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Dynamics, Geometry, and Stability of Low Reynolds Number Swimming Near a Wall
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We study the dynamics of low Reynolds number swimming near a plane wall by using a simple

theoretical swimmer model that accounts for far-field hydrodynamic interactions.

We focus on

steady motion parallel to the wall and derive conditions under which it is passively stable without
sensing or feedback. We highlight the geometric structure of the swimming equation and particularly
the relation between stability and reversing symmetry of the wall-swimmer dynamics. Furthermore,
in the case of unstable parallel swimming, our numerical simulations reveal the existence of a stable
periodic motion along the wall, associated with a degenerate Hopf bifurcation.

PACS numbers: 47.63.mf, 45.80.+r, 47.10.Fg

Introduction: The swimming of microorganisms, as
well as of tiny robotic swimmers, is governed by low
Reynolds number (Re) hydrodynamics, where viscous ef-
fects dominate and inertial effects are negligible [1-3].
The study of low-Re swimming has recently gained in-
creasing interest, mainly for investigating the behavior of
swimming microorganisms and motile cells, and for lay-
ing basic theoretical foundations towards development of
micron-scale artificial swimmers for performing in-body
biomedical tasks. Many works have analyzed the dynam-
ics of swimming in unbounded fluid by exploiting its geo-
metric structure, namely the gauge symmetry [4-6], while
some recent works study this problem in the context of
control theory [7, 8]. However, in reality, swimmers often
move in a confined environment, where their hydrody-
namic interactions with the boundary is complicated to
model [9, 10]. Moreover, breaking the gauge symmetry
raises problems such as steering to a desired direction and
dynamic stability of the motion under perturbations.

In this paper, we analyze the dynamics and stability
of low-Re swimming near a plane wall. Unlike classi-
cal models such as [11, 12] that utilize shape changes
to induce self-propulsion, we focus on a special subclass
of swimmers, having an apparently constant shape, remi-
niscent of vehicles that move by rotating their wheels or
tracks. Examples of such swimmers are the twirling torus
[13] and the surface treadmiller [14], inspired by actin-
based cell motility [15]. Focusing on a model of swimmer
propelled by rotating spheres, we formulate the swim-
ming equation by utilizing the hydrodynamic model in
[16]. We study the underlying geometric structure of the
dynamics, and show that it is associated with a revers-
ing symmetry [17] of the wall-swimmer configuration. We
analyze swimming motion parallel to the wall, and derive
conditions under which it is passively stable under pertur-
bations. In particular, we show that one has to break the
reversing symmetry in order to obtain asymptotic stabil-
ity. The implication of passive stability in the context of
artificial swimmers is that they can be steered by open-
loop commands only, without requiring on-board sens-

ing and control for stabilization. In biological systems,
this result may serve as a key in explaining phenomena
such as accumulation of swimming microorganisms and
motile cells near boundaries [18, 19]. Finally, in the case
of unstable parallel swimming, we present numerical sim-
ulations that reveal the existence of a stable periodic mo-
tion along the wall, which is associated with a degenerate
Hopf bifurcation [20].

Kinematic model: = We consider a simple model of a
micro-swimmer comprised of n rigid spheres of equal ra-
dius @, which are connected by a thin rigid frame, called
the body of the swimmer. The swimmer is submerged
in a viscous fluid which is bounded by an infinite plane
wall at y = 0 [Fig. 1]. The spheres and the rigid frame
all lie within the zy plane, and all motions are assumed
to be constrained to that plane. The spheres labeled
1...m are actuated by rotation about their z-axis which
is attached to the frame, while the rest of the spheres
are rigidly attached to the frame. Let F,, be a world-
fixed reference frame, and let F; be a reference frame
attached to the swimmer’s body. Let u; € IR, be the an-
gular velocity of the ith sphere with respect to the body,
and denote u = (uj...um,)", which is regarded as the
swimmer’s input. Let q = (z,y,0)7 € SE(2) denote
the position and orientation of the body expressed in the
world frame F,,. Let r; be the constant position vector
of the ith sphere expressed in the body frame F;,. Let
V, € IR? denote the linear velocity of the ith sphere in zy
plane, and let w; € IR be its angular velocity about the z
axis. The linear velocity of the ith sphere satisfies V; =
N ; (—sin@ —cos@)
(. 9)" +D(0)r;0, where D(0) = . The

cosf —sinf
angular velocity of the ith sphere is given by w; = 0+ u;
fori =1...m, and w; = 0 fori = m+ 1...n. Defin-
ing U= (V1,...V,,wi,...,w,)T, the velocity relations
above can be written in matrix form as U = Tq + Eu.

Hydrodynamic forces: We now derive expres-
sions for the hydrodynamic forces and torques acting
on each sphere and on the swimmer’s body, assum-
ing that the hydrodynamic resistance of the thin body
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FIG. 1: Drawing of the swimmers- (a): Two-sphere swimmer.
(b): 2+1 sphere swimmer. (c): Three-sphere swimmer.

frame is negligible compared to that of the spheres. Let
f; and 7; be the force and torque (about the z axis)
exerted by the fluid upon the ith sphere, and define
F=(f,...f,,7,... ,Tn)T. Let Fy = (fb,Tb)T denote
the net force and torque acting on the body. It is then
straightforward to show that F, satisfies F, = TTF. The
linearity of Stokes equations implies the existence of a
linear relation between hydrodynamic forces and veloci-
ties, given by F = RU, where R is called the resistance
matriz, and depends only on the configuration of the par-
ticles [1]. Generally, R cannot be computed exactly, ex-
cept for simple geometries such as a single spheroid or two
spheres in unbounded fluid [2]. However, in many cases
R can be approximated by using scaling arguments. In
this work, we adopt the far-field hydrodynamic model by
Swan and Brady [16], which computes the mobility ma-
triz defined as M = R, for multiple spherical particles
in the presence of a plane wall, assuming that all particle-
particle and particle-wall separation distances are much
larger the spheres’ radii.

Equation of swimming: Using all the relations
above, the requirement that the swimmer’s body is force-
and torque-free at all times, F, = 0 gives TTR(T¢q +
Eu) = 0. Inverting this equation gives the swimming
equation, which formulates the relation between the input
velocities and the body velocity as

4= G(q)u, where G(q) = (T"RT)"'T'RE. (1)

Note that in unbounded fluid, the swimmer’s mo-
tion is invariant under rigid body transformations (cf.
[4, 21]), which implies the following simplification. Let
Ubody = (Vbodwwbody)T denote the velocity of the body
expressed in the body frame F;. The swimming equation
(1) then takes the form Upyq, = Gu, where the constant
matrix G is obtained by evaluating G(q) at a config-
uration where the two frames F,, and F; are parallel.
Obviously, this simplification does not hold in bounded
fluid domains.

The two-sphere swimmer: Consider a simple
swimmer which consists of two actuated spheres (i.e.
m = n = 2), connected by a thin rigid rod, where the
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FIG. 2: The two-sphere swimmer - (a): Snapshots of the
motion for u1 = —ug. (b): Phase plot in (y,0) plane for a
marginally stable equilibrium q/,. (c): Snapshots of periodic
motion along the wall.

center-center separation between the spheres is denoted
d [Fig. 1(a)]. In the rest of this paper, we normalize all
lengths by the radius a, and set a = 1. The 3 x 2 matrix
G(q) for this swimmer is derived according to (1), where
the mobility matrix M is computed by using the model
in [16]. The analytical expressions in the components of
G(q) are too lengthy to be detailed here, and numeri-
cal values were computed throughout this work by using
MATLAB. Note that in unbounded fluid, equal and op-
posite input velocities u; = —uqo result in swimming in a
straight line along the «’ axis, similar to the result in [13]
for the axisymmetric twirling torus. However, the pres-
ence of wall breaks the axisymmetry of the swimmer, and
for u; = —us it is repelled from the wall and swims along
an arc, as shown in the snapshots in Fig. 2(a). Therefore,
we consider the simplest task for this swimmer — steady
motion parallel to the wall, i.e. in the x direction, with
fixed orientation and fixed distance from the wall. As
a preliminary step, we analyze the underlying geometric
structure of the dynamics. A first observation is that the
motion is invariant under shifting parallel to the wall in
the x direction. Therefore, G(q) depends only on the
coordinates ¢y and 6, and not on x. The second observa-
tion is that the two-sphere swimmer possesses a mirror
symmetry about the line perpendicular to the wall, which
can be formulated as

G(Sq) = —SG(q), where S =diag(—1,1,—-1). (2)

The physical meaning of (2) is that a mirror-reflected
swimmer will swim along a reflected trajectory with its
input velocities u reversed, which is equivalent to revers-
ing the time. Formally, a relation of the form (2) is called
a reversing symmetry of a dynamical system (cf. [17]).
The reversing symmetry (2) dictates constraints on the
elements of G(q) and their derivatives at the perpendic-
ular orientation 6 = 0, as follows:

G2;(0=0)=0 (3)

1o} _ jé) —
8y G|, =0, 5Gsil,_, =0 (4)

for j=1,2, where G;; is the (¢, ) element of G(q). The



constraint (3) implies that when =0, the g-component
of q vanishes for any y and u. Therefore, for any given
distance from the wall y =y,, taking constant input ve-
locities u, = a(—Gs2,G31) where Gs1, G3o are evaluated
at (y,0) = (y,0) and o € IR, the 6- component of ¢
also vanishes, resulting in swimming velocity of the form
q=(vg,0,0), which corresponds to steady swimming par-
allel to the wall with 6=0.

Next, we analyze the dynamic stability of parallel
swimming. Denoting q' = (y,0), the dynamics of q’ is
given by

4 =G'(d)u (5)
where G’ is the lower 2 x 2 block of G(q) in (1). By
construction, the system (5) has an equilibrium point at
d. = (Y., 0) under the constant input u = u,. Formally,
q, is called a relative equilibrium of (1) [22]. The local
stability of g/ is determined by the linearization of (5)
about q’, given by

e
54 = Adq’, where A = 8(;;(5?)

Ue. (6)
q.
A sufficient condition for asymptotic stability of g, is
that all eigenvalues of A have negative real part. How-
ever, invoking the constraints (4), the linearization ma-
0b
c 0
polynomial is As(\) = A2 — be. Note that the eigen-
values are a symmetric pair )\, typical for reversible
systems where existence of a solution behaving like e
implies the existence of a reflected time-reversed solution
behaving like e*. The real part of the eigenvalues de-
pends on the sign of be, as follows. If bc > 0, A has
two real eigenvalues of the form A\ = ++v/bc, and ¢, is
unstable. If bc < 0, A has a pair of imaginary eigenval-
ues A2 = ii\/@ . Moreover, the reversing symmetry
implies that q, is a reversible Lyapunov center [17, 23],
which is a marginally stable equilibrium point enclosed
by a one-parameter family of periodic orbits. In order
to determine the sign of be, we explicitly formulate the
Jacobian matrix A, by applying the chain rule to the def-
inition of G(q) in (1) and differentiating the elements of
M in [16] with respect to y and 6. Using this procedure,
we numerically compute the product bc as a function of h,
where h=y—a—0.5d cos 8 [Fig. 1(a)], for different values
of d. The results, which are plotted in Fig. 3(a), show
that when the wall-separation h is sufficiently large, bc is
negative, and g/, is a marginally stable equilibrium. Fig.
2(b) shows the phase portrait in (y,#) plane for d = 10
under constant input u. = (1, —1.0017) associated with
q. = (11,0). Fig. 2(c) depicts snapshots of the periodic
motion along the wall for a specific (y, 0)-trajectory.
Next, since swimming in perpendicular orientation
cannot be asymptotically stable, we seek for steady par-
allel swimming at asymmetric orientations of the swim-
mer, i.e. try to find equilibrium points of (5) for 8 # 0. A

trix A takes the form A = ( , and its characteristic
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FIG. 3: (a): Plot of bc as a function of h for the two-sphere
swimmer with § = 0. (b): Plot of det G’(9) for the two-sphere
swimmer with A = 5 (thick blue) and h = 2 (thin red), and for
the 2+1-sphere swimmer with h = 3, [ = 2 (dashed black).

necessary condition for equilibrium is that the columns
of the matrix G'(q’) are linearly dependent, so that
G'(d)u = 0 for some input u. In the following, we
numerically compute det G’ as a function of § when h
is held constant. The results are shown in Fig. 3(b) for
h =5 (thick blue) and h = 2 (thin red). For large sepa-
rations such as h = 5 and above, the only zero-crossing
is at 8 = 0, corresponding to the perpendicular orienta-
tion. However, for the smaller separation h = 2, there
exists an additional zero-crossing point at 8 = 61.25°,
with corresponding input vector u, = (1, —1.017)7. Nu-
merical computation of the linearization matrix A and
its eigenvalues gives Ay = —0.0012, A = 0.0008, hence
the equilibrium point g/, is unstable. Similar results were
obtained numerically for other values of d and h.

The 2+1-sphere swimmer: The next step is break-
ing the symmetry by changing the structure of the swim-
mer. This is done by adding an additional unactuated
sphere which is rigidly attached to the swimmer’s body
and forms an isosceles triangle with the two actuated
spheres, having height [ [Fig. 1(b)]. The condition for ex-
istence of steady parallel swimming is again det G’ = 0.
As an example, det G’ as a function of # for d = 10,
I =2, and h = 3 is shown in Fig. 3(b) (dashed black).
Due to the symmetry breaking, the zero crossing point
is slightly shifted from #=0, giving an equilibrium point
q, = (8.9866, —4.19°) under the input u, = (—1, 1.0086).
Computing the eigenvalues of the associated linearization
matrix A gives A\; o = (—0.3984 & 1.5341i) - 1073, which
implies that the steady swimming is asymptotically sta-
ble. Fig. 4(a)-(b) show simulation results of y(¢) and
6(t) for this swimmer with constant input u = u,, under
initial perturbation of q'(0) = q, + (10,20°). Fig. 4(c)
shows snapshots of the swimmer’s motion along the wall.
It is clearly seen that the swimmer is passively stabilized
at g, without applying any feedback.

Note that the stability result does not depend on the
details of a specific hydrodynamic model. The only re-
quirement in order to guarantee asymptotic stability for
some [ # 0 is that the reflection-symmetric equilibrium
configuration with [ = 0 (i.e. the three spheres lie along
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FIG. 4: Simulation of the 2 4 1-sphere swimmer - (a): Plot of
y(t) (b): Plot of O(t). (c): Snapshots of the swimmer’s motion
along the wall

a line) is marginally stable and satisfies bc < 0, as ex-
plained above. Under this requirement, small changes
in | will cause continuous change of the eigenvalues, re-
sulting in their movement to either the left half plane,
implying stability, or to the right half plane, for which
reversing the sign of u will again imply stability of the
reversed motion.

The three-sphere swimmer: Since a swimmer with
two inputs is essentially underactuated, and cannot pos-
sess steady parallel swimming at any desired orientation
and wall-separation, we now consider a swimmer with
three actuated spheres, i.e. m = n = 3. In this case,
the input u, resulting in steady parallel swimming at
d. = (Ye, 0.) is obtained by inverting G(q’) as

u. = G(q)  (100)T. (7)

In the example of Fig. 1(c), the spheres are arranged in
an equilateral triangle with edge length d = 5. Fixing
Y. = 7 and expressing u. as a function of 6. according
to (7), we numerically computed the eigenvalues of the
associated linearization matrix A. The real part of A; o
as a function of 6, is shown in Fig. 5(a). The results,
which are 120°-periodic due to the symmetry of the tri-
angle, show regions of orientations 6, for which parallel
swimming is stable. Not surprisingly, the transition from
stable to unstable swimming occurs at 6, = —30°, 30°,
which correspond to orientations at which the swimmer
possesses mirror symmetry about the line perpendicular
to the wall. Moreover, when 6. is regarded as a param-
eter of the dynamical system ¢ = G'(q’)u(6.), the val-
ues 0, = —30°,30°, associated with an imaginary pair
of eigenvalues, correspond to Hopf bifurcation with re-
spect to 0, indicating existence of periodic orbits [20].
This Hopf bifurcation is inherently degenerate, due to
the reversing symmetry. Indeed, numerical simulation
with 6, = 60°, corresponding to an unstable equilibrium
q., reveal the existence of a stable periodic orbit, shown
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FIG. 5: The three-sphere swimmer- (a): Real part of eigen-
value A as a function of 6. (b): Phase plot with a stable
periodic orbit for f. = 60°. (c): Snapshots of the periodic
motion along the wall

in (y,0) plane in Fig. 5(b). Snapshots of the swimmer’s
motion along the wall for this (y, §)-periodic motion are
shown in Fig. 5(c). Stable periodic orbits were also ob-
tained numerically in simulations for other values of the
parameter 6., indicating that whenever the steady paral-
lel swimming is unstable, a stable periodic motion exists.

Finally, it can be shown that the one-parameter family
of dynamical systems ¢ = G'(q)u(6.) possesses an addi-
tional reversing symmetry with respect to flipping both
6 and the parameter 6, about 30°. For example, tra-
jectories of the system with §. = 0° are obtained from
trajectories of the system with 6, = 60° by reversing time
and flipping 6. Therefore, the system with 6, = 0°, that
has a stable equilibrium q/, also has an unstable periodic
orbit, which is obtained from the stable periodic orbit
in Fig. 5(b) by flipping 6 about 30° and reversing the
time. Moreover, this unstable periodic orbit is precisely
the closed curve enclosing the region of attraction of the
stable equilibrium g/, in (y, 8) plane.

Conclusion: We have studied the dynamics and sta-
bility of low-Re swimming near a wall. We have ana-
lyzed the passive stability of swimming parallel to the
wall, and highlighted its relation to reversing symmetry
of the system. Finally, we have shown the existence of
stable periodic motion along the wall. We now briefly
sketch some possible directions of future research. The
first open problem is a complete characterization of the
Hopf bifurcation in this dynamical system by using geo-
metric arguments regarding its reversing symmetries. A
second direction is applying nonlinear control techniques
for steering articulated micro-swimmers stably in con-
fined environments. Third, accounting for factors such
as background flow and effects of inertia will enhance
the physical reliability of this model, and will enable in-
vestigation of a wider range of phenomena in biological
motility. Other possible extension is implementation of
numerical methods such as boundary element and multi-
pole expansion in order to simulate more complex swim-
mers in confined environments of arbitrary shape. Fi-
nally, we are currently building an experimental system
in order to verify the theoretical results on a macro-scale



swimmer prototype in highly viscous silicon oil.
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