
Distributed Power Allocation for Vehicle Management Systems

Necmiye Ozay Ufuk Topcu Richard M. Murray

Abstract— We consider the problem of designing distributed
control protocols -for aircraft vehicle management systems-
that cooperatively allocate electric power while meeting certain
higher level goals and requirements, and dynamically reacting
to the changes in the internal system state and external
environment. A decentralized control problem is posed where
each power distribution unit is equipped with a controller that
implements a local protocol to allocate power to a certain
subset of loads. We use linear temporal logic as the specification
language for describing correct behaviors of the system (e.g.,
safe operating conditions) as well as the admissible dynamic
behavior of the environment due to, for example, wind gusts and
changes in system health. We start with a global specification
and decompose it into local ones. These decompositions allow
the protocols for each local controller to be separately synthe-
sized and locally implemented while guaranteeing the global
specifications to hold. Through a design example, we show that
by refining the interface rules between power distribution units,
it is possible to reduce the total power requirement.

I. INTRODUCTION AND MOTIVATION

Vehicle management systems (VMS) control and coordi-
nate a number of subsystems of aerial vehicles, e.g., flight
controllers, electrical systems, fuel management, environ-
mental control systems, deicing units, and landing gear, and
interface with additional aircraft subsystems, e.g., sensor
pointing, data acquisition, and pilot and ground interfaces
[1], [2]. Traditional VMS are typically based on federated
architectures in which integrated hardware and software
components realize independent or loosely interconnected
functions [3]. Next generation VMS are expected to incor-
porate distributed computation, advanced networking, and
increased levels of autonomous operations to manage phys-
ical resources, e.g., requirements on electric power gen-
eration and flows. Additionally, the move to autonomous
flight will require the VMS to be interactive in dynami-
cally changing environments and reconfigurable. Integrated
modular avionics (IMA) architectures driven by these trends
provide an alternative to federated architectures. The IMA
architectures utilize high integrity, partitioned platforms that
host multiple avionics functionalities of different criticalities.
The IMA architecture is based on highly-integrated resource
management among the functionalities that share the exist-
ing resources [4], [5] and leads to two competing trends:
possibilities for system-level optimization by dynamically
allocating resources (potentially leading to reductions in

This work was supported in part by the Multiscale Systems Center and
the Boeing Corporation.

Authors are with Control and Dynamical Systems, California Institute
of Technology, Pasadena, CA 91125, USA. necmiye, utopcu,
murray@cds.caltech.edu

weight) come at the expense of extra layers of integration
complexities.

Due to the increasing complexity of VMS, certification
of safety and performance properties will necessitate use
of formal specifications. Furthermore, systematic methods
for verifying systems against these specifications and al-
ternatively for synthesizing correct-by-construction control
protocols will likely reduce the amount of costly validation
experiments and tests. In this paper, building on our recent
work [6], [7], we consider distributed synthesis of dis-
tributed control protocols that enable dynamic configuration
for integrated power management in VMS. In particular,
motivated by the transition to “more-electric” technologies,
we focus on electric power management between a subset
of the subsystems, namely flight controllers, deicing units,
and environmental control. The main design considerations
include: (i) Real-time reconfiguration in a dynamic envi-
ronment: The subsystems interact with their environment
(e.g., due to outside temperature variations and changes in
flight conditions); hence, they need to react to the changes
in their environment in real time. (ii) Fault tolerance: The
power management systems should be able to reconfigure
in the presence of faults or failures to satisfy its safety
and performance requirements. (iii) Resource constraints:
With the increase in the electric loads and introduction
of integrated architectures, the subsystems share limited
electric power resources. (iv) Mixed-criticality subsystems:
The subsystems have varying levels of flight-criticality, e.g.,
flight controllers are highly critical whereas environmental
control is of lower criticality. Therefore, the control protocol
for power management needs to account for the prioritization
of the loads from these subsystems while maintaining non-
flight-critical criteria, e.g., certain measures of passenger
comfort, within acceptable bounds.

We utilize linear temporal logic (LTL) as a formal spec-
ification language and expand our previous work on the
synthesis of protocols for embedded controllers [8], [6],
[7] to the compositional design of correct-by-construction,
distributed protocols for dynamic configuration of integrated
power management. Distribution of both the design and
the implementation is considered to facilitate modularity of
design, e.g., in contract based design [9], to reduce onboard
power and information flows, and to alleviate the computa-
tional complexity of the synthesis procedure [7]. The output
of the synthesis procedure is a hierarchical control protocol
with a discrete planner responsible for the satisfaction of
certain high-level specifications and a continuous control that
implements the discrete plan at the lower level. In this paper,
we focus on the high-level design problem; and assume that

Submitted, 2011 Conference on Decision and Control (CDC)
http://www.cds.caltech.edu/~murray/papers/otm11-cdc.html

Richard Murray

abstract discrete models of underlying continuous variables
and dynamics are available. Such discrete models can be
obtained by using abstraction techniques that have been pro-
posed for representing the behavior of a continuous system
with finitely many states and transitions among them which
capture the relevant dynamics (see, for instance, [10], [11],
[8]).

Synthesizing distributed implementations from global
specifications is generally hard [12], [13], [14]. However for
certain architectures, it is possible to synthesize distributed
controllers for local specifications [15]. For motion planning
of robotic teams, a centralized method for synthesizing
controllers for each robot is proposed in [16]. Our distributed
design procedure is based on decomposing the global specifi-
cation into local ones in order to enable distributed synthesis
and implementation of local control protocols. The feasibility
of the proposed distributed design procedure depends on
the choice of the decomposition structure of the underlying
system, the strength of the coupling (through the exchange
of physical resources and information) between them, and
the expressiveness of the interface models. In section V,
we present three compositional synthesis results, which,
essentially, illustrate how refining the interface models, either
by tightening the constraints on the inter-system flow of
physical resources or by increasing the amount of infor-
mation exchange, suppress the conservatism of distributed
synthesis. In section VI, we demonstrate the utility of these
results on a case study of distributed power allocation for
VMS.

II. PRELIMINERIES

A. Notation and Definitions

Definition 1: A system consists of a set V of variables.
The domain of V , denoted by dom(V), is the set of valua-
tions of V . A state of the system is an element v ∈ dom(V).
Sets of states are denoted by calligraphic capital letters (i.e.,
v ∈ V ⊆ dom(V)).

Definition 2: An atomic proposition is a statement on
system variables υ that has a unique truth value (True or
False) for a given value of υ. Let v ∈ dom(V) be a state of
the system and p be an atomic proposition. We write v � p

if p is True at the state v. Otherwise, we write v � p.
Definition 3: A finite transition system is a tuple T =

(V,V0,R) where V is a finite set of states, V0 ⊆ V is a
set of initial states, and R ⊆ V × V is a transition relation.

An execution of a finite transition system is an infinite
sequence of its states σ = v0v1v2 . . . where v0 ∈ V0, for
each i > 0, vi ∈ V and (vi−1, vi) ∈ R.

Given a state v ∈ dom(V) and a subset X of variables,
the projection of v on X , denoted by v|X ∈ dom(X), is the
part of the state v that contains the valuations of variables
only from X . For an execution σ, σ|X is defined similarly
as σ|X

.= v0|Xv1|Xv2|X
LTL has two kinds of operators: logical connectives and

temporal modal operators. The logic connectives are those
used in propositional logic: negation (¬), disjunction (∨),

conjunction (∧) and material implication (→). The tempo-
ral modal operators include next (�), always (�), eventually
(�) and until (U). An LTL formula is defined inductively
as follows:

1) any atomic proposition p is an LTL formula; and
2) given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∨ ψ, �ϕ and

ϕ U ψ are also LTL formulas.
Other operators can be defined as follows: (i) ϕ ∧ ψ �
¬(¬ϕ ∨ ¬ψ), (ii) ϕ → ψ � ¬ϕ ∨ ψ, (iii) �ϕ � True U ϕ,
and (iv) �ϕ � ¬�¬ϕ.

Semantics of LTL: An LTL formula is interpreted over
an infinite sequence of states. Given an execution σ =
v0v1v2 . . . and an LTL formula ϕ, we say that ϕ holds at
position i ≥ 0 of σ, written vi |= ϕ, if and only if (iff) ϕ

holds for the remainder of the execution σ starting at position
i. The semantics of LTL is defined inductively as follows: (i)
For an atomic proposition p, vi |= p iff vi � p; (ii) vi |= ¬ϕ

iff vi �|= ϕ; (iii) vi |= ϕ ∨ ψ iff vi |= ϕ or vi |= ψ; (iv)
vi |= �ϕ iff vi+1 |= ϕ; and (v) vi |= ϕ U ψ iff there exists
j ≥ i such that vj |= ψ and ∀k ∈ [i, j), vk |= ϕ.

Based on this definition, �ϕ holds at position i of σ iff
ϕ holds at the next state vi+1, �ϕ holds at position i iff ϕ

holds at every position in σ starting at position i, and �ϕ

holds at position i iff ϕ holds at some position j ≥ i in σ.
Definition 4: An execution of a system σ = v0v1v2 . . .

satisfies ϕ, denoted by σ |= ϕ, if v0 |= ϕ.
Definition 5: Let Σ be the set of all executions of a

system. The system is said to be correct with respect to its
specification ϕ, written Σ |= ϕ, if all its executions satisfy
ϕ.

Definition 6: Given an execution σ = v0v1 . . . of a
finite transition system, its set of prefixes is a set of finite
sequence of states, denoted by pref(σ) .= {v0v1 . . . vn :
for some finite integer n ≥ −1}1. The prefixes of an LTL
formula ϕ are given by the set of prefixes of all executions
that satisfy ϕ, and denoted by pref(ϕ) = {σ̂ ∈ pref(σ) :
σ |= ϕ}.

Definition 7: A finite sequence of states α̂ = v0, . . . , vn

is a bad prefix for an LTL formula ϕ if and only if for all
infinite state sequences y = vn+1vn+2 . . ., the concatenation
α̂ · y .= v0, v1, . . . does not satisfy ϕ; that is α̂ · y �|= ϕ.

Definition 8: An LTL formula ϕ is called a safety formula
if and only if any execution σ that does not satisfy ϕ has a
bad prefix.

B. Synthesis of Control Protocols: a Two-Player Game Ap-
proach

In many applications, systems need to interact with their
environments and whether they satisfy the desired properties
depends on the behavior of the environments. For example,
in an aircraft vehicle management system, it is important to
maintain safe operation in a wide range of environment and
system health conditions. In this section, we briefly describe
the work of Piterman, et al. and Bloem et al. [17], [18] on

1
n = −1 corresponds to the empty sequence �.

synthesis of control protocols in the presence of adversarial
environment.

We refer the controllable part of the system as plant.
When we say system, we refer the combined behavior of
the environment and the controlled plant. From Definition
5, for a system to be correct, its specification must be
satisfied by all of its executions regardless of the behavior
of the environment in which it operates. Thus, the synthesis
problem can be viewed as a two-player game between the
plant and the environment: the environment attempts to
falsify the specification while the plant attempts to satisfy
it. Let E and P be the variables of the environment and
the plant respectively. A state s = (e, p) of the game
is in dom(E) × dom(P). A transition of the game is a
move of the environment Re followed by a move of the
plant Rp. A strategy for the plant is a partial function
f : (s0s1 . . . st−1, et) �→ pt which chooses a move of the
plant among its allowable moves based on the state sequence
so far and the behavior of the environment. In this sense
a control protocol is a winning strategy for the plant such
that for all behaviors of the environment the specification is
met. We say that ϕ is realizable if such a control protocol
exists, that is the system can satisfy ϕ no matter what the
environment does. It is important to note that for the class of
games we consider, there is always a finite memory strategy,
i.e., f : (mt−1, st−1, et) �→ (mt, pt) where m is a memory
variable, internal to the control protocol, that takes values
from a finite set [18].

We consider specifications of the form

ϕ
.= (ϕe → ϕs), (1)

where for α ∈ {e, s} both ϕα have the following structure :

ϕα
.= θ

α
init ∧

�

i∈Itα

�ψ
α
i ∧

�

i∈Igα

��J
α
i .

For specifications of this form, known as Generalized Re-
activity(1) (GR(1)) formulas, Piterman, et al. show that
checking its realizability and synthesizing the corresponding
control protocol can be performed in polynomial time in the
number of states of the system. Roughly speaking, in Eq.
(1), ϕe characterizes the assumptions on the environment
and ϕs describes the correct behavior of the system. In
particular, θ

α
init is an atomic proposition characterizing the

initial conditions; ψ
α
i are transition relations (i.e., expressions

over a and �a for atomic proposition a) characterizing safe,
allowable moves and atomic propositions characterizing in-
variants; and J

α
i are atomic propositions characterizing states

that should be attained infinitely often. Many interesting
temporal specifications can be transformed into this form. We
refer the reader to [17] for precise definitions and extensions.

If the specification is realizable, the digital design synthe-
sis tool implemented in JTLV [17] generates a finite state
automaton that represents the control protocol. Assuming
that the environment satisfies ϕe, then at any instance of
time, there exists a node in the automaton that represents
the current state of the system and the system can follow
the transition from this node to the next based on the current

knowledge about the environment. However, if ϕe is violated,
the automaton is no longer valid, meaning that there may not
exist a node in the automaton that represents the current state
of the system, or even though such a node exists and the
system follows the transitions in the automaton, the correct
behavior ϕs is not guaranteed. Note that, in this case, ϕ still
holds since Eq. (1) is satisfied whenever the assumptions on
the environment ϕe are violated.

III. PROBLEM SETUP

We consider a vehicle management system that dynami-
cally allocates electric power among flight controllers, active
deicing units, and cabin pressure and temperature controls.
In [6], we investigated a similar setting and demonstrated
that dynamically allocating power is capable of reducing the
peak power generation requirements (consequently leading to
potential weight reduction) compared to maintaining power
sources dedicated to each functionality at all times. In this
paper, we focus on the structure shown in Fig. 1 where the
primary power distribution controller (in switch 1) routes
the power from generator 1 and the battery to the flight
controllers and active deicing units. The secondary power
distribution controller (in switch 2) routes the power from
generator 2 to the cabin pressure and temperature control.
Power and information exchanges between primary and
secondary power distribution are limited to those between
the switches 1 and 2.

generator 1

battery

generator 2

switch 1

switch 2

flight
control

active
deicing

internal
temperature

control

cabin
pressure
control

state-of-charge

health 1 altitu
de

icing level

health 2

interior

temperatu
re

cabinpressure

h
ea

lt
h
 1

,
al

ti
tu

d
e

h
ea

lt
h
 2

primary power
distribution

secondary power
distribution

legend: power flow

w
in

d
 g

u
st

s
&

 e
x
te

rn
al

 t
em

p
er

at
u
re

Fig. 1. Distributed power distribution model: Primary distribution routes
power to the flight controllers and active deicing and the secondary
distribution routes power to the controllers for internal temperature and
cabin pressurization.

The control protocols proposed in [6] were centralized
in the sense that the embedded controller has access to
measurements of all the controlled and environment variables
and determines the evolution of all the controlled variables to
satisfy a (central) specification of the form (1). Here, we con-
sider distributed synthesis of control protocols implemented
in a distributed manner. For example, in the context of Fig.
1, this procedure constructs two control protocols by solving

the synthesis questions

(φ�2 ∧ ϕe1) → (ϕs1 ∧ φ1) (2)
(φ�1 ∧ ϕe2) → (ϕs2 ∧ φ2) (3)

for the primary and secondary power distribution, respec-
tively. Here, ϕe1 and ϕe2 give a decomposition of ϕe

complying with the splitting of the environment variables
between the primary and secondary power distribution, and,
similarly, ϕs1 and ϕs2 give a decomposition of ϕ2. The
formulas φi and φ

�
i, for i = 1, 2, model the restrictions

on the power and information exchange between switches
1 and 2. The challenge in distributed synthesis is twofold:
finding suitable decompositions of ϕe and ϕs and interface
models that are rich enough to render (2) and (3) realizable
and structured enough to avoid circular reasoning when pro-
tocols are simultaneously implemented. We discuss precise
characterizations of these decompositions and conditions on
the interface models in section V.

IV. OVERVIEW OF MODELING ASPECTS

We now discuss the modeling aspects adopted from [6].
We use crude discretizations of the ranges in which the
variables take values, relations between these variables, and
finite state models that govern the time evolution of the
variables hereafter.

In-flight icing affects the aircraft by changing aerody-
namic properties in multiple ways including decreased lift,
increased drag, decreased stall angle, and reduced control-
lability [19]. The amount of ice accumulation is primarily
determined by the distance and time flown in icing clouds,
the concentration of liquid water in the clouds, and a factor
called the collection efficiency (the higher the collection
efficiency the greater the rate of accumulation) [19]. The
concentration of liquid water is a function of the temper-
ature and altitude. In the range between 0◦C and −40◦C,
the concentration (i.e., the likelihood of icing) increases
with decreasing temperature [20]. The accumulation of ice
is faster in low-altitude cumulus-type clouds compared to
higher-altitude stratiform clouds. The collection efficiency
increases with increasing airspeed.

Based on the above discussion we use simple character-
izations of power requests from flight controllers, deicing
subsystem, and cabin pressure and temperature control as
functions of the pressure altitude, level of icing, severity of
wind gusts, and outside temperature:

• The power request from the flight controller increases
with increasing levels of wind gusts, pressure altitude,
and icing.

• The power required by the deicing subsystems increases
with decreasing outside temperature and pressure alti-
tude.

• The power required by the cabin pressure control sub-
system increases with increasing pressure altitude and
increasing outside temperature.

• The power required by the cabin temperature control
subsystem increases with decreasing outside tempera-
ture.

We also consider an energy storage unit, whose state-of-
charge is denoted by b and limited by B, in the primary
power distribution (as shown in Fig. 1). Let the primary and
secondary power generation are limited by P̄1 and P̄2.

At each time instant, the control protocol determines the
pressure altitude h and assigns (allocates) power pf , pd,
pc and pT to the four operations based on the availability
of power and the prioritization determined by the flight-
criticality of the operations to ensure system correctness.
We assume that the flight actuators have priority over the
remaining three control operations. Based on the description
above, we define the independent and dependent variables
needed to specify the problem.

Independent variables: Independent variables can be
classified as environment or controlled variables. The envi-
ronment variables are those related to factors over which the
system does not have control such as the level of wind gusts
and the outside temperature. At any given time, the control
protocol determines the values of the controlled variables to
ensure system correctness (with respect to its specification).
The values of the environment variables may change arbi-
trarily over an execution, subject to their assumptions.

a) Environment variables: These are variables that the
system does not have any control over such as the external
temperature Text(t) ∈ dom(Text) and the severity of the
wind gust w(t) ∈ dom(w) and the health status H1(t) and
H2(t) of generators. H1(t) and H2(t) are Boolean variables
that have the value True if the corresponding generator
works in full capacity and False otherwise.

b) Controlled variables: These are the variables that
control protocol determines at each step in order to meet the
specifications such as altitude h and the amount of power
pf (t) ∈ dom(pf), pd(t) ∈ dom(pd), pT (t) ∈ dom(pT) and
pc(t) ∈ dom(pc) supplied, respectively, to flight controllers,
deicing, cabin temperature controls and cabin pressurization
systems and the amount of power px(t) ∈ dom(px) that is
exchanged between power distribution systems.

Dependent variables: In addition to controlled and envi-
ronment variables, there are dependent variables whose evo-
lution is a function of environment and controlled variables.
These are the amount of ice accumulation a(t) ∈ dom(a),
the internal temperature level Tint(t) ∈ dom(Tint), the cabin
pressure level c(t) ∈ dom(c), the power requirement rf (t) ∈
dom(rf) of the flight control system, the battery charge level
b(t) ∈ dom(b) and the power outputs P̄1(t) ∈ dom(P̄1) and
P̄2(t) ∈ dom(P̄2) of the generators. In particular, we have
the following (at most) first order dependencies:

a(t + 1) = gf (a(t), h(t), Text(t), pd(t))
Tin(t + 1) = gT (Tin(t), Text(t), pt(t))

c(t + 1) = gc(c(t), h(t), Text(t), pc(t))
b(t + 1) = gb(b(t), pf (t), pd(t), px(t))

rf (t) = gr(a(t), w(t), h(t))
P̄1(t) = gP̄1

(H1(t))
P̄2(t) = gP̄2

(H2(t)).

(4)

The set E of environment variables for the power distribu-
tion system is the environment variables and those dependent

variables that are functions of only the environment variables.
That is, E = {Text, w,H1, H2, P̄1, P̄2}. The set P of
plant variables are the controlled variables together with
the dependent variables that are functions of controlled and
environment variables. For the power distribution system, we
have P = {h, pf , pd, pT , pc, px, rf , a, Tin, c, b}.

Remark 1: Note that most of these variables correspond
to continuous quantities. As a crude discretization, all con-
tinuous quantities are partitioned into bins (levels) to obtain
the finite set of system variables for synthesis. One can as
well use abstraction techniques for systematic discretization
as mentioned in section I. For notational convenience, for
each variable, we express its levels by a set of consec-
utive non-negative integers that start with zero and that
are consistent with the ordering in the continuous domain.
That is, for a variable x with Nx levels, dom(x) is of the
form {0, 1, . . . , Nx−1}. Hence, arithmetic operations on the
variables as well as orders are defined in this integer domain
by using the regular arithmetic operations and standard order
for integers.

Specifications: System specifications include physical re-
source constraints and safety and performance requirements
for the system as well as assumptions on the environment.
The following list contains the specifications of interest in
this paper:

1) Limit on total power imposes a constraint on the
amount of power that can be allocated to each com-
ponent (i.e., pd(t) + pf (t) ≤ P̄1(t) + b(t) and pc(t) +
pt(t) + px(t) ≤ P̄2(t) for all t)

2) Safety requirements: (i) flight controller should always
get the power it requests (i.e., pf (t) ≥ rf (t) for all
t); (ii) the pressure altitude cannot change more than
two levels between any consecutive time instances; (iii)
ice accumulation cannot be severe (i.e., a(t) < au for
all t); (iv) high amounts of ice accumulation limit the
ability to change the pressure altitude (i.e., |h(t+1)−
h(t)| ≤ au − a(t)).

3) Requirements on cabin temperature and pressure con-
trols: (i) the cabin pressure should never exceed a
certain upper limit cu (i.e., c(t) ≤ cu for all t); (ii) the
cabin temperature should always remain within certain
comfort limits (i.e., Tint(t) ∈ [Tint,l,Tint,u] for all t).

4) Performance requirements: (i) although variations from
the desirable flight altitude range hnom are allowed,
this nominal value should be acquired infinitely often
(i.e., ��(h = hnom)); (ii) similarly, the nominal
internal temperature level Tint,nom should be attained
infinitely often (i.e., ��(Tint = Tint,nom)).

5) Environment assumptions: (i) wind gust w cannot
be severe for more than Nw consecutive steps2; (ii)
wind gust always eventually stops (i.e., ��(w = 0));
(iii) abrupt changes in external temperature are not
admissible (i.e., |Text(t − 1) − Text(t)| ≤ 1 for all

2Note that by introducing a new environment variable nw ∈
{0, 1, . . . , Nw − 1}, this assumption can be expressed with first order
relations between w and nw .

t); (iv) health of both generators cannot be degraded
simultaneously.

The specifications listed above can be expressed in terms
of LTL formulas; that is, one can construct ϕs and ϕe

based on (4) and specifications 1-4 above for the system
and specification 5 above for the environment, respectively.
Moreover, these formulas lead to the global specification
ϕe → ϕs which is a GR(1) specification.

V. MAIN RESULTS

In this section, we discuss how the global specification
can be decomposed into local ones so that it is possible to
synthesize local control protocols for primary and secondary
power distribution system separately. We present conditions
under which these protocols can be implemented locally
while guaranteeing that the global specification is met.

Let us denote the primary and secondary power distri-
bution systems by G1 and G2, respectively, and assume
that both G1 and G2 are equipped with local controllers
on the corresponding switch in Fig. 1. We decouple these
systems and define local specifications (ϕe1 → ϕs1) and
(ϕe2 → ϕs2) for each. Initially, we assume that there is
no power flow between G1 and G2. However, note that the
internal temperature (Tin) and cabin pressure (c) variables
that need to be regulated by the local controller in G2 are
affected by the altitude h which can be considered as an
output of G1. This leads to a serial interconnection between
two systems for which we give the formal decomposition
result in the following proposition.

Proposition 1: [Serial Interconnection] Given a system
with the set of variables S, let ϕe, ϕe1 , ϕe2 , ϕs, ϕs1

and ϕs2 be LTL formulas that contain variables only from
the respective sets of environment variables E, E1 ⊆ E,
E2 ⊆ (E ∪ (S1\E)) and system variables S, S1 ⊆ S,
S2 ⊆ S. Let P , P1, P2 be the sets of all controllable variables
in S, S1, S2 that satisfy P1 ∪ P2 = P and P1 ∩ P2 = ∅. If

1.1 any execution σ such that σ|E |= ϕe; also satisfies
σ|E |= (ϕe1 ∧ ϕe2),

1.2 any execution σ such that σ |= (ϕs1 ∧ ϕs2); also
satisfies σ |= ϕs,

1.3 and, there exist two control protocols that make the
local specifications (ϕe1 → ϕs1) and (ϕe2 → ϕs2)
true,

then implementing these two control protocols together leads
to a system where the global specification (ϕe → ϕs) is met.

Proof: The conditions on P , P1 and P2 ensure that the
synthesized local control protocols do not regulate the same
controllable variables and can be implemented separately at
the same time3. Let ν1

.= ((ϕe1 → ϕs1)∧ (ϕe2 → ϕs2)) and
ν2

.= ((ϕe1∧ϕe2) → (ϕs1∧ϕs2)). Note that any execution of
the system that satisfies ν1, also satisfies ν2. That is, if there
exist control protocols as in condition 1.3 of the proposition,
the system meets the specification ν2 when these control

3If the same controllable variable is included in two different local spec-
ifications, the corresponding local control protocols might assign different
moves to this variable. Hence, these protocols can not be implemented
simultaneously if these assignments conflict.

protocols are implemented simultaneously. Conditions 1.1
and 1.2 respectively mean that ϕe → (ϕe1 ∧ ϕe2) and
(ϕs1∧ϕs2) → ϕs are tautologies (i.e., they evaluate to True

for any execution). Hence, it follows that for all executions
that satisfy ν2, (ϕe → ϕs) is satisfied. Therefore, for all
executions that satisfy ν1, specification ϕ is met.

In the power distribution system, (ϕe1 → ϕs1) and
(ϕe2 → ϕs2) correspond to local specifications for G1 and
G2, respectively. Now, assume (ϕe1 → ϕs1) is realizable
and (ϕe2 → ϕs2) is not realizable, hence condition 1.3 in
Proposition 1 fails. Since G1, by appropriately regulating
h, can affect the environment behavior of G2, we can
use this interface between two systems to refine the local
specifications so that the global specification would be met.
Next proposition formalizes this idea.

Proposition 2: [Serial Interconnection Refinement] Let
the formulas ϕe, ϕe1 , ϕe2 , ϕs, ϕs1 and ϕs2 and sets E,
E1, E2, S, S1, S2, P , P1, P2 be defined as in Proposition
1. Also assume conditions 1.1 and 1.2 in Proposition 1 are
satisfied. If

2.1 there exist two formulas φ1 and φ
�
1, containing vari-

ables from I1,2 ⊆ (S1\E) ∩ E2, such that (φ1 → φ
�
1)

is a tautology,
2.2 and, there exist two control protocols that make

ϕe1 → (ϕs1 ∧ φ1), (5)

(φ�1 ∧ ϕe2) → ϕs2 (6)

realizable. Then, implementing these two control protocols
together leads to a system where the global specification
(ϕe → ϕs) is met.

Proof: Assume for a given execution σ of the system,
σ|E |= ϕe. Then, by condition 1.1 in Proposition 1, σ|E1 |=
ϕe1 and σ|E2 |= ϕe2 . When a control protocol that meets
the specification in (5) is implemented, σ|S1 |= ϕs1 and
σ|I1,2 |= φ1 whenever σ|E1 |= ϕe1 . Since (φ1 → φ

�
1) is a

tautology, σ|I1,2 |= φ
�
1. Hence, the left side of (6) is true

for σ, which implies that the synthesized control protocol
will guarantee σ|S2 |= ϕs2 . Finally, from condition 1.2 in
Proposition 1, we have σ |= ϕs. Consequently, the global
specification is met.

The case where there is power flow between G1 and G2 as
in Fig. 1 corresponds to a feedback interconnection where
part of the output of each system acts as an environment
variable for the other. In this case, the local variables are con-
tained in the sets E1 ⊆ (E ∪ (S2\E)), E2 ⊆ (E ∪ (S1\E))
and S1 ⊆ S, S2 ⊆ S. Similar to Proposition 1, it is again
required that P , P1, P2 satisfy P1∪P2 = P and P1∩P2 = ∅.
Moreover, in order to ensure that the interconnection is
well-posed and the interconnected system avoids deadlocks,
additional conditions must be imposed. In particular, let
for i ∈ {1, 2}, the environment variables be partitioned
into external and feedback parts; i.e., Ei = Ei,(l) ∪ Ei,(f)

with Ei,(l) ∩ Ei,(f) = ∅ and Ei,(f) ⊆ (Sj\E) , j �= i.
Then, the formulas involving feedback variables should be
such that, at least for one of the subsystems i, the value
e
i,(f)
t ∈ dom(Ei,(f)) of the feedback variables at step t can

be inferred from s
(i)
t−1 ∈ dom(Si) and e

i,(l)
t ∈ dom(Ei,(l)).

A refinement rule for feedback interconnections, inspired by
assume guarantee reasoning [21], [22], [23], is given next.

Proposition 3: [Feedback Interconnection Refinement]
For a feedback interconnection system, let the formulas ϕe,
ϕe1 , ϕe2 , ϕs, ϕs1 and ϕs2 contain variables only from the
respective sets of environment variables E, E1\S2, E2\S1

and system variables S, S1, S2. P
.= S\E, P1 and P2

satisfy P1 ∪ P2 = P and P1 ∩ P2 = ∅. Also assume
(possibly unrealizable) local specifications (ϕe1 → ϕs1) and
(ϕe2 → ϕs2) satisfy the conditions 1.1 and 1.2 in Proposition
1. If

3.1 there exist safety formulas φ1, φ
�
1, φ2 and φ

�
2, con-

taining variables respectively from S1, E2, S2 and E1,
such that for any execution σ with σ|E |= ϕe, for all
n and for i ∈ {1, 2}, if α̂ = s0s1 . . . sn is not a bad
prefix for φi, α̂ · sn+1 is not a bad prefix for φ

�
i; and

s0 is not a bad prefix for φ
�
i,

3.2 and, there exist two control protocols that render the
following local specifications true:

(φ�2 ∧ ϕe1) → (ϕs1 ∧ φ1), (7)

(φ�1 ∧ ϕe2) → (ϕs2 ∧ φ2), (8)

then implementing these two control protocols together leads
to a system where the global specification (ϕe → ϕs) is met.

Proof: Assume for a given execution σ = s0s1 . . . of
the system, σ|E |= ϕe. Then, by condition 1.1 in Proposition
1, σ|E1 |= ϕe1 and σ|E2 |= ϕe2 . First, we show that
σ|Sj |= φ

�
i. Assume by contradiction that σ|Sj �|= φ

�
i. Since

φ
�
i is a safety formula, there exists a prefix of σ|Sj which is a

bad prefix for φ
�
i. Let σ̂|Sj , the shortest prefix of σ|Sj which

is a bad prefix for φ
�
i, be of length k. According to condition

3.1, the initial state s0 is not a bad prefix of φ
�
i hence

k > 1. Then, for a control protocol realizing (7)-(8), we have
fj(�, e0) = p

(j)
0 which guarantees that s0 = (e0, p

(1)
0 , p

(2)
0)

is not a bad prefix of φj for i �= j; i, j ∈ {1, 2}. Note that
otherwise for an execution that satisfies the assumptions in
(7)-(8), the requirements would be violated for the protocol
fj . From condition 1 above, whenever s0 is not a bad prefix
for φj , s0s1 is not a bad prefix for φ

�
j for j ∈ {1, 2}. By

induction on time t, it can be shown that σ̂ = s0 . . . sk cannot
be a bad prefix of φ

�
i for any finite k which is a contradiction.

Hence, when the environment satisfies its assumption, a
control protocol that satisfies (7)-(8) renders the left side of
the formulas True. Therefore, the right side has to evaluate
to True, meaning σ|S1 |= ϕs1 and σ|S2 |= ϕs2 . Then, it
follows from Condition 1.2 in Proposition 1, that σ |= ϕs.

Remark 2: Using the safety closure arguments in [22], it
is possible to strengthen the refinement rules given in (7)-
(8) to accommodate one-sided liveness properties. That is,
instead of (7)-(8), one could have (φ�2 ∧ϕe1) → (ϕs1 ∧φ1 ∧�

i∈I1
��Ji) and ((

�
i∈I2

��Ji)∧ φ
�
1 ∧ϕe2) → (ϕs2 ∧ φ2)

with (
�

i∈I1
��Ji →

�
i∈I2

��Ji) where Ji’s are atomic
propositions.

VI. EXAMPLES

Using the specifications described in section IV, and
assigning initial values to the variables, a global specification
of the form (1) can be derived. Our goal in this section
is to synthesize control protocols that would meet this
global specification. We investigate several interconnection
structures, as discussed in section V, in terms of the total
peak power requirement and robustness against system health
degradation. We also demonstrate how reductions in peak
power requirements and improvements in robustness can be
achieved by refining the interface rules.

A crude discretization is employed to obtain the finite set
of system variables. The variables and their discrete levels
used in our examples are summarized in Table I. Table II
lists the values of constants that appear in specifications.

Dedicated generation without dynamic allocation: The
first thing to observe is that if the power distribution system
was designed to meet the peak power requirements with
dedicated generators and without taking into account the
dynamics of the loads and allowable behavior of the envi-
ronment, the generator capacities should be P̄1 ≥ max(pf +
pd) = 6 and P̄2 ≥ max(pc + pa) = 5 units at all times.
As we demonstrate next, by employing control protocols
for dynamic power allocation, these number can be reduced
significantly.

variable domain variable domain
Text {0, 1, 2, 3} w {0, 1, 2}
H1 {True,False} H2 {True,False}
h {0, 1, . . . , 4} pf {0, 1, 2, 3}
pd {0, 1, 2, 3} pT {0, 1, 2, 3}
pc {0, 1, 2} px {0, 1}
c {0, 1, . . . , 7} a {0, 1, . . . , 5}

Tin {0, 1, . . . , 5} rf {0, 1, 2, 3}
b {0, 1, 2, 3} P̄1, P̄2 design variables

TABLE I
VARIABLES AND CORRESPONDING DISCRETE DOMAINS FOR THE

EXAMPLE.

B = 3 Nw = 3 Tint,l = 2 Tint,u = 4
Tint,nom = 4 hnom = 3 au = 4 cu = 6

TABLE II
CONSTANTS USED FOR SPECIFYING THE ASSUMPTIONS AND

REQUIREMENTS.

Serial Interconnection Structure: For this example, we
assume that there is no power flow between primary power
distribution G1 and secondary power distribution G2 (i.e.,
px is set to a constant px = 0). The rest of the variables
are decoupled as follows: E1 = {Text, w,H1, P̄1}, P1 =
{h, pf , rf , pd, a, b} for G1 and E2 = {Text, h,H2, P̄2},
P2 = {pc, c, pT , Tin} for G2. We form two local specifi-
cations (ϕe1 → ϕs1) and (ϕe2 → ϕs2) using the list of
specification in section IV. These local specifications are
consistent with the separation of variables and the conditions

given in Proposition 1. For instance, among the specifica-
tions, safety requirements 2.(ii) and 2.(iv) and performance
requirement 3.(i) regarding h are encoded in ϕs1 . Due
to serial interconnection, specifications 2.(ii) and 3.(i) are
environment behavior for G2, so, included in ϕe2 . Since
specification 2.(iv) depends on a, which is not available to
G2, control protocol in G2 cannot rely on any assumptions
involving a. Therefore, specification 2.(iv) is not included in
ϕe2 . For this serial interconnection structure, we observe that
local specifications are realizable if and only if P̄1 ≥ 4 and
P̄2 ≥ 4 for all times.

Serial Interconnection Structure with Interface Refine-
ment: Given the local specifications in the Serial Interconnec-
tion Structure, in this example we use interface refinement
to reduce the peak power requirement. As noted above,
(ϕe2 → ϕs2) becomes infeasible if P̄2 = 3. By invoking
Proposition 2, we add the interface refinement formula φ

.=
φ
� .= ��(h = 1) to the local synthesis problems. Note

that φ is not required in the global specification but it does
not contradict with it either since it renders the refined
local specifications realizable. For this case, the peak power
requirements reduce to P̄1 ≥ 4 and P̄2 ≥ 3.

Feedback Interconnection Structure with Interface Refine-
ment: For this example, we allow power flow from G2 to
G1. In particular, px is a variable in this example and G2 can
send its excess power px to the battery located on primary
side. We also allow more information exchange, i.e., the
systems know each others health status. The variables are
separated as follows: E1 = {Text, w,H1, P̄1, H2, px}, P1 =
{h, pf , rf , pd, a, b} for G1 and E2 = {Text, h,H2, P̄2, H1},
P2 = {pc, c, pT , Tin, px} for G2. We define the following
refinement formulas:

φ1 = φ
�
1 = ��(h = 1),

φ2 = φ
�
2 = �[(¬H1 → (px = 1)) ∧ (H1 → (px = 0))].

Note that both ϕe1 and ϕe2 include �(H1 ∨ H2) from
the environment assumption listed as specification 5.(iv).
In this case, peak power requirements are P̄1 ≥ 4 and
P̄2 ≥ 3; or P̄1 ≥ 3 and P̄2 ≥ 4. So, if both generators
have capacity of 4 units and degraded power rating of 3
units, global specification can be met unless both generators
degrade simultaneously (which is against the environment
assumption on health status).

Centralized Controller: For comparison, we also consider
a centralized architecture where a central controller collects
all the data, determines the pressure altitude and allocates
power to all loads while meeting the global specification. In
this architecture, we allow two-way power flow between G1

and G2. Note that it is nontrivial to allow two-way power
flow in the distributed setting in which case both controllers
would need to simultaneously decide on the value of px. For
the centralized control, the global specification is realizable
if and only if P̄1 + P̄2 ≥ 6 for all times. Although the
power requirement slightly reduces in centralized setting; the
number of states for the centralized system is significantly
higher than the number of states of each system in distributed

setting, substantially increasing the computational complex-
ity of synthesis.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of synthesiz-
ing distributed control protocols, for vehicle management
systems, that cooperatively allocate electric power while
meeting certain higher level goals and requirements, and
dynamically reacting to the changes in the internal system
state and external environment. We used linear temporal logic
as a specification language. We extended our earlier work on
control protocol synthesis for vehicle management systems to
a distributed setting. Starting with a global specification, we
proposed methods to decompose it into local specifications.
By construction, if there exist local control protocols that
satisfy the local specifications, implementing these protocols
simultaneously guarantees that the global specification is
met. We further presented interface refinement rules in order
to reduce the conservatism of distributed synthesis by im-
posing cooperation between subsystems. Several case studies
demonstrated the effectiveness of distributed dynamic power
allocation. Our examples also show that in the distributed
setting, reductions in peak power requirements and improve-
ments in robustness can be achieved by refining the interface
rules between subsystems.

We focused on vehicle management systems in an avionics
context. Similar issues arise in a number of application
domains, including energy management in plug-in electric
hybrid vehicles which dynamically allocate the power from
multiple resources to multiple loads of different character-
istics [24], [25] and vehicle management for spacecraft [2].
These different applications are subject to future research.
Another direction for future research is to automate the
refinement procedure, for instance using ideas from [26]
where the aim is to find the least restrictive environment
assumptions required for realizability.

REFERENCES

[1] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical,
and Avionics Subsystems Integration. AIAA Education Series, 2001.

[2] M. D. Watson and S. B. Johnson, “A theory of vehicle management
systems,” in IEEE Aerospace Conference, 2007.

[3] M. D. Natale and A. L. Sangiovanni-Vincentelli, “Moving from fed-
erated to integrated architectures in automotive: The role of standards,
methods and tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603–
620, 2010.

[4] C. B. Watkins and R. Walter, “Transitioning from federated avionics
architectures to integrated modular avionics,” in Proceedings of the
IEEE /AIAA Digital Avionics Systems Conference, 2007.

[5] C. B. Watkins, “Integrated modular avionics: managing the allocation
of shared intersystem resources,” in Proceedings of the IEEE/AIAA
Digital Avionics Systems Conference, 2006.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal synthesis
of embedded control software for vehicle management systems,” in
AIAA Infotech@Aerospace, 2011.

[7] N. Ozay, U. Topcu, T. Wongpiromsarn, and R. M. Murray, “Dis-
tributed synthesis of control protocols for smart camera networks,”
in ACM/IEEE Second International Conference on Cyber-Physical
Systems, 2011.

[8] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
2010, submitted.

[9] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. Vincentelli, “Contract-
based design for computation and verification of a closed-loop hybrid
system,” in Proceedings of the Hybrid Systems: Computation and
Control, 2008, pp. 58–71.

[10] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” in Proceedings of the IEEE, 2000, pp.
971–984.

[11] P. Tabuada and G. J. Pappas, “Linear time logic control of linear
systems,” IEEE Transactions on Automatic Control, vol. 51, no. 12,
pp. 1862–1877, 2006.

[12] A. Pneuli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” in SFCS ’90: Proceedings of the 31st Annual Symposium
on Foundations of Computer Science. Washington, DC, USA: IEEE
Computer Society, 1990, pp. 746–757 vol.2.

[13] M. Mukund, “From global specifications to distributed implementa-
tions,” in Synthesis and control of discrete event systems. Kluwer,
2002, pp. 19–34.

[14] E. Filiot, N. Jin, and J.-F. Raskin, “Compositional algorithms for ltl
synthesis,” in Automated Technology for Verification and Analysis,
2010, pp. 112–127.

[15] P. Madhusudan and P. Thiagarajan, “Distributed controller synthesis
for local specifications,” in Automata, Languages and Programming,
ser. Lecture Notes in Computer Science, F. Orejas, P. Spirakis, and
J. van Leeuwen, Eds. Springer Berlin, 2001, vol. 2076, pp. 396–407.

[16] M. Kloetzer and C. Belta, “Automatic deployment of distributed
teams of robots from temporal logic motion specifications,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[17] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in Verification, Model Checking and Abstract Interpretation,
ser. Lecture Notes in Computer Science, vol. 3855. Springer-Verlag,
2006, pp. 364 – 380, software available at http://jtlv.sourceforge.net/.

[18] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar,
“Synthesis of reactive(1) designs,” 2010, preprint.

[19] P. J. Perkins and W. J. Rieke, “Tailplane icing and aircraft performance
degradation,” Flight Safety Digest, pp. 177–182, June-September 1997.

[20] N. Czernkovich, “Understanding in-flight icing,” Tech. Rep.,
November 2004, transport Canada Aviation Safety Seminar. [Online].
Available: aerosafety.ca/sources/aicraft icing paper.pdf

[21] J. Misra and K. Chandy, “Proofs of networks of processes,” Software
Engineering, IEEE Transactions on, vol. SE-7, no. 4, pp. 417 – 426,
1981.

[22] M. Abadi and L. Lamport, “Conjoining specifications,” ACM Trans.
Program. Lang. Syst., vol. 17, no. 3, pp. 507–534, 1995.

[23] B. Jonsson and Y.-K. Tsay, “Assumption/guarantee specifications in
linear-time temporal logic,” Theor. Comput. Sci., vol. 167, no. 1&2,
pp. 47–72, 1996.

[24] C. L. Jun-Mo, J. Kang, J. W. Grizzle, and H. Peng, “Energy manage-
ment strategy for a parallel hybrid electric truck,” in Proceedings of
the 2001 American Control Conference, 2001, pp. 2878–2883.

[25] V. H. Johnson, K. B. Wipke, and D. J. Rausen, “Hev control strategy
for real-time optimization of fuel economy and emissions,” 2000.

[26] K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment
assumptions for synthesis,” in CONCUR, 2008, pp. 147–161.

aerosafety.ca/sources/aicraft_icing_paper.pdf

	Introduction and Motivation
	Prelimineries
	Notation and Definitions
	Synthesis of Control Protocols: a Two-Player Game Approach

	Problem Setup
	Overview of modeling aspects
	Main Results
	Examples
	Conclusions and Future Work
	References

