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Abstract

In this paper, we provide tools for convergence and
performance analysis of an agreement protocol for a
network of integrator agents with directed information
flow. We also analyze algorithmic robustness of this
consensus protocol for networks with mobile nodes and
switching topology. A connection is established be-
tween the Fiedler eigenvalue of the graph Laplacian and
the performance of this agreement protocol. We demon-
strate that a class of directed graphs, called balanced
graphs, have a crucial role in solving average-consensus
problems. Based on the properties of balanced graphs,
a group disagreement function (i.e. Lyapunov function)
is proposed for convergence analysis of this agreement
protocol for networks with directed graphs and switch-
ing topology.

1 Introduction

Distributed decision-making for coordination of net-
works of dynamic agents has attracted several re-
searchers in recent years. This is partly due to broad
applications of multi-agent systems in many areas in-
cluding cooperative control of unmanned air vehicles
(UAVs), flocking of birds, schooling for underwater ve-
hicles, distributed sensor networks, attitude alignment
for cluster of satellites, and congestion control in com-
munication networks.

Agreement problems have a long history in the field
of computer science, particularly in automata theory
and distributed computation [8]. In many applications
involving multi-agent/multi-vehicle systems, groups of
agents need to agree upon certain quantities of inter-
est. Such quantities might or might not be related to
the motion of the individual agents. As a result, it is
important to address agreement problems in their gen-
eral form for networks of dynamic agents with directed
information flow under link failure and creation (i.e.
networks with switching topology).

Our main contribution in this paper is to provide con-
vergence, performance, and robustness analysis of an

agreement protocol for a network of integrator agents
with directed information flow and (perhaps) switching
topology.

In the past, a number of researchers have worked in
problems that are essentially different forms of agree-
ment problems with differences regarding the types of
agent dynamics, the properties of the graphs, and the
names of the tasks of interest [1, 2, 7, 9]. The work
of Jadbabaie et al. in [6] focuses on attitude alignment
for network of agents with an undirected graph in which
each agent has a discrete-time integrator dynamics. It
is shown that the connectivity of union of the graphs in
a sufficiently large time interval is sufficient for conver-
gence of the heading angles of the agents. In [11], the
authors addressed convergence of linear and nonlinear
protocols for networks with undirected graphs in pres-
ence or lack of communication time-delays. Consensus
problems for directed graphs is rather challenging and
has not been systematically considered before.

In this paper, we provide convergence analysis of an
agreement protocol for a network of integrators with a
directed information flow and fixed or switching topol-
ogy. Our analysis relies on several tools from algebraic
graph theory [4] and matrix theory [5]. We establish a
connection between the performance of this consensus
protocol and the Fiedler eigenvalue of graph Laplacian.
The interpretation of the Fiedler eigenvalue of a di-
graph was unknown. Here, we introduce the notions
of balanced graphs and the mirror of a digraph that
allow extension of the notion of the Fiedler eigenvalue
(i.e. algebraic connectivity) to digraphs. It is demon-
strated that balanced digraphs a crucial role in deriva-
tion of Lyapunov functions for convergence analysis of
average-consensus problems on directed networks with
fixed or switching topology.

An outline of this paper is as follows. In Section 2,
we provide some background on algebraic graph the-
ory. In Section 3, we present the setup for agreement
problems in directed networks with switching topology.
Our main results are given in Section 4. In Section 5,
the simulation results are presented. Finally, in Section
6, we make our concluding remarks.



2 Preliminaries: Algebraic Graph Theory

In this section, we introduce some basic concepts and
notation in graph theory that will be used throughout
the paper. More information is available in [4].

Let G = (V, E ,A) be a weighted directed graph (or
digraph) with n nodes and a weighted adjacency matrix
A = [aij ] where aij ≥ 0 for all i, j ∈ I = {1, 2, . . . , n} :
i 6= j and aii = 0 for all i ∈ I. The set of neighbors of
the node vi is denoted by Ni and defined as Ni = {j ∈
I : aij > 0}. The in–degree and out–degree of node vi

are, respectively, defined as follows:

degin(vi) =

n
∑

j=1

aji, degout(vi) =

n
∑

j=1

aij . (1)

For an ordinary graph with A that has binary elements
degout(vi) = |Ni|. The degree matrix of G is a diagonal
matrix denoted by ∆ = [∆ij ] where ∆ij = 0 for all i 6= j
and ∆ii = degout(vi). The (weighted) graph Laplacian
matrix associated with G is defined as

L = L(G) = ∆−A. (2)

With a slight misuse of notation, we use L(G) = L(A)
to denote the Laplacian of graph G. By definition, the
graph Laplacian has an eigenvector at λ1 = 0 and a
right eigenvector wr = 1 = (1, 1, . . . , 1)T with identi-
cal nonzero elements. Furthermore, for a strongly con-
nected digraph G of order n, the Laplacian matrix sat-
isfies the following rank condition:

rank(L) = n− 1 (3)

A digraph is called strongly connected if and only if any
two distinct nodes of the graph can be connected via a
path that respects the orientation of the edges of the
digraph.

Note. Throughout this paper, we assume all graphs
have at least two nodes (i.e. are non-trivial) and there
is no cycle of length one (i.e. an edge from a node to
itself).

For an undirected graph G, L is symmetric and positive
semi-definite. The disagreement function (also referred
to as Laplacian potential) associated with G is defined
(up to a positive factor) in [11] as follows

ΦG(x) = xTLx =
1

2

∑

ij∈E
(xj − xi)

2 (4)

where xi denotes the value of node vi. The value of a
node might represent physical quantities including at-
titude, position, temperature, voltage, and so on. We
say two distinct nodes vi and vj agree if and only if
xi = xj . Apparently, ΦG(x) = 0 if and only if all
neighboring nodes in G agree. If in addition, the graph

is connected, then all nodes in the graph agree and a
consensus is reached. Therefore, ΦG(x) is a meaning-
ful function that quantifies the group disagreement in
a network.

For an undirected graph G that is connected the fol-
lowing well-known property holds [4]:

min
x 6= 0

1
T x = 0

xTLx

‖x‖2 = λ2(L) (5)

The proof follows from a special case of Courant–
Fischer Theorem in [5]. We will later establish a con-
nection between λ2(L̂), called the Fiedler eigenvalue of
L̂ [3], and the performance of a linear agreement pro-
tocol where L̂ is closely-related to L.

Later, we use the spectral properties of graph Lapla-
cians for convergence analysis of the main agreement
protocol in this paper. The following result follows from
Geršgorin disk theorem [5]:
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Figure 1: A demonstration of Geršgorin Theorem applied
to graph Laplacian.

Proposition 1. (spectral localization) Let G =
(V, E ,A) be a digraph with the Laplacian L. De-
note the maximum node out–degree of G by δ(G) =
maxi degout(vi). Then, all the eigenvalues of L = L(G)
are located in the following disk

D(G) = {z ∈ C : |z − δ(G)| ≤ δ(G)} (6)

centered at z = δ(G) + 0j in the complex plane (see
Figure 1). Moreover, the real-part of the eigenvalues of
−L are non-positive.

Proof. See [10].

3 Agreement Problem on Directed Graphs

Consider a network of integrators

ẋi = ui, i ∈ I, xi, ui ∈ R



with information flow (or topology) G = (V, E ,A). On
purpose, we choose agents with simple linear dynam-
ics to demonstrate issues involved in the networks and
communication aspects of agreement.

The asymptotic agreement problem can be described as
follows. Give a protocol that guarantees the state of
the network as a whole asymptotically converges to an
equilibrium state x∗ ∈ Rn with identical elements, i.e.
x∗i = x∗j =: α for all i, j ∈ I, i 6= j. The element α
that determines x∗ is called the group decision value.
An agreement problem in which α = Ave(x(0)) is re-
ferred to as the average-consensus problem [11] where
Ave(x) = (

∑n

i=1 xi)/n.

We focus on solving the average-consensus problem us-
ing the following agreement protocol :

ui(t) =
∑

j∈Ni

aij(xj(t)− xi(t)), i ∈ I (A)

In distributed average-consensus problem, the objective
of each node of the network is to calculate the average
of the initial values of all n nodes provided that no node
has an edge with all other nodes (unless n = 2) and the
network is connected.

Given Protocol (A), the state of the network evolves
according to the following linear system

ẋ(t) = −Lx(t) (7)

where L = L(G) is the Laplacian induced by the in-
formation flow G. In a network with variable topology
G, convergence analysis of Protocol (A) is equivalent to
stability analysis for a hybrid system

ẋ(t) = −Lkx(t), k = s(t) (8)

where Lk = L(Gk) is the Laplacian of Gk, s(t) : R →
IΓ ⊂ Z is a switching signal, and Γ 3 Gk is a finite
collection of digraphs (of order n) with the index set IΓ.
The task of stability analysis for the hybrid system in
(8) is rather challenging partly because q, p ∈ IΓ, q 6= p
most likely implies LqLp 6= LpLq. Thus, rather simple
ways of constructing a common Lyapunov function fail
for this switching system.

The following result guarantees the convergence of Pro-
tocol (A) for digraphs.

Proposition 2. Consider a network of integrators with
an information flow G that is a strongly connected
digraph. Then, Protocol (A) globally asymptotically
solves an agreement problem, i.e. the solution asymp-
totically converges to an equilibrium x∗ such that x∗i =
x∗j for all i, j, i 6= j.

Proof. See [10].
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Figure 2: A connected digraph of order 3 that does not
solve the average-consensus problem.

Keep in mind that Proposition 2 does not address
the average-consensus problem. A sufficient condition
for the decision value of each node α to be equal to
Ave(x(0) is that

∑n
i=1 ui ≡ 0. If G is undirected (i.e.

aij = aji > 0,∀i, j : aij 6= 0), automatically the condi-
tion

∑n

i=1 ui = 0,∀x holds and Ave(x(t)) is an invariant
quantity [11]. However, this property does not hold for
a general digraph. A counterexample is given in Fig-
ure 2 (see [10] for further details). The existence of
digraphs that do not solve average-consensus problems
motivates us to characterize the class of all digraphs
that solve the average-consensus problem.

Before presenting our main results, we need to provide
a limit theorem for exponential matrices of the form
exp(−Lt). This is because the solution of (7) is given
by

x(t) = exp(−Lt)x(0) (9)

and by explicit calculation of exp(−Lt), one can obtain
the decision value of each node after reaching consensus.

Notation. Following the notation in [5], we denote the
set ofm×n real matrices byMm,n and the set of square
n × n matrices by Mn. Furthermore, throughout this
paper, the right and left eigenvectors of the Laplacian
L associated with λ1 = 0 are denoted by wr and wl,
respectively.

Theorem 1. Assume G is a strongly connected digraph
with Laplacian L satisfying Lwr = 0, wT

l L = 0, and
wT

l wr = 1. Then

R = lim
t→+∞

exp(−Lt) = wrw
T
l ∈Mn (10)

Proof. See [10].

4 Main Results

In this section, we present three of our main results:
i) characterization of all connected digraphs that solve
average-consensus problem using Protocol (A), and ii)
the relation between the performance of Protocol (A)
and the Fiedler eigenvalue (i.e. algebraic connectivity)
of graphs, and iii) robust agreement under switching
information flows.



31 5 9

2 4 8 106

7

1

4

6

5 3

2

(a) (b)

Figure 3: Three examples of balanced graphs.

4.1 Balanced Graphs and Average-Consensus

The following class of digraphs turns out to be instru-
mental in solving average-consensus problems:

Definition 1. (balanced graphs) We say the node vi

of a digraph G = (V, E ,A) is balanced if and only if its
in-degree and out-degree are equal, i.e. degout(vi) =
degin(vi). A graph G = (V, E ,A) is called balanced if
and only if all of its nodes are balanced, i.e.

∑

j aij =
∑

j aji,∀i.

Example 1. Any undirected graph is balanced. Fur-
thermore, both of the digraphs shown in Figure 3 are
balanced.

Here is our first main result:

Theorem 2. Consider a network of integrators with
directed information flow G = (V, E ,A) that is strongly
connected. Then, G globally asymptotically solves the
average-consensus problem using Protocol (A) if and
only if G is balanced.

Proof. The proof follows from Propositions 3 and 4.

Remark 1. According to Theorem 2, if a graph is not
balanced, then it does not globally solve the average
consensus-problem using Protocol (A). This assertion
is consistent with the counterexample given in Figure 2.

Proposition 3. Consider a network of integrators with
directed information flow G = (V, E ,A) that is strongly
connected. Then, the digraph G globally asymptoti-
cally solves the average-consensus problem using Pro-
tocol (A) if and only if 1TL = 0.

Proof. From Theorem 1, with wr =
1√
n
1 we obtain

x∗ = lim
t→+∞

x(t) = Rx0 = wr(w
T
l x0) =

1√
n
(wT

l x0)1.

This implies Protocol 1 globally exponentially solves a
consensus problem with the decision value 1√

n
(wT

l x0)

for each node. If this decision value is equal to
Ave(x0),∀x0 ∈ Rn, then necessarily 1√

n
wl = 1√

n
, i.e.

wl = wr = 1√
n
1. This implies that 1 is the left eigenvec-

tor of L. To prove the converse, assume that 1TL = 0.
Let us take wr = 1√

n
1, wl = β1 with β ∈ R, β 6= 0.

From condition wT
l wr = 1, we get β = 1√

n
and

wl =
1√
n
1. This means that the decision value for every

node is 1√
n
(wT

l x0) =
1

n
1Tx0 = Ave(x0).

The following result shows that if one of the agents uses
a relatively small update rate (or step-size), i.e. γi∗ À
γi for all i 6= i∗. Then, the value of all nodes converges
to the value of x∗i . In other words, the agent i∗ plays
the role of a leader in leader-follower type architecture.

Corollary 1. (multi-rate integrators) Consider a net-
work of multi-rate integrator with the node dynamics

γiẋi = ui, γi > 0,∀i ∈ I (11)

Assume each node applies Protocol (A). Then, an
agreement is globally asymptotically reached and the de-
cision value of the group is

α =

∑

i γixi(0)
∑

i γi

(12)

Proof. See [10].

Proposition 4. Let G = (V, E ,A) be a digraph with
an adjacency matrix A = [aij ] satisfying aii = 0,∀i.
Then, all the following statements are equivalent: i) G
is balanced, ii) 1TL = 0, and iii)

∑n
i=1 ui = 0,∀x ∈ Rn

with u = −Lx.

Proof. See [10].

Notice that in Proposition 4, the graph G does not need
to be connected.

4.2 Performance and Mirror Graphs

In this section, we discuss performance issues of Pro-
tocol (A) with balanced graphs. An important conse-
quence of Proposition 4 is that for networks with bal-
anced information flow, α = Ave(x) is an invariant
quantity. This is certainly not true for an arbitrary di-
graph. The invariance of Ave(x) allows decomposition
of x according to the following equation:

x = α1+ δ (13)

where α = Ave(x) and δ ∈ Rn satisfies
∑

i δi =
0. We refer to δ as the (group) disagreement vector.
The vector δ is orthogonal to 1 and belongs to an
(n − 1)-dimensional subspace called the disagreement
eigenspace of L provided that G is strongly connected.



Moreover, δ evolves according to the (group) disagree-
ment dynamics given by

δ̇ = −Lδ. (14)

It turns out that a useful property of balanced graphs is
that for any balanced digraph G, there exists an undi-
rected graph that has the same disagreement function
as G. In the following, we formally define this induced
undirected graph.

Definition 2. (mirror graph/operation) Let G =
(V, E ,A) be weighted digraph. Let Ẽ be the set of re-
verse edges of G obtained by reversing the order of all
the pairs in E . The mirror of G denoted by Ĝ =M(G)
is an undirected graph in the form Ĝ = (V, Ê , Â) with
the same set of nodes as G, the set of edges Ê = E ∪ Ẽ ,
and the symmetric adjacency matrix Â = [âij ] with
elements

âij = âji =
aij + aji

2
≥ 0 (15)

The following result shows that the operations of L
and Sym on a weighted adjacency matrix A commute.
Moreover,

Theorem 3. Let G be a digraph with adjacency ma-
trix A = adj(G) and Laplacian L = L(G). Then
Ls = Sym(L) = (L + LT )/2 is a valid Laplacian ma-
trix for Ĝ =M(G) if and only if G is balanced, i.e. the
following diagram commutes iff G is balanced

G
adj−−−−→ A L−−−−→ L

M




y

Sym





y

Sym





y

Ĝ −−−−→
adj

Â −−−−→
L

L̂

(16)

Moreover, if G is balanced, the disagreement functions
of G and Ĝ are equal.

Proof. We know that G is balanced iff 1TL = 0. Since
L1 = 0, we have 1TL = 0 ⇐⇒ 1

2
(L + LT )1 = 0.

Thus, G is balanced iff Ls has a right eigenvector of
1 associated with λ = 0, i.e. Ls is a valid Laplacian
matrix. Now, we prove that Ls = L(Ĝ). For doing so,
let us calculate ∆̂ element-wise, we get

∆̂ii =
∑

j

aij + aji

2
=

1

2
(degout(vi) + degin(vi))

= degout(vi) = ∆ii

Thus, ∆̂ = ∆. On the other hand, we have

Ls =
1

2
(L+ LT ) = ∆− A+AT

2
= ∆̂− Â = L̂ = L(Ĝ)

The last part simply follows from the fact that L̂ is
equal to the symmetric part of L and xT (L − LT )x ≡
0.

Notation. For simplicity of notation, in the context
of algebraic graph theory, λk(G) is used to denote
λk(L(G)).

Now, we are ready to present our main result on per-
formance of the Protocol (A) in terms of the speed of
reaching a consensus as a group.

Theorem 4. (performance of agreement) Consider a
network of integrators with a directed information flow
G that is balanced and strongly connected. Then, given
Protocol (A), the following statements hold: i) the
group disagreement (vector) δ as the solution of the
disagreement dynamics in (14) globally asymptotically
vanishes with a speed that is equal to κ = λ2(Ĝ) (or the
Fiedler eigenvalue of the mirror graph of G), i.e.

‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κt), (17)

and ii) the following positive definite function

V (δ) =
1

2
‖δ‖2 (18)

is a valid Lyapunov function for the disagreement dy-
namics.

Proof. See [10].

A well-known observation regarding the Fiedler eigen-
value of an undirected graph is that for dense graphs
λ2 is relatively large and for sparse graphs λ2 is rel-
atively small [4] (this is why λ2 is called the algebraic
connectivity). According to this observation, from The-
orem 4, one can conclude that a network with dense in-
terconnections solves an agreement problem faster than
a connected but sparse network.

4.3 Networks with Switching Topology

Consider a network of mobile agents that communicate
with each other and need to agree upon a certain ob-
jective of interest or perform synchronization. Since,
the nodes of the network are moving, it is not hard
to imagine that some of the existing communication
links can fail simply due to the existence of an obstacle
between two agents. The opposite situation can arise
where new links between nearby agents are created be-
cause the agents come to an effective range of detection
with respect to each other. In other words, in the graph
G representing the information flow of the network, cer-
tain edges can be added or removed from G. Here, we
are interested to investigate that in case of a network
with switching topology whether it is still possible to
reach a consensus or not.

Consider a hybrid system with a continuous-state x ∈
Rn and a discrete-state G that belongs to a finite set of



digraphs Γn. This Γn is the set of all digraphs of order
n that are both strongly connected and balanced, i.e.

Γn = {G = (V, E ,A) : rank(L(G)) = n−1,1TL(G) = 0}.
(19)

Given the node dynamics and the protocol, the
continuous-state of the system evolves according to the
following dynamics

ẋ(t) = −L(Gk)x(t), k = s(t), Gk ∈ Γn (20)

where s(t) : R≥0 → IΓn
is a switching signal and IΓn

⊂
N is the index set associated with the elements of Γn.
Clearly, Γn is a finite set, because either a digraph has
no edges or it is a complete graph with n(n−1) directed
edges.

The key in solving the agreement problem for mobile
networks with switching topology is a basic property
of the Lyapunov function in (18) and the properties of
balanced graphs. Note that the function V (δ) = 1

2
‖δ‖2

does not depend on G or L = L(G). This property of
V (δ) makes it an appropriate candidate as a common
Lyapunov function for stability analysis of the switch-
ing system (20).

Theorem 5. For any arbitrary switching signal s(·),
the solution of the switching system (20), globally
asymptotically converges to Ave(x(0)) (i.e. average-
consensus is reached). Moreover, the following smooth,
positive definite, and proper function

V (δ) =
1

2
‖δ‖2 (21)

is a valid common Lyapunov function for the disagree-
ment dynamics given by

δ̇(t) = −L(Gk)δ(t), k = s(t), Gk ∈ Γn (22)

Furthermore, the disagreement vector δ vanishes expo-
nentially fast with the least rate of

κ∗ = min
G∈Γn

λ2(L(Ĝ))) (23)

In other words, ‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κ∗t).

Proof. Due the fact that Gk is balanced for all k and
u = −L(Gk)x, we have 1Tu = −(1TL(Gk))x ≡ 0.
Thus, α = Ave(x) is an invariant quantity which al-
lows us to decompose x as x = α1 + δ. Therefore, the
disagreement switching system induced by (20) takes
the form (22). Calculating V̇ , we get

V̇ = −δTL(Gk)δ = −δTL(Ĝk)δ

≤ −λ2(L(Ĝk))‖δ‖2 ≤ −κ∗‖δ‖2
= −2κ∗V (δ) < 0,∀δ 6= 0

(24)

This guarantees that V (δ) is a valid common Lyapunov
function for the disagreement switching system (22).
Moreover, we have

V (δ(t)) ≤ V (δ(0)) exp(−2κ∗t)

and the upper bound on ‖δ(t)‖ follows. Finally, the
minimum in (23) always exists and is achievable be-
cause Γn is a finite set.

5 Simulation Results

Figure 4 shows four different networks each with n = 10
nodes that are all strongly connected and balanced.
The weights associated with all the edges are 1. For
an initial node values satisfying Ave(x(0)) = 0, we
have plotted the state trajectories and the disagree-
ment function ‖δ‖2 associated with these four digraphs
in Figure 5. It is clear that as the number of the edges
of the graph increase, algebraic connectivity (or λ2) in-
creases, and the settling time of the trajectory of the
node values decreases. The case of a directed cycle of
length n = 10, or Ga, has the largest over-shoot. In all
four cases, an agreement is asymptotically reached and
the performance is improved as a function of λ2(Ĝk) for
k ∈ {a, b, c, d}.

31 2 4 5

678910

31 2 4 5

678910
(a) (b)

31 2 4 5

678910

31 2 4 5

678910
(c) (d)

Figure 4: For examples of balanced and strongly con-
nected digraphs: (a) Ga, (b) Gb, (c) Gc , and
(d) Gd satisfying.

In Figure 6(a), a finite-state machine is shown with the
set of states {Ga, Gb, Gc, Gd} representing the discrete-
states of a network with switching topology as a hybrid
system. The hybrid system starts at the discrete-state
Gb and switches every T = 1 second to the next state
according to the state machine in Figure 6(a). The
continuous-time state trajectories and the group dis-
agreement (i.e. ‖δ‖2) of the network are shown in Fig-
ure 6(b). Clearly, the group disagreement is monoton-
ically decreasing. One can observe that an average-
consensus is reached asymptotically. Moreover, the
group disagreement vanishes exponentially fast.

6 Conclusion

In this paper, we addressed convergence and perfor-
mance problems for an agreement protocol for a net-
work of dynamic agents with integrator dynamics and
directed information flow. Moreover, we analyzed ro-
bustness of this consensus protocol to changes in the
topology of the network. We showed that balanced
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Figure 5: For examples of balanced and strongly con-
nected digraphs: (a) Ga and (b) Gd.

graphs are the only type of digraphs that solve the
average-consensus problem with the aforementioned
agreement protocol. We also proved that for any bal-
anced digraph, there exists an undirected graph called
the mirror graph. Fiedler eigenvalue of the mirror graph
is used to quantify the speed of convergence of a lin-
ear agreement protocol on digraphs. Moreover, a com-
mon Lyapunov function that allowed convergence anal-
ysis for agreement in balanced networks with switching
topology.
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