) is said to be consistent with respect to T1 and T2

if both (R1, R2) and (R

�1
1 , R

�2
2) are semi-consistent with

respect to T1 and T2.
Theorem 2: Let (H1, d1, d2) and (H2, d

0
1, d

0
2), where

H1 = (S1, U1, ⌃1, �1) and H2 = (S2, U2, ⌃2, �2), be two
metric hybrid input transition systems, and T1 ✓ Exec(H1)

and T2 ✓ Exec(H2) be two sets of executions. Let (R1, R2)

be a uniformly continuous input simulation from H1 to H2,
and let (R1, R2) be semi-consistent with respect to T1 and
T2. Then the following holds:

If H2 is �ISS with respect to T2, then H1 is �ISS with
respect to T1.

�

u

2

�2

�

s

2

�̂

s

2

✏2

�

u

1T1

�

s

1

R1(�
s

1, �
s

2)

R1(�̂
s

1, �̂
s

2)�1

�̂

s

1

✏1

R2(�
u

1 , �

u

2)

T2

Tuesday, March 6, 2012Fig. 2. Illustration for Proof of Condition (D1)

Proof: Let us assume H2 is �ISS with respect to T2.
We need to show that H1 is �ISS with respect to T1. We will
show that H1 satisfies conditions (D1) � (D3).

Proof of satisfaction of Condition (D1) Let us fix an
✏1 > 0. We need to find a �1 > 0 such that Condition (D1)

holds in H1 and T1. Let ✏2 be the uniformity constant of
R

�1
1 corresponding to ✏1. Let �2 be the constant satisfying

Condition (D1) for H2 corresponding to ✏2. Set �1 to be the
uniformity constant of R2 corresponding to �2.

Let us fix an input signal �

u

1 . Let (�

u

1 , �

s

1) 2 Exec(H1)

such that d1(First(�s

1), First(T1|�u
1
) < �1 (see Figure 2). We

need to show that there exists a �̂

s

1, such that (�

u

1 , �̂

s

1) 2 T1

and d1(�
s

1, �̂
s

1) < ✏1.
Note that Condition (A1) also implies that there ex-

ists �

u

2 2 InSig(T2) such that R2(�
u

1 , �

u

2). Further, �

u

2 is
unique because of Condition (A3) on R2. From Condi-
tion (A6), there exists a ⇣2 such that (First(�s

1), ⇣2) 2
R1. Therefore, from input simulation relation, there ex-
ists �

s

2 such that (�

u

2 , �

s

2) 2 Exec(H2) and R1(�
s

1, �
s

2)

(note that �

u

2 is the same as before, this follows from the
uniqueness of �

u

2). Since d1(First(�s

1), First(T1)�
u

1) < �1,
d1(R1(First(�s

1)), R1(First(T1)|�u
1
)) < �1. From Condition

(A5), d1(R1(First(�s

1)), First(T2|
R2(�u

1))) < �1, or equiv-
alently d1(R1(First(�s

1)), First(T2|�u
2
)) < �1. In particular,

d1(First(�s

2), First(T2|�u
2
)) < �1. From the �ISS of H2

with respect to T2, we have that there exists �̂

s

2 such
that (�

u

2 , �̂

s

2) 2 T2 and d1(�
s

2, �̂
s

2) < ✏2. Then from
Condition (A2), there exists �̂

s

1, such that (�

u

1 , �̂

s

1) 2 T1,
and R1(�̂

s

1, �̂
s

2). Now, d1(�
s

1, �̂
s

1) < ✏1 since R

�1
1 (s) is a

singleton for every s 2 States(T2) (from Condition (A4)).
Proof of satisfaction of Condition (D2) Let �2 > 0 and

T2 : R+ ! R+ be such that they satisfy Condition (D2)

for system H2 with respect to T2. Choose �1 > 0 to be
the uniformity constant of R2 with respect to �2. Similarly,
define T1 : R+ ! R+ as follows: Given any ✏1 > 0, set
T1(✏1) to be equal to T2(✏2), where ✏2 is the uniformity
constant of R

�1
1 with respect to ✏1.

�

u

1⇣1

T1

�̂

u

1

�1

�

s

1

�̂

s

1

✏1

T2

⇣2

�̂

u

2

�

u

2 �2

�

s

2

�̂

s

2

✏2

R1(�
s

1, �
s

2)

R1(�̂
s

1, �̂
s

2)

R2(�
u

1 , �

u

2)

R2(�̂
u

1 , �̂

u

2)

Monday, March 5, 2012

Fig. 3. Illustration for Proof of Condition (D3)

The proof essentially is the same as before, except that we
need to show that 8✏1 > 0, 8t � T1(✏1), d1(�

s

1|t, �̂s

1|t) < ✏1.
Note that the above condition follows from the fact that now
we have 8✏2 > 0, 8t � T2(✏2), d1(�

s

2|t, �̂s

2|t) < ✏2. The
required result follows from the definition of T1.

Proof of satisfaction of Condition (D3) Let us fix an ✏1 >

0, we need to find a �1 > 0 such that Condition (D3) holds.
Let ✏2 be the uniformity constant of R

�1
1 corresponding to

✏1. Let �2 be the constant satisfying Condition (D3) for H2

corresponding to ✏2. Set �1 to be the uniformity constant of
R2 corresponding to �2.

Let us fix an input signal �

u

1 and state ⇣1 such that
(�

u

1 , ⇣1) 2 Valid(T1) (see Figure 3). Let �̂

u

1 be such
that d2(�

u

1 , �̂

u

1) < �1 and let (�̂

u

1 , �̂

s

1) 2 Exec(H1) with
First(�̂s

1) = ⇣1. We need to show that there exists �

s

1 such
that First(�s

1) = ⇣1, (�

u

1 , �

s

1) 2 T1 and d1(�̂
s

1, �
s

1) < ✏1.
From Condition (A1) of semi-consistency, we have that

there exists (�

u

2 , ⇣2) 2 Valid(T2) such that R2(�
u

1 , �

u

2) and
R1(⇣1, ⇣2). From the fact that (R1, R2) is an input simula-
tion, and R1(⇣1, ⇣2), we know that there exists (�̂

u

2 , �̂

s

2) 2
Exec(H2) with First(�̂s

2) = ⇣2, R2(�̂
u

1 , �̂

u

2) and R1(�̂
s

1, �̂
s

2).
Now, d2(�

u

1 , �̂

u

1) < �1 and R2(u) is a singleton for
every u 2 Inputs(T1) (from Condition (A3)) implies that
d1(�

u

2 , �̂

u

2) < �2. From the definition of �ISS for H2, we
know that there exists �

s

2 such that (�

u

2 , �

s

2) 2 T2 and
d1(�

s

2, �̂
s

2) < ✏2.
From Condition (A2) of semi-consistency, there exists �

s

1

with First(�s

1) = ⇣1, R1(�
s

1, �
s

2) and (�

u

1 , �

s

1) 2 T1. Note
that d1(�

s

1, �̂
s

1) < ✏1 since d1(�
s

2, �̂
s

2) < ✏2, and R

�1
1 (s) is

a singleton for every s 2 States(T2) (from Condition (A4)).

Theorem 3: Let (H1, d1, d2) and (H2, d
0
1, d

0
2), where

H1 = (S1, U1, ⌃1, �1) and H2 = (S2, U2, ⌃2, �2), be two
metric hybrid input transition systems, and T1 ✓ Exec(H1)

and T2 ✓ Exec(H2) be two sets of executions. Let (R1, R2)

be a uniformly continuous input simulation from H1 to H2,
and let (R1, R2) be consistent with respect to T1 and T2.
Then the following holds:

H2 is �ISS with respect to T2 if and only if H1 is �ISS
with respect to T1.

A. Modelling Input-to-State Stability of Continuous Dynam-
ical Systems

We define input-to-state stability of dynamical systems
and formulate it in our framework: Consider a continuous
dynamical system

ẋ = f(x, u), (1)

x 2 X ✓ Rn

, u 2 U ✓ Rm

, x0 2 X0 ✓ X,

where f : Rn ⇥ Rm ! Rn is locally Lipschitz in x and u,
and X0 and U are compact sets. We will assume that the
input signal space D

u

consists of functions u : [0, 1) ! U

that are piecewise continuous, bounded functions of t for all
t � 0.

We define the hybrid system corresponding to the System
(1) to be the following: H

f,X0,X,U

= (X, U, ;, �), where
� is the set of pairs (u,x), where u is in D

u

, x(0) 2 X0

and x is the solution of System (1) starting from x(0), that
is, u,x satisfy ˙

x(t) = f(x(t),u(t)) for every t � 0. Let
d1 and d2 be the standard Euclidean norms on Rn and Rm,
respectively.

The notion of input-to-state stability captures the notion
of “bounded input-bounded state”.

Definition. The System (1) is said to be input-to-state
stable (ISS) if there exists a KL function �, a class K
function � such that

||x(t)||  �(||x0||, t) + �(||u||1), (2)

for all t � 0, x0 2 X0 and u 2 D

u

.
Let T0,0 be the set of trajectories with 0 input and 0

initial state, that is, T0,0 = {(0,0)}. It is easy to see that
input-to-state stability of System (1) is equivalent to �ISS of
H

f,X0,X,U

with respect to T0,0.
Proposition 4: System (1) is input-to-state stable if and

only if the system H
f,X0,X,U

is �ISS with respect to T0,0.
Hence, we can use Theorem 2 and Theorem 3 to reason

about input-to-state stability of systems.

VII. APPLICATIONS OF THEOREM 2
First, we illustrate through an example of a linear system

with inputs, how we can prove input-to-stability using our
results.

A. A simple example
Consider a linear system with input, that is,

ẋ = f(x, u) = Ax + Bu, A 2 Rn⇥n

, B 2 Rn⇥m

, (3)

x 2 X ✓ Rn

, u 2 U ✓ Rm

, x0 2 X0 ✓ X,

where, A is a Hurwitz matrix, and X0 and U are compact
sets.

Let P be a positive definite symmetric matrix satisfying
A

T

P + PA = �Q for some positive definite matrix Q.
Consider a function R1 : Rn ! R+ given by R1(x) =

x

T

Px and a function R2 : Rm ! R+ given by R2(u) = |u|.
Then, ˙

R1(x) = ẋ

T

Px + x

T

Pẋ = x

T

(A

T

P + PA)x +

u

T

B

T

Px + x

T

PBu  ��R1(x) + µ||u||1, where � and µ

are positive constants depending on P , Q and B.
Consider the one-dimensional system:

ẏ  ��y + µ||v||1, y � 0. (4)

Note that the solutions to the system satisfy y(t) 
e

��t

y(0) + µ/�||v||1. This system is trivially input-to-state
stable since it is in the form required by Inequality 2.

We will show that (R1, R2) is a uniformly continuous
input simulation from System (3) to System (4). Input
simulation follows from the fact that if (x,u) satisfies
˙

x(t) = Ax(t) + Bu(t) for all t � 0, then by construction,
(R1(x), R2(u)) satisfies ˙

R1(x)  ��R1(x) + µ||R2(u)||1.
Also, when R1 and R2 are interpreted as relations or set
valued functions, then R1, R

�1
1 , R2 and R

�1
2 are contin-

uous. Further, since X0 and U are compact, these func-
tions are uniformly continuous over States(H

f,X0,X,U

) and
Inputs(H

f,X0,X,U

). Hence, from Theorem 2 System (3) is
input-to-state stable.

B. Lyapunov Functions for Input-to-State Stability
Next we show that Lyapunov function based input-to-

state stability can be cast as constructing simpler one di-
mensional systems, using uniformly continuous input simu-
lations, which are input-to-state stable.

Let us consider System (1) and assume that the system ẏ =

f(y, 0) has a uniformly asymptotically stable equilibrium
point at the origin.

Definition. A continuously differentiable function V :

X ! R+ is said to be an ISS Lyapunov function for the
System (1) if there exist class K1 functions ↵1, ↵2, ↵3 and
X such that:

↵1(||x||)  V (x(t))  ↵2(||x||), 8x 2 X, t > 0 (5)

@V (x)

@x

f(x, u)  ↵3(||x||), 8u 2 D

u

: ||x|| � X (||u||). (6)

Theorem 4: [19] (ISS Theorem) Let V : X ! R+ be an
ISS Lyapunov function for the System (1). Then System (1)
is input-to-state stable.

Following theorem formulates Lyapunov analysis in our
framework:

Theorem 5: Let V be an ISS Lyapunov function for Sys-
tem (1), and let N : Rn ! R+ be the function u 7! |u|.
Then:

• (V, N)(H
f,X0,X,U

) is input bisimilar to H
f,X0,X,U

.
• V, V

�1
, N and N

�1 are uniformly continuous over
States(H) and Inputs(H).

• (V, N) is consistent with T0 and (V, N)(T0).
• (V, N)(H

f,X0,X,U

) is �ISS with respect to (V, N)(T0).
Hence H

f,X0,X,U

is �ISS with respect to T0.

Proof: (Sketch.) Follows from Proposition 3 and Theo-
rem 4.

VIII. CONCLUSIONS

In this paper, we investigated pre-orders for reasoning
about input-to-state stability properties. We introduced the
notion of uniformly continuous input simultaions and bisim-
ulations as pre-orders which preserve input-to-state stability
of systems. We showed that the notion is a reasonable pre-
order to consider by establishing Lyapunov function based
analysis of input-to-state stability as a special case of our
analysis framework.

In the future, we intend to develop concrete techniques
for constructing abstractions based on uniformly continuous
input simulations and bisimulations. Our broad goal is to
develop an abstraction refinement technique for analysis of
stability properties.

REFERENCES

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[2] David Angeli. A lyapunov approach to incremental stability properties.
IEEE Transactions on Automatic Control, 47:410–421, 2000.

[3] M. S. Branicky. Stability of hybrid systems: state of the art. In
Conference on Decision and Control, pages 120–125, 1997.

[4] Thomas Brihaye and Christian Michaux. On the expressiveness and
decidability of o-minimal hybrid systems. Journal of Complexity,
21(4):447–478, 2005.

[5] Pieter J. L. Cuijpers. On bicontinuous bisimulation and the preserva-
tion of stability. In Proceedings of the International Conference on
Hybrid Systems: Computation and Control, pages 676–679, 2007.

[6] Antoine Girard, A. Agung Julius, and George J. Pappas. Approximate
simulation relations for hybrid systems. Discrete Event Dynamic
Systems, 18(2):163–179, 2008.

[7] Antoine Girard and George J. Pappas. Approximate bisimulation
relations for constrained linear systems. Automatica, 43(8):1307–1317,
2007.

[8] Antoine Girard, Giordano Pola, and Paulo Tabuada. Approximately
bisimilar symbolic models for incrementally stable switched systems.
In Proceedings of the International Conference on Hybrid Systems:
Computation and Control, pages 201–214, 2008.

[9] R. Goebel, R. Sanfelice, and A. Teel. Hybrid dynamical systems.
IEEE Control Systems, Control Systems Magazine, 29:28–93, 2009.

[10] Thomas A. Henzinger. The Theory of Hybrid Automata. In Logic In
Computer Science, pages 278–292, 1996.

[11] Hlne Frankowska Jean-Pierre Aubin. Set-valued Analysis. Boston :
Birkhauser, 1990.

[12] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W.
Vaandrager. Timed I/O Automata: A Mathematical Framework for
Modeling and Analyzing Real-Time Systems. In Real-Time Systems
Symposium, pages 166–177. IEEE Computer Society, 2003.

[13] H. K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River,
NJ, 1996.

[14] G. Lafferriere, G.J. Pappas, and S. Sastry. O-minimal Hybrid Systems.
Mathematics of Control, Signals, and Systems, 13(1):1–21, 2000.

[15] David Lee and Mihalis Yannakakis. Online Minimization of Transition
Systems (Extended Abstract). In Symposium on Theory Of Computing,
pages 264–274. ACM, 1992.

[16] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc,
1989.

[17] P. Prabhakar, G. Dullerud, and M. Viswanathan. Pre-orders for
reasoning about stability. In Hybrid Systems: Computation and Control
(to appear), 2012.

[18] P. Prabhakar, V. Vladimerou, M. Viswanathan, and G.E. Dullerud.
Verifying tolerant systems using polynomial approximations. In
Proceedings of the IEEE Real Time Systems Symposium, 2009.

[19] E.D. Sontag and Y. Wang. On characterizations of the input-to-state
stability property. Systems & Control Letters, 24(5):351–359, 1995.

[20] V. Vladimerou, P. Prabhakar, M. Viswanathan, and G. E. Dullerud.
Stormed hybrid systems. In ICALP Proceedings, Reykjavı́k, 2008.

