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Abstract. Locomotion of microorganisms and tiny artificial swimmers is governed by low-
Reynolds-number hydrodynamics, where viscous effects dominate and inertial effects are negligible.
While the theory of low-Reynolds-number locomotion is well studied for unbounded fluid domains,
the presence of a boundary has a significant influence on the swimmer’s trajectories, and poses
problems of dynamic stability of its motion. In this paper we consider a simple theoretical model
of a micro-swimmer near a wall, study its dynamics, and analyze the stability of its motion. We
highlight the underlying geometric structure of the dynamics, and establish a relation between the
reversing symmetry of the system and existence and stability of periodic and steady solutions of
motion near the wall. The results are demonstrated by numerical simulations and validated by
motion experiments with robotic swimmer prototypes.

1. Introduction. The locomotion of microorganisms, as well as of futuristic
miniature robotic swimmers for biomedical applications, is governed by low Reynolds
number hydrodynamics [30, 40, 60]. Reynolds number, which encompasses the ratio
of inertial forces to viscous forces, is defined as Re = V L/ν, where V is a charac-
teristic velocity, L is a characteristic length scale, and ν is the kinematic viscosity
of the fluid. For example, a typical Reynolds number for a human swimmer who is
governed by inertial effects is in the order of 104, whereas microorganisms typically
have Re ≈ 10−4 and swim by harnessing viscous effects. The theory of low-Re lo-
comotion of microorganisms and motile cells in nature has been widely studied in
the physics, fluid mechanics, and biology literature, e.g. [12, 46, 58]. In the context
of nano-technology and engineering, some efforts to develop miniaturized swimmers,
primarily for biomedical applications, were reported in [4, 21, 26, 42, 69]. While a vast
majority of the theoretical works use the simplifying assumption of unbounded fluid
domain, in realistic scenarios microswimmers often move in confined environments
and interact with the boundaries. The presence of solid boundaries has profound
effects on the dynamics and motion trajectories of low-Re swimmers, as confirmed by
numerical simulations [23, 28, 61, 71] and observed in several laboratory experiments
with swimming microorganisms [14, 25, 45]. The goal of this work is to investigate
these effects from the viewpoint of dynamical systems and control theory, by studying
a simplified theoretical model of a low-Re swimmer near an infinite single wall. In this
study, which highlights the geometric structure of the swimmer’s dynamic equations,
we focus on stability of the motion near a wall.

In the limiting case of Re→0, the motion of the fluid is governed by Stokes equa-
tions of viscous flow, and the motion of the swimmer is assumed to be quasi-steady.
A typical strategy for low-Re swimming is changing the internal configuration of the
swimmer in a non-reciprocal way in order to generate net motion. Due to the com-
plex interaction between the motion of the fluid and the body, this problem has been
studied theoretically under several simplifications. One approach focuses on axisym-
metric swimmers, whose motion is only one-dimensional along the axis of symmetry
[53, 1, 47]. As an example, Fig. 1.1(a) shows the three-linked-spheres swimmer studied
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Fig. 1.1. Simplified low-Re swimmer models: (a) The three-linked spheres [53]. (b) Bacteria
waving a flagellar tail. (c) Purcell’s three-link swimmer.

in [53], which is propelled along its axis by changing the separation distances between
the spheres d1 and d2 periodically in an inchworm-like fashion. Another approach
studies biological mechanisms of ciliary and flagellar propulsion in microorganisms
by modeling them as a small-amplitude traveling waves [6, 7, 49, 68], as illustrated
in Fig. 1.1(b). The one-dimensional motion of the swimmer is then formulated by
using perturbation methods. In more general models, the swimmer translates and
rotates in two or three dimensions under cyclic shape changes of finite amplitude [70].
A classical example is Purcell’s articulated three-link swimmer model [3, 60], which
generates planar translation and rotation by changing its inter-link joint angles φ1

and φ2, see Fig. 1.1(c). Denoting the coordinates describing the configuration of the
swimmer as q and regarding the rate of shape changes as controlled inputs u(t), the
motion of the swimmer is governed by a driftless nonlinear control system [10, 13] of
the form q̇ = G(q)u. In case where the fluid domain is assumed to be unbounded, the
equation of motion enjoys an additional geometric structure called gauge symmetry
[2, 41, 64], for which the equation of motion is invariant under rigid-body transfor-
mation of the swimmer’s body. This property enables formulation of the geometric
phase, which is the rigid-body translation and rotation associated with a given cyclic
change of internal shape. This concept has been widely explored in the context of ge-
ometric mechanics and locomotion of robotic systems [39, 56, 63], and also for control
of swimming in inviscid fluid (i.e. the case of Re → ∞) [35, 51, 52]. Another partic-
ular subclass of swimmers with simplified dynamics is treadmilling swimmers, which
propel themselves by generating purely tangential motion along their boundary while
their shape remains fixed [32, 47, 48]. For those swimmers, the equation of motion is
simplified further, as it does not depend on the swimmer’s unchanging shape.

A key limitation of the theoretical models described above is that they consider
unbounded fluid domain only, whereas in reality, microswimmers often swim in con-
fined environments and interact with the boundary. The leading-order effect of an
infinite plane wall on the motion of inert rigid bodies in Stokes flow was analyzed in
[8, 9, 37]. The motion of microorganism with flagellar propulsion near a plane wall
was analyzed in [36] under the simplified model of an infinite waving sheet, where the
swimmer’s net motion is assumed to remain one-dimensional and parallel to the wall.
When finite-length swimmers are considered, the presence of the wall can significantly
change their motion trajectories. Biological examples are E. coli swimming in circles
above a flat surface [45], accumulation of bacteria and sperm cells near boundaries
[5, 14], shear-induced periodic orbits of bacteria and larvae [38, 73], and interesting
“dancing” motion of pairs of Volvox algae under the combined effects of gravity and
a near wall [20]. Some of the works mentioned above used simple theoretical models
to provide physical explanations to these wall effects, and some of the phenomena
were observed only in numerical simulations. In particular, the work of Berke et al.
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[5] models a low-Re swimmer near a wall as a moving force-dipole singularity in or-
der to explain the accumulation of swimming bacteria near a solid surfaces. Under
this simplifying model which considers far-field effects of the wall, closed-form ex-
pressions are derived for the attraction of the swimmer towards the wall and for its
rotational reorientation parallel to the wall. However, this model is singular in the
sense that it predicts that the swimmer crashes into the wall in finite time, in con-
trast to experimental observations of settling to a small but finite distance from the
wall. Other recent works study the attraction of flagellated bacteria and sperm cells
to solid boundaries by utilizing efficient numerical techniques for long-time dynamic
simulations [65, 66]. The simulation results clearly show attraction of the swimmers
towards the wall, followed by settling to a nonzero separation distance and a slightly
inclined orientation. These works also numerically investigate the influence of chang-
ing relative sizes of the swimmer’s head and tail on the convergence of motion, though
they lack simple physical explanations and insights.

The goal of this paper is to bridge the gap between the aforementioned works
[5] and [65, 66], and consider a simple theoretical model of a low-Re swimmer which
will enable gaining insights into the dynamics of low-Re swimming near a wall. The
chosen model consists of an assemblage of spheres mounted to a thin rigid structure,
which are actuated by rotation about their attachment point. The advantage of this
model is that the shape of the swimmer remains fixed, which enables focusing solely
on the dynamic interaction of the swimmer and the boundary without the complica-
tion associated with the influence of shape changes. Moreover, the choice of spheres
as the basic building blocks enables using known approximate expressions for the
sphere-sphere and sphere-wall hydrodynamic interactions [22, 40, 67]. We highlight
the geometric structure of the swimmer’s dynamics in analysis of the motion near
the wall. In particular, we make use of the reversing symmetry [43, 44, 62] of the
swimmer-wall configuration and its implications on the dynamic stability of steady
translation as well as periodic oscillations along the wall. Note that existence of pe-
riodic motion in viscous shear flow was already studied in works such as [33] for an
inert rigid body and in [73] for self propelled larvae. The works [11, 34] study periodic
motions of interacting rigid bodies sedimenting in unbounded viscous fluid, and the
work of Golubitsky et al. [27] formally establishes the relation between existence of
periodic solutions and the reversing symmetry of the system. Nevertheless, a key
contribution of our work is showing that the presence of a plane wall also induces a
reversing symmetry, which, in turn, implies existence of periodic solutions of oscil-
lations along the wall which are neutrally stable. Next, we analyze the case where
the structure of the swimmer breaks the reversing symmetry. We then show that
the solutions of steady translation and of periodic oscillations along the wall can be
made open-loop asymptotically stable. The implications of this key result are twofold.
First, in the context of biological microswimmers, it provides additional insight into
the hydrodynamical mechanism of accumulation near surfaces with a clear dynamical
interpretation. Second, in the context of artificial swimmers for biomedical applica-
tions this result implies that they can be steered in confined environments by using
open-loop commands only, without requiring on-board sensing and control for sta-
bilization. This fact can potentially be utilized as a guideline towards minimalistic
design of such swimmers in the future. Finally, we qualitatively corroborate the theo-
retical predictions by presenting results of motion experiments of macro-scale robotic
prototypes swimming near a wall in a viscous fluid.

The organization of the paper is as follows. In Section 2, the governing hydro-
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dynamic equations are formulated, resulting in a driftless nonlinear control system
describing the swimmer’s motion near a wall. Section 3 analyzes the dynamics of
the simplest swimmer model which is composed of two rotating spheres. This simple
swimmer possesses a reversing symmetry which implies the co-existence of neutrally
stable solutions of steady translation and periodic oscillations along the wall. Section
4 considers the 2+1-sphere swimmer model in which the reversing symmetry is bro-
ken, and characterizes the dynamic stability of its motion near the wall. Section 5
reports the experimental results. Finally, the concluding section discusses limitations
of the results and lists possible directions for future extension. A brief version of
the theoretical analysis in this paper has been published in the short paper [55], and
this paper complements it by detailed derivation of the governing equations, thorough
numerical investigation and discussion, and verification by experimental results. The
experimental results have also been reported in the conference paper [72].

2. Problem Formulation. This section formulates the dynamics of a micro-
swimmer model which is comprised of a rigid structure of spheres which are actuated
by rotation about their attachment point to the structure. First, the low-Re fluid-
mechanical governing equations are formulated, followed by derivation of the approx-
imate mobility matrices, which relate hydrodynamic forces to velocities. Then the
dynamics of planar motion of the swimmer near a wall is formulated as a driftless
nonlinear control system.

2.1. Hydrodynamic model. Consider a collection of n neutrally-buoyant rigid
particles of equal radius a, submerged in a quiescent fluid which is viscous and incom-
pressible. The fluid domain is bounded by an infinite plane wall, denoted W. The
position of the center of the i-th particle is denoted xi, and its linear and angular ve-
locities are denoted by Ui and Ωi, respectively. Assuming that the Reynolds number
is vanishingly small, the motion of the fluid is governed by Stokes equations, which
are given by

−∇p+ µ∇2v = 0, ∇ · v = 0, (1)

where v is the fluid velocity field, p is the pressure distribution and µ is the fluid
viscosity. The boundary conditions for the velocity field are given by

v(x) =






0 x ∈ W
0 ‖x‖ → ∞
Ui +Ωi × (x− xi) x ∈ Si, i = 1 . . . n

(2)

Where Si denotes the boundary of the i-th particle. Physically, conditions (2) impose
zero relative slip of the fluid on the boundaries of the moving particles and on the
stationary wall, and also require that the fluid velocity vanishes at infinity. For given
instantaneous velocities of the particles Ui, Ωi, the fluid velocity v(x) and pressure
p(x) are determined according to (1) and (2). However, the motion of the particles
and the fluid are coupled through the forces and torques acting between them, which
are formulated as follows. Let Fi denote the net force exerted by the fluid on the i-th
particle, and let Li denote the net torque exerted by the fluid about the center of the
i-th particle. These net force and torque are obtained by integrating the fluid stress
over the entire surface of the particle Si, and are given by

Fi =

∫∫

Si

σ · nds

Li =

∫∫

Si

(x− xi)× (σ · n)ds,
(3)
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where n is a unit normal to the boundary Si at x, ds is an area element, σ is
the local stress tensor of the fluid, given by σ = −pI + µ(∇v + ∇Tv), and I is the
identity matrix. Despite the complex coupling between (1), (2) and (3), a fundamental
property that stems from the linearity of Stokes equations is the existence of a linear
relation between forces/torques and velocities of the particles, as follows. Let U =
(U1 . . .Un Ω1 . . .Ωn)T be a vector augmenting the linear and angular velocities of
all particles. Similarly, let F = (F1 . . .Fn L1 . . .Ln)T be the vector augmenting the
net forces and torques exerted by the fluid on the particles. Then the linear relation
between velocities and forces is expressed as (cf. [30])

F = RU. (4)

The matrix R is called the resistance matrix, and depends only on the positions of all
particles. A fundamental property of R is that it is symmetric and positive definite
[30]. Additionally, it is not diagonal or block-diagonal, a fact that represents the
hydrodynamic coupling between the particles. Nevertheless, the magnitude of the
coupling terms between two particles is monotonically decreasing as a function of the
separation distance between them.

In many cases, it is more convenient to work with the inverse relation U = MF,
whereM = R−1 is called themobility matrix. The mobility matrix can be decomposed
into blocks in the following way, demonstrated for two particles with indices α and
β.





Uα

Uβ

Ωα

Ωβ




=





Mαα

UF Mαβ

UF Mαα

UL Mαβ

UL

Mβα

UF Mββ

UF Mβα

UL Mββ

UL

Mαα

ΩF Mαβ

ΩF Mαα

ΩL Mαβ

ΩL

Mβα

ΩF Mββ

ΩF Mβα

ΩL Mββ

ΩL









Fα

Fβ

Lβ

Lβ




(5)

Since the mobility matrix is also symmetric, its matrix blocks in (5) are related as
Mαβ

UF = (Mβα

UF )
T , Mαβ

ΩF = (Mβα

UL)
T , and so on. For more than two particles, the mo-

bility matrix is constructed similarly, where each block represents the hydrodynamic
interaction of a pair of particles or a particle with itself. In general, the exact depen-
dence of the resistance or mobility matrices on the configuration cannot be formulated
explicitly, except for special cases such as a single spheroidal particle or two spheres
[30]. However, in many cases, R or M can be approximated under certain scaling ar-
guments and physical assumptions. In this work, we adopt the hydrodynamic model
proposed by Swan and Brady [67] for far-field approximation of the mobility matrix,
as detailed next.

2.2. Far-field approximation of the mobility matrix. We now review the
derivation of the far-field approximation of the mobility matrix due to [67], for com-
pleteness of the presentation. A reader which is less interested in the details of the
fluid-mechanical model may skip to subsection 2.3. The model in [67] considers multi-
ple spherical particles in the presence of a plane wall, assuming that the sphere-sphere
and sphere-wall separation distances are large compared to the radii of the spheres.
For our purpose, we assume that all spheres have equal radius a. The basic building
block in this model is the Green’s function, which gives the singular solution for the
fluid velocity field v(x) in (1) under a concentrated point force. Green’s function for
unbounded fluid (also known as Stokeslet) is given by

G0(x;y) =
1

8πµ

(
I

‖x− y‖ +
(x− y)(x− y)

‖x− y‖3

)
. (6)
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For a concentrated force f applied at a point y, the fluid velocity is obtained as
v(x) = G0(x;y)f . In the case where the fluid is bounded by an infinite plane wall,
the Green’s function is modified in order to account for the no-slip boundary condition
on the wall, and is given by [67]

G(x,y) = G0(x,y)−G0(x,y
′)+h(y)2∇2

y′G0(x,y
′)·P+2h(y)(P·∇2

y′G0(x,y
′)·nw)

T ,
(7)

where w is a point on the wall, nw is an outward unit normal to the wall, P =
I− 2nwnT

w, and y′ = P · y is the “image point” of y beyond the wall. Exploiting the
linearity of Stokes equations (1), the Green’s function can be utilized to obtain the
fluid velocity induced by a force distribution f(y) along the boundary Sβ of a sphere
β as

v′(x) =

∫∫

Sβ

G(x,y) · f(y)ds. (8)

The next step is to expand (8) in surface moments of the force distribution f(y) to
obtain

v′(x) =

(
1 +

a2

6
∇2

y

)
G(x,y)

∣∣∣∣
y=xβ

· Fβ +
1

2
∇2

y ×G(x,y)

∣∣∣∣
y=xβ

· Lβ + . . . (9)

Note that we truncate the expansion in the moment level, while [22] and [67] also
include the next term of stresslet (i.e. in the terminology of [22], we choose to work
with the F-T version). The final ingredient is Faxén’s formula, which relates the
disturbance velocity field v′(x) around a sphere α to its linear and angular velocities,
as follows:

Uα =
Fα

6πµa
+

(
1 +

a2

6
∇2

x

)
v′(x)

∣∣∣∣
x=xα

(10)
Ωα =

Lα

8πµa3
+

1

2
∇x × v′(x)

∣∣∣∣
x=xα

.

Combining (9) and (10), one obtains the hydrodynamic interaction between two par-
ticles α and β, which is given by the block mobility matrices of (5) as

Mαβ

UF =

(
1 +

a2

6
∇2

x

)(
1 +

a2

6
∇2

y

)
G(x,y)

∣∣∣∣
y=xβ

x=xα

Mαβ

ΩF =
1

2
∇2

x ×
(
1 +

a2

6
∇2

y

)
G(x,y)

∣∣∣∣
y=xβ

x=xα

(11)

Mαβ

ΩL =
1

2
∇2

x ×
1

2
∇2

y ×G(x,y)

∣∣∣∣
y=xβ

x=xα

Note that when accounting for the self-interaction terms of the particle α with itself
(i.e. when α = β), the disturbance velocity v′(x) in Faxén’s formula (10) is computed
by replacing the Green’s function G(x,y) in (6) with Gw(x,y) = G(x,y)−G0(x,y).
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Fig. 2.1. (a) Two spheres near a wall. (b) The two-sphere swimmer model. (c) The 2+1-sphere
swimmer model.

That is, only the reflection term is counted while the singular Stokeslet term is dis-
carded. Thus, the expressions of the “self” mobility block matrices are given by

Mαα

UF =
I

6πµa
+

(
1 +

a2

6
∇2

x

)(
1 +

a2

6
∇2

y

)
Gw(x,y)

∣∣∣∣
y=xα

x=xα

Mαα

ΩF =
1

2
∇2

x ×
(
1 +

a2

6
∇2

y

)
Gw(x,y)

∣∣∣∣
y=xα

x=xα

Mαα

ΩL =
I

8πµa3
+

1

2
∇2

x ×
1

2
∇2

y ×Gw(x,y)

∣∣∣∣
y=xα

x=xα

(12)

The explicit expressions for the block mobility matrices, which are detailed in [67]
are highly complicated. As a simple example, we give here the mobility matrix for
two spheres of equal radii a=1 whose center-center line is parallel to the y-axis near a
plane wall at y=0 as shown in Fig. 2.1(a). Due to symmetry of the configuration, we
focus here on motion in xy-plane only. The mobility relation of velocities in xy-plane
and angular velocities about z-axis with linear forces in xy-plane and torques about
z-axis is given by





U1x

U1y

U2x

U2y

Ω1z

Ω2z




= − 1

6πµ





m11 0 m13 0 m15 m16

0 m22 0 m24 0 0
m13 0 m33 0 m35 m36

0 m24 0 m44 0 0
m15 0 m35 0 m55 m56

m16 0 m36 0 m56 m66









F1x

F1y

F2x

F2y

L1z

L2z




, (13)
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where m11 = 1− 9
16h + 1

8h3 − 1
16h5 , m22 = 1− 9

8h + 1
2h3 − 1

8h5 ,

m13 = 3
4d + 1

2d3 − 3
4(d+2h) +

1
(d+2h)3 − 2

(d+2h)5 − 3(d+h)
2(d+2h)2 + 3(d+h)2

2(d+2h)3 ,

m15 = − 3
32h4 , m16 = 3

4d2 − 3
4(d+2h)2 + 3h

2(d+2h)3 − 3
2(d+2h)4 ,

m24 = 3
2d − 1

d3 − 3
2(d+2h) +

4
(d+2h)3 − 4

(d+2h)5 − 3(d+h)
(d+2h)2 + 3(d+h)2

(d+2h)3 ,

m33 = 1− 9
16(d+h) +

1
8(d+h)3 − 1

16(d+h)5 ,

m35 = − 3
4d2 − 3

4(d+2h)2 − 3
2(d+2h)4 + 3(d+h)

2(d+2h)3 ,

m36 = − 3
32(d+h)4 , m44 = 1− 9

8(d+h) +
1

2(d+h)3 − 1
8(d+h)5 ,

m55 = 3
4 − 15

64h3 , m56 = − 3
8d3 − 15

8(d+2h)3 , m66 = 3
4 − 15

64(d+h)3 .

2.3. The dynamics of planar swimming. We now utilize the hydrodynamic
relations derived above in order to formulate the dynamics of swimming as a control
system. Consider a simple model of a micro-swimmer comprised of n rigid spheres of
radius a whose centers lie within the xy-plane. The spheres are connected by a rigid
structure of thin rods, called the body of the swimmer. The swimmer is submerged in a
quiescent viscous fluid which is bounded by an infinite plane wall at y=0 [Fig. 2.1(b-
c)]. The spheres labeled 1 . . .m are actuated by rotation about their z-axis which
is fixed to the body. Note that even though the fluid motion in this case is three-
dimensional, symmetry of the spheres’ configuration about the plane z = 0 implies
that the motion of the swimmer is restricted to the xy-plane. Therefore, all vectors of
position, linear velocity, and forces will be considered as elements of IR2 representing
their (x, y)-components, while torques and angular velocities will be considered as
scalars representing the component around z-axis, as in Eq. (13). Let Fw be a world-
fixed reference frame, and let Fb be a reference frame attached to the swimmer’s
body. Let ui∈IR, be the angular velocity of the ith sphere with respect to the body,
which is assumed to be controlled by the swimmer, and denote u = (u1 . . . um)T . Let
q = (x, y, θ)T ∈ SE(2) denote the position and orientation of the body frame Fb in
xy-plane, expressed in the world frame Fw. Let ri ∈ IR2 be the constant position
vector of the i-th sphere expressed in the body frame Fb. The absolute position of
the i-th sphere is thus given by

xi = rb +D(θ)ri, where rb = (x, y) and D(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (14)

The linear velocity of each sphere is obtained by differentiation of (14) as

ẋi = rb + JD(θ)riθ̇ where J =

(
0 −1
1 0

)
. (15)

The angular velocity of each sphere about the z-axis is given by

ωi =

{
θ̇ + ui 1 ≤ i ≤ m
θ̇ i > m

. (16)
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Using only planar components, the vector of spheres’ velocities isU = (ẋ1 . . . ẋ1,ω1 . . .ωn).
The velocity relations in (15) and (16) can then be written in matrix form as

U = Tq̇+Eu. (17)

The key point in determining the instantaneous velocity of the swimmer is the
fact that under the low-Reynolds-number assumption, the motion of the swimmer is
quasi-static, implying that the net force and torque acting on it must vanish. Let
Fb = (fx, fy, τz) denote the net force and torque acting on the swimmer’s rigid frame
Fb. It is assumed that the hydrodynamic resistance of the thin rigid frame is negligible
compared to that of the spheres, so that the hydrodynamic forces and torques acting
on each sphere are transferred directly to the body. The net force and torque on the
body are thus given by Fb = F1+ . . .Fn and τb = rT1 J

TF1+L1z + . . . rTnJ
TFn+Lnz.

Using only the (x, y)-components of the forces Fi and the z−component of the torques
Li as in (13), it can be verified that in matrix form, this relation is simply given by

Fb = TTF. (18)

Substituting the resistance relation (4) and the kinematic relations (17) and (18), into
the quasi-static equilibrium condition Fb = 0 gives

TTR(Tq̇+Eu) = 0. (19)

Finally, (19) can be inverted to obtain the relation between the swimming velocity q̇
and the input u as

q̇ = G(q)u, where G(q) =
(
TTRT

)−1
TRE. (20)

Equation (20) describes the dynamics of the swimmer, formulated as a driftless non-
linear control system [13].

In the presence of an infinite wall at y = 0, an important property of (20) is its
invariance under shifting parallel to the wall, in the x direction. That is, G(q) in
(20) is independent of x, and depends only on the coordinates y and θ. Therefore,
denoting q′ = (y, θ), we define the reduced dynamics which is given by

q̇′ = G′(q′)u (21)

where G′ is the lower 2×m block of G(q) in (20). In the next two sections, we study
the properties of equilibrium points of (21) under fixed input u = ue. Physically, these
equilibria correspond to steady motion of the swimmer in pure translation parallel to
the wall, with fixed orientation and distance from the wall q′

e = (ye, θe)1.
Example: the two-sphere swimmer perpendicular to the wall.

Consider the two spheres of radius a = 1 near a wall, whose mobility matrix was
given in (13) in the previous example. The spheres are now connected by a thin rigid
rod of length d, and are actuated by rotation about z-axis by angular velocities u1, u2

with respect to the rod [Fig 2.1(b)]. Assigning a reference frame Fb at the center of
the rod, the motion of the swimmer is governed by equation (20). The closed-form
expression for G(q) even for this simple model is extremely long and complicated.

1Mathematically, q′
e is called a relative equilibrium [50] of (20), as it involves motion along x.
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Fig. 2.2. (a) Motion snapshots of the two-sphere swimmer near wall with u1 = −u2. (b)
Illustration of the reversing symmetry.

Therefore, we focus on the orientation θ = 0 for which the rod is perpendicular to the
wall. In this case, the elements of G(q) are given by

G(q) =




g11 g12
0 0
g32 g33



 , (22)

where

g11 = 1
w11w33−w2

13

(
w13(r55 + r56 + (r15 − r35)

d
2 )− w33(r15 + r35)

)

g12 = 1
w11w33−w2

13

(
w13(r56 + r66 + (r16 − r36)

d
2 )− w33(r16 + r36)

)

g31 = − 1
w11w33−w2

13

(
w11(r55 + r56 + (r15 − r35)

d
2 )− w13(r15 + r35)

)

g31 = − 1
w11w33−w2

13

(
w11(r56 + r66 + (r16 − r35)

d
2 )− w13(r16 + r36)

)

w11=r11+2r13+r33, w13=r15+r16+r35+r36+(r11−r33
d
2 ), w22=r22+2r24+r44,

w33=r55+r56+r66+(r15+r16−r35−r36)d+(r11−2r13+r33)
d2

4 ,

and rij is the ij-element of the resistance matrix R = M−1, where M is given in (13).
In the case of unbounded fluid, i.e. in the limit h → ∞, the elements of G in (22)
simplify to

g12 = −g11 =
d

2d3 + 1
, g31 = g32 = −2

8d3 − 9d2 − 4

6d5 + 32d3 − 51d2 − 16

Therefore, an input u of equal and opposite angular velocities −u1 = u2 > 0 will
result in pure translation motion of the swimmer in the positive x direction, due to
the axisymmetry of the configuration. This is consistent with the results in [47] for the
axisymmetric twirling torus, and its 2D equivalent of two connected counter-rotating
cylinders. However, the presence of a wall, i.e. h < ∞, destroys the axisymmetry,
and under the same input u the swimmer rotates and deviates away from the wall.
This is illustrated in Fig. 2.2(a) which depicts snapshots of the swimmer motion
generated by numerical simulation of the two-sphere swimmer with a = 1, d = 6
under initial configuration y = 10 and θ = 0 and u = (−1, 1)T . Motivated by this
example, the rest of the paper will focus on studying the possibility of swimming in
pure translation parallel to a wall and analyzing the dynamic stability of such motion
under perturbations.
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3. Dynamics of the two-sphere swimmer. In this section we consider the
the two-sphere swimmer model shown in Fig. 2.1(b), and analyze the dynamics of
its motion near a wall. An important observation is that this swimmer possesses
fore-aft symmetry. That is, it has a reflection symmetry about the line connecting
the two spheres. This symmetry implies the following key relation on the equation
of swimming (20) under mirror reflection of the swimmer’s configuration about the
orientation perpendicular to the wall θ=0, which is given by

G(Sq) = −SG(q), where S = diag(−1, 1,−1). (23)

The physical meaning of (23) is that a mirror-reflected swimmer will swim along a
reflected trajectory under input velocities u with opposite sign [Fig. 2.2(b)]. Since
reversing the input u is equivalent to reversing the time, a relation of the form (23) is
formally called reversing symmetry of a dynamical system [44], where multiplication
by the matrix S in (23) is called the reversing symmetry action. A direct consequence
of (23) is that elements on the second row of G(q) are odd functions of θ, while
elements on the third row of G(q) are even functions of θ, thus they satisfy:

g2j(θ = 0) = 0 (24)

∂

∂y
g2j

∣∣∣∣
θ=0

= 0 ,
∂

∂θ
g3j

∣∣∣∣
θ=0

= 0 (25)

for j = 1, 2, where gij is the (i, j) element of G(q). The fore-aft symmetry of the
swimmer has a direct implication on the existence of steady translation parallel to
the wall, as stated in the following theorem.

Theorem 3.1. Consider a planar low-Re swimmer with two inputs u∈IR2 whose
motion is governed by the equation (20), near an infinite no-slip wall located at y = 0.
Assume that the swimmer possesses fore-aft symmetry such that the relation (23)
holds. Then for any given distance from the wall y = ye, there exist an input ue *= 0
such that q′

e = (ye, 0) is an equilibrium point of the reduced dynamics (21) under the
fixed input u = ue.

Proof. The relation (24) implies that for θ = 0, the ẏ-component of q̇ in (20)
vanishes for any y and u, as seen in the structure of G(q) in (22). Therefore, for
given distance from the wall y = ye, taking input velocities ue = α(−g32, g31) where
g31, g32 are evaluated at (y, θ)=(ye, 0) and α ∈ IR, the θ̇- component of q̇ also vanishes,
and q̇ has the form q̇=(vx, 0, 0), which completes the proof.

The theorem implies that for the two-sphere swimmer, steady translation parallel
to the wall at the orientation perpendicular to the wall θ = 0 is always possible
by appropriately choosing the input u. The physical meaning of the chosen input
ue is as follows. When the two sphere-swimmer is placed near a wall, the sphere
closer to the wall experiences larger hydrodynamic resistance than the other sphere.
Therefore, rotating the spheres by equal and opposite angular velocities u1 = −u2

generates a nonzero net torque about the rod’s center, which must be canceled by
rigid-body rotation of the swimmer, as illustrated in Fig. 2.2(a). Nevertheless, for
each separation distance from the wall, there exist a specific ratio of input velocities
u1 and u2 that compensates for the difference in resistances by rotating the sphere
closer to the wall more slowly. In that case, the resulting net torque is zero under
pure translation. As an example, Fig. 3.1(a) plots the ratio u2/u1 which is required
in order to maintain translation parallel to the wall at a distance δ=h−a from the
wall as a function of δ, for two-sphere swimmers with a=1 and three different spacing
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Fig. 3.1. (a) The ratio u2/u1 for parallel translation as a function of δ. (b) The product bc as
a function of δ.

distance d between the spheres. Is can be seen that u2/u1 is always negative, that
is, the spheres are counter rotating (if the two spheres rotate in the same direction,
the swimmer’s body must rotate in the opposite direction in order to balance the net
torque). Moreover, |u2/u1| is increasing when δ is small, and converges to 1 as δ→∞,
which is precisely the case of straight-line swimming in unbounded fluid.

3.1. Dynamic stability of the two-sphere swimmer near wall. We now
analyze the dynamic stability of parallel translation near the wall for the two-sphere
swimmer with fixed input u= ue. This is equivalent to characterizing the stability
of the equilibrium point q′

e = (ye, 0) of (21), which is summarized in the following
theorem.

Theorem 3.2. Consider a planar low-Re swimmer with two inputs u∈IR2 whose
motion is governed by the equation (20), near an infinite no-slip wall located at y = 0.
Assume that the swimmer possesses fore-aft symmetry such that the relation (23)
holds. For a given input u=ue and the corresponding equilibrium point q′

e = (ye, 0)
of (21), define

b =

(
g31 ·

∂g22
∂θ

− g32 ·
∂g21
∂θ

)∣∣∣∣
q′=q′

e

c =

(
g31 ·

∂g32
∂y

− g32 ·
∂g31
∂y

)∣∣∣∣
q′=q′

e

,

(26)

where gij is the (i, j) element of G(q) in (20). Then the dynamic stability of q′
e under

fixed input is characterized as follows.
• If bc > 0, then q′

e is unstable
• If bc < 0, then q′

e is marginally stable. Moreover, under sufficiently small
initial perturbations about q′

e, the solution of (21) is periodic.
Proof. The local stability of q′

e is determined by the linearization of (21) about
q′
e, given by

δq̇′ = Aδq′, where A =
∂G′(q′)

∂q′

∣∣∣∣
q′

e

· ue. (27)

The classical Hartman-Grobman theorem (cf. [31]) implies that a sufficient condi-
tion for asymptotic stability of q′

e is that all eigenvalues of A have negative real
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parts. However, invoking the constraints (25) and substituting ue=α(−g32, g31), the
linearization matrix A takes the form

A = α

(
0 b
c 0

)
,

where b and c are defined in (26). The characteristic polynomial of A for α = 1 is
∆A(λ) = λ2 − bc. The eigenvalues of A are thus a symmetric pair2 ±λ, which can
either be real or purely imaginary, depending on the sign of bc. In case where bc > 0,
the two eigenvalues of A are a real pair, one of which is positive, indicating that q′

e

is an unstable saddle point. In case where bc < 0, the two eigenvalues of A form a
purely imaginary pair having zero real part. In general, this fact is not sufficient to
deduce stability or instability of q′

e. However, the reversing symmetry imposes extra
structure on the system, as follows. Since θ = 0 is the “mirror axis” of reflection,
the equilibrium point q′

e lies on the fixed set of the reversing symmetry, that is,
q′
e =S′q′

e, where S′ = diag(1,−1) is the (y, θ)-component of the reversing symmetry
S in (23). In this case, a classical theorem by Devaney [19, 44] states that q′

e is a
reversible Lyapunov center, which is a marginally stable equilibrium point enclosed
by a one-parameter family of periodic orbits.

According to the theorem, the stability characterization of q′
e strongly depends

on the sign of the product bc, defined in (26). In order to compute bc, the partial
derivatives of the matrix G with respect to the coordinates y and θ must be com-
puted explicitly. These derivatives can be obtained by applying the chain rule on the
definition of G(q) in (20), and are given by

∂G

∂y
= MbT

TR
∂M

∂y
R(I−TMbT

TR)E

∂G

∂θ
= Mb

(
(TTR

∂M

∂θ
− ∂T

∂θ

T

)R(I−TMbT
TR) +TTR

∂T

∂θ
MbT

TR

)
E,

(28)

where Mb = (TTRT)−1 and I is the identity matrix. The derivatives of the mobility
matrix M = R−1 are obtained by direct differentiation of the expressions in [67].
Using these expressions, the terms b and c in (26) were obtained, and their product was
numerically computed. Fig. 3.1(b) shows a plot of bc as a function of the equilibrium
distance from the wall δ, for a = 1 and three different values of the center-center
distance d. The figure reveals that when δ is greater than a lower bound, the product
bc is negative. Thus, according to Theorem 3.2, q′

e is a marginally stable equilibrium
point enclosed by a one-parameter family of periodic orbits.

Example: phase portraits of the two-sphere swimmer dynamics near
a wall. Consider the two-sphere swimmer with a = 1, d = 10 and input ue =
(1,−1.0068), which corresponds to an equilibrium point q′

e = (9, 0◦), that is, δ = 3.
The two eigenvalues of the linearization of (21) about q′

e are ±0.77i × 10−3 (since
bc < 0, see Fig. 3.1(b)), so that q′

e is a Lyapunov center. Fig. 3.2(a) plots the phase
portrait of solution trajectories of (21) in (θ, y)-plane under fixed input u=ue. The
dashed curve corresponds to configurations at which one of the spheres touches the
wall, thus they bound the physically permissible region in (y, θ) plane. The solid

2this is typical to systems with reversing symmetry [44], for which the existence of a solution of
(27) that evolves as eλt implies the existence of a reflected and time-reversed solution evolving as
e−λt.
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Fig. 3.3. (a) Periodic oscillations near the wall (b) Spiral motion near the wall (c) det G′ as
a function of θ.

curves are solution trajectories of (θ, y) under different initial conditions3. It can be
seen that the equilibrium point q′

e = (0◦, 9) (marked by ’+’ in the figure) is enclosed
by a family of closed curves. These curves represent periodic (θ, y)-solutions under
small perturbations about q′

e, which correspond to oscillating motion along the wall,
as shown in Fig. 3.3(a). When the initial perturbation about q′

e is large, a differ-
ent type of solution trajectories emerge, which no longer form closed curves around
q′
e. These curves correspond to spiralling motion along the wall as shown in Fig.

3.3(b), under which the swimmer’s orientation θ(t) grows monotonically. Additional
off-symmetric equilibrium points also exist at θ = ±79.85◦, marked by ’×’ in the fig-

3Note that the phase portrait is 360◦-periodic in θ, and has a reflection symmetry about the
lines θ=0◦, θ=180◦, as implied by the reversing symmetries of the system.
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ure. These are unstable saddle points. The separatrix curves which separate between
the two types of solution curves (oscillating and spiralling motion) are trajectories
that emanate from (and converge to) these saddle points.

As a second example, consider the same swimmer under fixed input ue = (1,−1.0774),
which corresponds to an equilibrium point q′

e = (0◦, 7), that is, δ = 1. In this case,
q′
e is an unstable equilibrium with corresponding linearization eigenvalues of ±0.0018

(since bc > 0, see Fig. 3.1(b)). Thus, any perturbation about the equilibrium point
q′
e (which corresponds to steady parallel translation along the wall) results in solution

trajectories which correspond to the spiralling motion shown in Fig. 3.3(b).
The above analysis shows that translation parallel to the wall for the two-sphere

swimmer in the perpendicular orientation θ = 0 cannot be asymptotically stable. In
the following, we seek for steady parallel translation, which corresponds to equilibrium
points of (21) for different orientations θ *= 0. A necessary condition for existence of
an equilibrium point of (21) under constant input u = ue is that the columns of
the matrix G′(q′) are linearly dependent, that is, det G′ = 0. In the following, we
numerically compute det G′ as a function of the orientation θ for the two-sphere
swimmer with d = 10, while the wall-separation δ is held constant. The results are
shown in Fig. 3.3(c) for δ = 5 and δ = 2. It can be seen that for large separations
such as δ = 5, the only zero-crossing is at θ = 0, whereas for the smaller separation
δ = 2, there exists an additional zero-crossing point at θ = 61.25◦, associated with
input vector ue=(1,−1.017)T . Numerical computation of the linearization matrix A
and its eigenvalues gives λ1=−0.0012, λ2=0.0008, hence the equilibrium point q′

e is
unstable. Similar results which were obtained numerically for other values of d and δ
indicate that these additional equilibrium point are always unstable, and correspond
to the saddle points appearing in the phase portrait of Fig. 3.2(a) (marked by ’×’).

4. Dynamics of the 2+1-sphere swimmer. In this section we study the
model of the 2+1-sphere swimmer, shown in Fig. 2.1(c). This model is an extension of
the two-sphere swimmer, in which an additional unactuated sphere is rigidly attached
to the swimmer’s body. The three spheres form an isosceles triangle with height l, as
shown in Fig. 2.1(c). First, consider the case l = 0 for which the centers of the three
spheres are collinear. In this special case, the property of reversing symmetry in (23)
also holds for the 2+1-sphere swimmer. Therefore, Theorem 3.1 implies the existence
of steady motion parallel to the wall, with an equilibrium point q′

e = (ye, 0) of (21)
under a constant input u=ue. Moreover, according to Theorem 3.2, the stability of
q′
e is determined by the sign of bc, defined in (26). The product bc was numerically

computed for the 2+1-sphere swimmer with a=1, d=10 and l=0 as a function of the
distance from the wall δ. The result is shown in the dashed curve in Fig. 3.1(b), and
indicates that bc < 0 for any distance δ > 0. According to Theorem 3.2, this implies
that q′

e is again a reversible Lyapunov center and that the dynamic trajectories of the
swimmer are similar to the phase portrait of Fig. 3.2(a).

Next, we consider the general case of l *= 0. In this case, the reversing symmetry
relation (23) does not hold. Therefore, swimming parallel to the wall at θ = 0 is
generally impossible. Nevertheless, it can be possible under different orientations
θ *=0. To illustrate this, we regard l as a parameter of the system which is changed
continuously from zero. Consider again the computation of det G′ as a function of
θ for a fixed distance δ from the wall. For the swimmer with l = 0, det G′ vanishes
at θ=0 due to the reversing symmetry. Under a small change in l, det G′ changes
continuously, and its zero crossing point shifts from θ=0 to some nonzero θ. As an
example, det G′ for the 2+1-sphere swimmer with d=10, l=2 and δ=3 is shown
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Fig. 4.1. Simulation of the 2+1-spheres swimmer under constant input. (a) Plot of y(t). (b)
Plot of θ(t). (c) Trajectory in (θ, y)-plane. (d) Snapshots of swimmer’s motion near the wall.

in the dashed curve in Fig. 3.3(c). For these values, det G′ vanishes at θ=−4.19◦.
This corresponds to an equilibrium point q′

e=(8.987,−4.19◦) of (21) under the input
ue=(1, 1.0086). Moreover, since the equilibrium point q′

e changes continuously with l,
the eigenvalues of the linearization matrixA about q′

e in (27) also change continuously.
For l = 0 the two eigenvalues are a purely imaginary pair λ = ±iω0 (since bc < 0).
Thus, under a small change in l they change to a complex conjugate pair λ = σ± iω.
From the definition of A in (27), it is clear that the eigenvalues scale linearly with
multiplying ue by a scalar. Therefore, the sign of ue can be appropriately chosen in
order to guarantee that σ < 0, leading to asymptotic stability of q′

e. As a numerical
example, we simulate the dynamics of the 2+1-sphere swimmer with d = 10 and
l = 2 under the fixed input ue = (1, 1.0086), corresponding to the equilibrium point
q′
e=(8.987,−4.19◦) with linearization eigenvalues of (−0.3984± 1.5341i) · 10−3. Fig.

4.1(a)-(b) show simulation results of y(t) and θ(t) for this swimmer under initial
perturbation of q′(0)=q′

e + (10, 20◦). Fig. 4.1(c) plots the trajectory in (θ, y)-plane,
and Fig. 4.1(d) shows snapshots of the swimmer’s motion along the wall. The plots
clearly indicate that q′

e is asymptotically stable and that the swimmer converges to
translation parallel to the wall.

It is important to note that the stability result is not necessarily limited to the
specific model of the 2+1-sphere swimmer. Any low-Re swimmer with a fixed shape
whose nominal structure satisfies the reversing symmetry relation (23) can break its
fore-aft symmetry properly in order to be able to track a straight wall with asymptotic
stability. It is also remarkable that this stabilization is achieved passively (or in “open
loop”) without incorporating any on-board position sensing or feedback control. The
stabilization here is a purely hydrodynamic effect due to the interaction of the wall
and the swimmer’s geometry.

Next, we numerically study the influence of the strength of the fore-aft symmetry
breaking on the stability of swimming parallel to the wall. This is done by consid-
ering the 2+1-sphere swimmer with d = 6 and a = 1 while the symmetry-breaking
parameter l, regarded here as a signed distance, varies in the range [−10, 10]. For
a fixed separation distance δ = 2, we numerically compute the orientation angle of
the swimmer at equilibrium configuration q′

e (by finding the zero crossing of detG′)
and the corresponding input ue. The magnitude of ue is then chosen such that the
swimmer moves in unit velocity in along positive x direction. The eigenvalues of the
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Fig. 4.2. (a) The equilibrium orientation θe as a function of l for the 2+1-spheres swimmer.
(b) Locus of the linearization eigenvalues in complex plane for l ∈ [0, 10]. (c) The damping ratio ζ
as a function of l

linearization matrix of (21) about q′
e are derived by computing the matrix A in (27)

according to (28). Fig. 4.2(a) plots θe as a function of l. It can be seen that θe is an
odd function of l, since the swimmer possesses an additional reflection symmetry with
respect to reversing the sign of l. Fig. 4.2(b) shows the locus of the two eigenvalues
of the linearization matrix A in the complex plane while l varies within [0, 10]. It can
be seen that for l=0 the eigenvalues are purely real, then they move to the left half
plane for l>0, i.e. q′

e becomes asymptotically stable. Then at l=7.22 the eigenvalues
cross the imaginary axis again, and q′

e becomes unstable for l > 7.22. For the range
l<0, which is not shown in the figure, the eigenvalues simply reverse their signs, and
the stability characterization is reversed. In order to quantify the stability of q′

e, a
natural measure is the damping ratio, defined as ζ(σ ± iω) = −σ/

√
σ2 + ω2, which

corresponds to the non-dimensional rate of convergence to q′
e. Fig. 4.2(c) plots ζ as a

function of l, indicating that ζ attains a maximal value at l ≈ 3.5, where q′
e is “most

stable”.

4.1. Periodic motion of the 2+1-sphere swimmer. The 2+1-sphere swim-
mer with a varying parameter l can be interpreted as a family of dynamical systems
parameterized by l. The changes in the equilibrium point q′

e and its stability charac-
terizations are described in Fig. 4.2. It can be seen in Fig. 4.2(b) that the eigenvalues
cross the imaginary axis for some critical values of l. These values are associated
with a Hopf bifurcation of the system [29], and indicate the possible evolution of pe-
riodic solutions of (21) once l crosses a critical value. As an example, we simulate
the dynamics of the 2+1-cylinder swimmer for a = 1, r = 6 and l = −4, under in-
put ue = (−1, 1.0605) corresponding to an equilibrium point q′

e with δ=2, which is
unstable. Fig. 4.3(a) plots solution trajectories in (θ, y)-plane under different initial
conditions. The phase portrait clearly shows the existence of a periodic orbit, which
is associated with oscillations along the wall, as shown in the snapshots of Fig. 4.3(b).
Moreover, the plot shows that this periodic orbit is locally stable, in the sense that
the solution converge to this orbit under small initial perturbations.

In order to conduct a parametric study and stability characterization of periodic
solutions, we use the Poincaré map, defined briefly as follows. Consider a dynamical
system ẋ = f(x) where x ∈ IRn. A Poincaré section S ⊂ IRn is a smooth manifold of
dimension n−1 which is transversal to solution trajectories of the dynamical system.
Next, we define the Poincaré map P : S → S as P(s0)=x(t=T ), where x(t) is the
solution of ẋ=f(x) under initial condition x(0)=s0 and T =min{t > 0 : x(t) ∈ S}.
That is, the Poincaré map simply tells where the solution under initial conditions
s0 ∈ S hits the Poincaré section S again for the first time. A fixed point sp of the
Poincaré map which satisfies P(sp) = sp simply represents the starting point of a
periodic orbit of the dynamical system. Moreover, the stability of a periodic orbit

17



that passes through sp is equivalent to the stability of the fixed point sp of the discrete-
time dynamical system sk+1=P(sk), which, in turn, is determined by the eigenvalues
of the Jacobian matrix [∂P/∂s] evaluated at s = sp. Specifically, the periodic orbit is
locally stable if and only if the magnitude of all eigenvalues of the Jacobian matrix is
less than one4.

In the case of the 2+1-cylinder swimmer, under a given value of l, the dy-
namical system is given in (21), under the fixed input ue which is associated with
a given equilibrium point q′

e = (ye, θe). We define the Poincaré section as S =
{(y, θ) : θ = θe and y ≥ ye} . S is a one-dimensional manifold which can be simply
parametrized by the y-component of its points. A periodic orbit is represented by a
scalar value yp such that P(yp) = yp. The condition for stability of a periodic orbit
simply reduces to the scalar inequality |dP/dy(y = yp)| < 1. Computation of the
Poincaré map, searching for its fixed points, and computing its Jacobian are done
numerically by integration of (21) using MATLAB. As an example, consider the 2+1-
sphere swimmer with a = 1, d = 6, δ = 2, and l varying within the range [−10, 10].
Fig. 4.3(c) plots yp−ye as a function of l. The vertical line yp = ye represents the
equilibrium solution q′=q′

e. The additional curve with yp > ye represents co-existing
periodic solutions, and also serves as a measure for the amplitude of the periodic
oscillations about q′

e. Due to the reversing symmetry with respect to l, the plot is
symmetric about l=0. The derivative of the Poincaré map λ = dP/dy evaluated at
y = yp is shown in the semi-logarithmic plot of Fig. 4.3(d). The plot is symmetric
with respect to l, that is, the derivative is simply inverted λ → 1/λ so that the stabil-
ity characterization is reversed. Combining the information from this plot with the
knowledge of the eigenvalues associated with linearization about the equilibrium q′

e as
shown in Fig. 4.2(b)-(c) gives a complete stability characterization of the equilibrium
solutions and the periodic orbits. The solid pieces of the line yp= ye and the curve
with yp > ye in Fig 4.3(c) represent stable equilibrium point and stable periodic
orbit, respectively, while the dashed pieces represent unstable solutions.

We now briefly discuss the characterization of the dynamics of the 2+1-sphere
swimmer by interpreting the plot in Fig. 4.3(c) as a bifurcation diagram. For l ∈
(0, 7.22), there exists a stable equilibrium point q′

e and an unstable periodic orbit
represented by yp. It is important to note that this periodic orbit precisely encloses
the region of attraction of the equilibrium point q′

e in (θ, y)-plane. That is, all initial
conditions (θ(0), y(0)) that lie inside the region enclosed by the unstable closed orbit
guarantee convergence of the solution to q′

e. This is illustrated by the phase portrait
of solution trajectories for l = 4, in Fig. 4.3(e). The shaded area enclosed by the
unstable periodic orbit (shown as a dashed curve) is the region of attraction where
solution trajectories converge to the stable equilibrium point q′

e (marked by ’+’).
Note that this phase portrait is precisely a mirror reflection of the phase portrait
in 4.3(a) for l = −4 about the line θ = 0, while the direction of trajectories is also
reversed. When l approaches the critical value of 7.22, the amplitude of the periodic
solution decreases to zero, making it coincide with the equilibrium solution. The
associated eigenvalue of the Poincaré map approaches unity, leading to instability
of the solution. For l > 7.22, the periodic solution disappears and the equilibrium
solution q′ = q′

e becomes unstable. This transition is precisely a Hopf bifurcation
where the eigenvalues of the linearization about q′

e cross the imaginary axis, as shown

4In case where the P is considered as a map from the original domain IRn, its Jacobian matrix has
an additional trivial eigenvalue that equals 1, associated with initial perturbation which is tangent
to the periodic solution, i.e. normal to S.
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Fig. 4.3. (a) Phase portrait of a stable periodic orbit for the 2+1-spheres swimmer.
(b) Snapshots of the periodic motion along the wall. (c) Amplitude of a periodic orbit yp−ye as
a function of l. (d) Derivative of the Poincaré map P as a function of l. (e) Phase portrait of a
stable equilibrium and its region of attraction.

in Fig 4.2(b). We could not find any periodic solutions for l > 7.22, and numerical
simulations resulted in rapid evolution of q′(t) towards singular solutions of “crashing”
into the wall. When l decreases towards zero, the periodic solution becomes less and
less stable dP/dy → 1. We could not find any periodic solutions for 0 < l < 0.5, since
they are very weakly stable and convergence becomes extremely slow. Unlike the case
of l=7.22, the transition at l=0 is a degenerate Hopf bifurcation. This is due to the
fact that the for l=0, the system possesses a reversing symmetry which implies the
existence of a continuum of marginally stable periodic orbits around q′

e (the reversible
Lyapunov center), as illustrated in the phase portrait of Fig. 3.2(a). The range of
periodic orbits at l = 0 was determined numerically to be yp ∈ [0, 104.25]. Further
investigation of this special bifurcation will be the subject of a future paper. Finally,
for l < 0 the picture is symmetric, where the stability characterization of solutions is
simply reversed, as shown in Fig. 4.3(c).

5. Experimental Results. In this section we report the results of motion ex-
periments on a macro-scale robotic swimmer in a tank of viscous fluid. The experi-
ments were carried out at the Laboratory of Autonomous vehicles at the Department
of Control and Dynamical Systems in Caltech. They are currently limited to verifying
qualitative aspects of the theoretical predictions regarding steady translation parallel
to a wall.

5.1. Description of the experimental setup. The first swimmer prototype
consisted of two nylon cylinders rotated by DC motors. The cylinders were submerged
in a container of viscous fluid while the motors were mounted on a thin metal frame
supported by a flotation cell made of foam. The goals of this flotation structure were to
keep the DC motors outside of the fluid, support the weight of the robot, and confine
its motion to a horizontal plane by suppressing all off-plane motions. A picture of the
2-cylinder swimmer appears in Fig. 5.1(a). In order to keep the Reynolds number
small in the macro-scale system, the test fluid was chosen to be highly viscous silicone
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(a) (b) 

Fig. 5.1. Picture of (a) the 2-cylinder swimmer, and (b) the 2+1-cylinder swimmer. 1. foam
Flotation 2. nylon Cylinders (2.54cm diameter) 3. motors / tracking markers. 4. front Cylinder
(1cm diameter).

oil (Polydimethylsil-oxane), with kinematic viscosity of ν =60,000cSt and specific
gravity of 0.976. The silicone oil was contained in a tank with dimensions of 110cm
x 50cm x 17cm. The dimensions of the cylinders were 6.45cm length and 2.54cm
diameter, and the spacing between their axes was 6.50cm. The reasons for using
cylinders instead of the spheres considered in the theoretical model were the easier
manufacturing and assembly, and the propulsion enhancement due to larger surface
area per given diameter. The cylinders were rotated by using Micromo 1319SR DC
motors connected to a power supply with manually controlled input voltages. The
angular velocity of each cylinder was approximately proportional to the motor input
voltage. In air, the average angular velocity was 60 revolutions per minute at input
voltage of 3V. In silicone oil, the average angular velocity was 30 revolutions per
minute at 6V. Thus, the voltage-velocity ratio was reduced by a factor of four due
to the resistance of the viscous fluid. The Reynolds number for this swimmer was
calculated according to the formula Re = ωad/ν where ω is the angular velocity, a is
the radius of the cylinders and d is the center-to-center distance. The characteristic
Reynolds number was found to be Re =0.017, which justifies the assumption of Stokes
flow.

An infrared Optitrack Flex V:100 camera was used for tracking the motion of
the swimmer. LED’s on the camera emit infrared light and the lens picks up the
reflection from reflective markers attached to the swimmer. Code was written using
the Optitrack SDK in C++ to track the markers positions. Suitable reflecting objects
are determined and located in each frame through programmable threshold variables.
These objects are then ranked based on programmable weighting variables. An ex-
tensive custom filtering algorithm was used to further suppress noises and guarantee
tracking of the two desired markers. The output was calibrated against two markers
mounted along the wall of the container serving as the reference for the x-axis. The
sampling rate of the camera was 100 Hz but due to memory allocation limitations,
we took one out of every five data points (20 Hz).

Two motion experiments were conducted with this swimmer near the wall, as
follows. In the first experiment, the two cylinders were rotating at equal and opposite
angular velocities under input voltages of 6V. In the second experiment, the input
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(a) (b) 

Fig. 5.2. Experimental results. Motion Snapshots of the 2-cylinder swimmer with (a) equal and
(b) unequal motors’ angular velocities. Phase portrait of motion trajectories in (θ, y)-plane for (c)
the 2-cylinder swimmer and (d) the 2+1-cylinder swimmer with unequal motors’ angular velocities.

voltages for the motor closer to the wall was 5V, while the input voltage to the other
motor was 6V, giving unequal angular velocities of the cylinders. Measurements from
the optical tracking system were recorded for both runs. In order to demonstrate the
theoretical predictions on the 2+1-sphere swimmer, another swimmer prototype was
constructed. This swimmer had further improvements for stability and rigidity with
extra supports for the motors to maintain their vertical orientation. A third cylinder
with diameter of 1cm was attached rigidly to the front of the swimmer. A picture
of this swimmer is shown in Fig. 5.1(b). Experiments conducted with this swimmer
include swimming near the wall with input voltages of 6V and 5V for which the
cylinders are rotating at unequal angular velocities, under different initial distances
from the wall.

5.2. Results. Position measurements from the tracking system were recorded
during the motion experiments. The raw measurements from the tracking system
were noisy. We identified a clear source of the nearly periodic noise signal with
frequency 0.5 Hz, which is precisely the rotation frequency of the cylinders (30 RPM).
We believe that the noise is a consequence of some small degree of eccentricity at
the shafts and the cylinders caused by the set screws and additional misalignment,
which excited weak lateral oscillations. In order to suppress these noises, all of the
measured signals were filtered by a discrete-time low-pass Butterworth filter. Video
movies were taken by a web camera for representative runs, and are available online
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at www.technion.ac.il/~izi/research/low_Re_swim/acc2010.
First, we recorded motion of the two-cylinder swimmer under equal and opposite

angular velocities of the cylinders. When the swimmer was placed in the middle of the
tank to simulate unbounded fluid, it moved roughly along a straight line with linear
velocity of 1.5mm/sec. When the swimmer was placed near the wall, it rotated and
deviated away from the wall, as shown in the motion snapshots of Fig. 5.2(a) which
are taken from actual position measurements. The result agrees with the theoretical
prediction and the simulation shown in Fig. 2.2(a). For the case of unequal input
voltages, Fig. 5.2(b) shows snapshots of the measured motion. The result is a nearly
periodic motion, as predicted by the theory and shown in the simulated motion of Fig.
3.3(a). Fig. 5.2(c) shows phase portrait in (θ, y) plane for the two-cylinder swimmer
near the wall with unequal input voltages under four different initial conditions. Note
that the trajectories are slightly diverging, in contrast to the theoretical prediction
of perfectly closed orbits as in Fig. 3.2(a). Possible reasons for this discrepancy are
discussed in the sequel. Fig. 5.2(d) shows phase portrait in (θ, y) plane for the 2+1-
cylinder swimmer near the wall under eight different initial conditions with unequal
input voltages. The thick curve in the plot corresponds to a run where y and θ are
almost constant, indicating the existence of a stable equilibrium of fixed distance from
the wall and fixed nonzero angle. When given an initial perturbation, the theory
predicts asymptotic convergence towards the equilibrium point. Our experiments
were conducted along a distance which was too short to demonstrate convergence.
Nevertheless, using different initial conditions, the phase portrait in Fig. 5.2(d) clearly
shows a tendency of the trajectories to spiral in towards an equilibrium point, which
indicates asymptotic stability, as predicted by the theory and shown in Fig. 4.1(c).

5.3. Discussion. The results display qualitative agreement with the behavior
predicted in the theory. We now list some discrepancies between the experimental
results and the theoretical predictions and suggest possible explanations. First, note
that trajectories of the two-cylinder swimmer with unequal angular velocities in Fig.
5.2(c) are slightly diverging, in contrast to the theoretical prediction of perfectly closed
orbits as shown in Fig. 3.2(a). A possible explanation is that the exact periodic
motion is a consequence of the swimmer being perfectly fore-aft symmetric in the
horizontal plane. In the experimental system, misalignment of the flotation structure
as well as small off-plane inclination of the swimmer during motion can add some
degree of asymmetry which causes the slight divergence. Second, in some of the
trajectories in the phase portrait of Fig. 5.2(d) for the 2+1-cylinder swimmer, there
is a noticeable transient in the beginning of each run until the trajectory is settled to
a spiral curve. This transient can be explained by the duration until the DC power
supply develops the desired input voltages once it is initially turned on. Third, in the
phase portraits of Figures 13 and 14 for the 2-cylinder and 2+1-cylinder swimmers,
some trajectories are intersecting each other, in contrast to the theoretical prediction
shown in Figures 3.2(a) and 4.1(c) which is implied by uniqueness of solutions of the
dynamical system. This can be explained by unmodelled effects that induce higher
order dynamics on top of the simple planar system considered in the theoretical model.
Examples of such unmodelled effects are off-plane dynamics of the swimmer and
inertial effects due to the finite swimmer size. Other possible sources for discrepancies
in the repeatability of runs are associated with the power supply and the DC motors.
The assumption that setting input voltages is equivalent to setting velocities is not
completely precise due to the unmodelled dynamics of the motor’s electric circuit.
Moreover, significant heating of the wires was observed during experiments, which
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may have changed the voltage-velocity ratio and affected the repeatability of the
results. Another possible reason for deviation of the actual input voltages from their
desired values is the low resolution of the manual voltage control in the DC power
supply. Additionally, in several experimental runs, we observed events where one of
the motors was stuck for a few seconds, possibly due to axis misalignment or internal
shaft slippage, which could also explain some of the discrepancies. Finally, a major
limitation of the experimental setup was the limited length of the tank relative to
the size of the swimmer. This limitation precluded the possibility of measuring long-
distance motion of the swimmers and observing steady state convergence to either
steady translation or periodic solutions. Possible ways for future improvements of the
experimental system are discussed in the concluding section.

6. Conclusion. In this paper, we have analyzed the dynamics of a simple low-Re
swimmer model near a wall. We have shown that fore-aft symmetry in the structure
of the swimmer induces a reversing symmetry on its dynamics, which, in turn, implies
the existence of marginally stable periodic solutions of oscillating motion along the
wall. When the fore-aft symmetry is broken by changing the swimmer’s structure,
the steady translation motion as well as the oscillating motion may become open-
loop asymptotically stable, depending on the strength of symmetry breaking. Using
numerical simulations, we have numerically characterized the dynamics and stability
of solutions for the two-sphere and 2+1-sphere swimmer models. The results were then
verified qualitatively by conducting motion experiments with robotic low-Re swimmer
prototypes.

We now briefly discuss limitations of the results and suggest possible directions
for future extensions. We begin by discussing the theoretical part of this work. First,
in spite of the relative simplicity of the swimmer model, its dynamic equations of
motion are very complicated and do not admit closed-form expressions. The result-
ing dynamical system could only be investigated via numerical simulations, since
it was analytically intractable. Thus, there is a need for a simpler model which will
yield explicit dynamic formulation while still capturing the essential ingredients of the
swimmer-wall hydrodynamic interactions. Such a model will be amenable to more de-
tailed parametric analysis. A promising step in this direction has been obtained in the
recent work [17] which consideres a two-dimensional model of a symmetric circular
treadmilling swimmer and utilizes methods of complex-variable analysis to find an
effective singularity description of the system and derive a simple closed-form expres-
sions for the dynamics. Similar techniques has also been employed for more complex
scenarios such as swimming beneath a deformable interface [16], and near a gap in the
wall [18]. Another very recent work [15] utilizes Lorentz reciprocal theorem to derive
the exact expressions for the dynamics of the 2D treadmilling swimmer considered in
[17]. It is believed that employing this techniques will result in explicit formulation of
the swimming dynamics, which will be amenable to more thorough parametric study
of the symmetry-breaking bifurcations discussed in Section 4, which will give more
physical insights into the behavior of more realistic 3D swimmers near a boundary.

Second, in order to more reliably study biological swimmers such as bacteria and
sperm cells, the model should be extended to account for a shape-changing swimmer
near a wall. Two natural starting points are the one-dimensional three-linked-spheres
swimmer model [53, 71] (Fig. 1.1(a)) and Purcell’s three-link swimmer [2, 3, 60] (Fig.
1.1(c)), which displays the simplest form of flagellar-like traveling wave undulations.
In both models, there are two degrees-of-freedom describing the swimmer’s internal
shape which are regarded as inputs, and net motion is generated by prescribing a cyclic
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Fig. 6.1. A swimmer in a circular fluid domain.

change in the shape, called gait. As a preliminary result, a recent work which studies
a chain-of-spheres version of Purcell’s swimmer near a wall [54] analyzes the geometric
symmetries in the dynamic equations and identifies a class of gaits which induces a
reversing symmetry on the swimmer’s discrete-time dynamics, which is analogous to
the reversing symmetry studied here. Work in progress focuses on analysis of the
dynamic stability and development of a more accurate numerical simulation scheme
which will enable detailed parametric study.

Third, the dynamic model should be improved in order to account for addi-
tional physical effects in realistic biological scenarios, such as more geometrically-
complicated fluid domains, the presence of background shear flow, non-Newtonian
fluid (e.g. viscoelastic), leading-order effects of inertia, and so on. In order to im-
prove the reliability and accuracy of simulations, the problem should also be analyzed
by using more powerful numerical techniques such as boundary element methods [59]
and multipole expansions [24, 57] instead of the far-field approximations used here.

Another interesting theoretical model is motivated by future extension of the
experimental setup, which is discussed in the sequel. Consider a low-Re swimmer
in a circular fluid domain as shown in Fig. 6.1. In this case, the fluid domain is
completely bounded and the infinite plane wall is replaced by the circular boundary
of radius r. Fixing the origin at the center of the circle, the coordinates q = (x, y, θ)
describing the position and orientation of a frame attached to the swimmer’s body
can be replaced by the coordinates q̃ = (x̃, ỹ, θ̃), defined by

x̃ = tan−1(y/x) , ỹ = r −
√
x2 + y2 , θ̃ = θ − tan−1(y/x).

That is, x̃ describes the motion along the boundary, ỹ describes the distance from the
boundary (so that the boundary is again at ỹ = 0), and θ̃ describes the swimmer’s
orientation with respect to the radius vector (x, y), see Fig. 6.1. Expressing the
swimming equation (20) with respect to the new coordinates q̃ it is clear that G(q̃)
is independent of the coordinate x̃. Moreover, considering the two-sphere swimmer
(shown in Fig. 2.1(b)) in a circular domain, its equation of motion satisfies exactly the
same reversing symmetry in (23) with respect to the new coordinates q̃. Therefore,
Theorems 3.1 and 3.2 and the rest of the results of this paper will generalize directly
to this case. Moreover, in case where the circle’s radius r is much greater than the
swimmer’s size, it is expected that the its dynamic behavior will be very similar to
the case of an infinite planar boundary.
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Finally, in regard to the experimental result, the preliminary laboratory setup
described here had two main limitations, as follows. First, the limited dimensions of
the tank relative to the swimmer’s size were not suitable for long-distance motion that
demonstrates convergence to steady-state behavior. Second, the control of input volt-
ages instead of angular velocities caused discrepancy between the theoretical model
and the experiment, and perhaps even affected the repeatability of runs due to heat-
ing of the wires and inaccuracies in manually setting the voltages. Consequently, the
experimental results reported here could corroborate the theoretical predictions only
qualitatively. In an ongoing work at the Laboratory of Bio-Dynamics and Mechanics
of Locomotion at the Technion, we are working on designing an improved setup with
a smaller swimmer that has direct control of the motors’ angular velocities through
magnetic encoders and a feedback loop. Additionally, we have constructed a circular
fluid tank and plan to conduct motion experiments in it as well. These future experi-
ments will enable measurement of long-distance motion along the boundary, where we
expect to observe complete convergence of the asymmetric swimmer to steady state
motion along the wall. Moreover, we plan to experimentally investigate the influence
of system parameters on the stability characterization of periodic motion in order to
complete the verification of theoretical findings of this paper.
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