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ABSTRACT. This paper considers the problem of real time tra-
jectory generation and tracking for nonlinear control systems. We
employ a two degree of freedom approach that separates the nonlin-
ear tracking problem into real time trajectory generation followed
by local (gain-scheduled) stabilization. The central problem which
we consider is how to generate, possibly with some delay, a feasi-
ble state space and input trajectory in real time from an output
trajectory that is given online. We propose two algorithms that
solve the real time trajectory generation problem for differentially
flat systems with (possibly non-minimum phase) zero dynamics.
One is based on receding horizon point to point steering, the other
allows additional minimization of a cost function. Both algorithms
explicitly address the tradeoff between stability and performance
and we prove convergence of the algorithms for a reasonable class
of output trajectories. To illustrate the application of these tech-
niques to physical systems, we present experimental results using a
vectored thrust flight control experiment built at Caltech. A brief
introduction to differentially flat systems and its relationship with
feedback linearization is also included.

1. INTRODUCTION

A large class of industrial and military control problems consist of plan-
ning and following a trajectory in the presence of noise and uncertainty. Ex-
amples range from unmanned and remotely piloted airplanes and submarines
performing surveillance and inspection tasks, to mobile robots moving on
factory floors, to multi-fingered robot hands performing inspection and ma-
nipulation tasks inside the human body under the control of a surgeon. All
of these systems are highly nonlinear and demand accurate performance.

Research supported in part by NSF Grant CMS-9502224 and AFOSR Grant F49620-
95-1-0419.

1

Contr ol



2 VAN NIEUWSTADT AND MURRAY

A
. Plant
u ; noise — - = output
d : - P
Trajectory §
ref —=
Generation
5 ou
7 Zd § Feedback
! : Compensation ‘

FIGURE 1. Two degree of freedom controller design.

In this paper, we focus on the problem of trajectory generation and track-
ing for such motion control systems. Roughly speaking, we wish to design
a controller that tracks a desired trajectory for a set of outputs of the sys-
tem. We assume that the desired trajectory is not known ahead of time,
so that the controller must perform all operations in “real-time”. A good
prototype example for this class of problems is control of an autonomous
aircraft tracking a moving target (perhaps a speeding car on the ground
or another aircraft). The target’s trajectory provides the desired trajec-
tory for the pursuing aircraft. If the target and the controlled system have
identical dynamics, then in principal one can achieve perfect tracking. In
general, however, it will not be possible to exactly track the reference signal,
and so we must tradeoff the tracking performance with the stability of the
controlled system.

In order to design a nonlinear controller that approximately tracks a given
trajectory, we separate the problem into two pieces: a trajectory generation
block and a feedback compensation block, as shown in Figure 1.

The purpose of the trajectory generation block is to synthesize a feasible
state space trajectory for the system given a desired reference signal. For
example, the reference signal might be the desired position of the center
of mass of an aircraft. This trajectory may or may not be something that
can actually be executed by the aircraft, either due to limitations on the
actuation system or because there does not exist a trajectory in state space
that simultaneously satisfies the equations of motion and gives the desired
trajectory for the center of mass. It is the responsibility of the trajectory
generation block to use this reference signal to generate a feasible state space
trajectory, as well as a set of nominal inputs that drive the system along
this path.

Given the feasible state space trajectory, the feedback compensation block
is used to correct for any errors due to noise or plant uncertainty (depicted
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in the figure as a feedback with unknown parameters A). Given the de-
sired state space trajectory, x4, the error dynamics can then be written as a
time-varying control system in terms of the state error, e = x — 4. Under
the assumption that the tracking error remains small, we can linearize this
time-varying system about e = 0 and stabilize the e = 0 state. One method
of doing this is to solve the linear quadratic optimal control problem to ob-
tain the optimal (time-varying) feedback gain for the path. More advanced
techniques include the use of linear-time varying robust synthesis (see, for
example, Shamma [46] for recent results and a survey of the literature) and
the use of linear parameter varying synthesis developed by Packard [39] and
others.

The use of two degree of freedom design techniques is a classical one in
the control literature. In the linear setting, two degree of freedom controllers
are usually thought of as containing a feedforward compensator (or shaping
filter) that modifies the input to the feedback compensator. In our context,
we do something slightly stronger since we generate a full state, feasible
trajectory and nominal input, and we allow use of the current state in the
“feedforward” block. This paradigm is also superficially similar to tradi-
tional optimal control techniques, where optimal control theory is used to
generate a feasible trajectory minimizing some cost function and a feedback
compensator is used to track this trajectory. However, for the motion con-
trol applications that we consider, the reference signal is not available ahead
of time (as in the example of an airplane following a moving target) and the
problems are typically high dimensional and nonlinear, making the optimal
control problem difficult to solve in real-time.

Many modern nonlinear control methodologies can also be viewed as syn-
thesizing controllers that fall into the two degree of freedom framework. For
example, traditional nonlinear trajectory tracking approaches, such as feed-
back linearization [16, 19] and nonlinear output regulation [18], are easily
viewed as a feedforward piece and a feedback piece. Both methods use the
structure of the plant dynamics to compute a nominal path for the system
and then stabilize the trajectory in local (possibly transformed) coordinates.
Indeed, when the tracking error is small, the primary difference between the
methods is the form of the error correction term: output regulation uses
the linearization of the system about a single equilibrium point; feedback
linearization uses a linear control law in an appropriate set of coordinates.

In some cases, it is possible only to linearize the input/output response
of the system and not the full state dynamics. In this case, the feedback
linearizing controller specifies only a portion of the dynamics of the sys-
tem. The remaining internal dynamics (zero dynamics) are not specified
and evolve independently, driven by the inputs required to track the output
signal. If the internal dynamics are unstable (non-minimum phase), this
technique cannot be used without modification. It is important to note that
all of these modern nonlinear approaches rely on the availability of state
feedback in order to generate feedforward commands. Thus, they are not
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traditional open loop feedforward controllers and this difference is crucial to
their operation.

A more sophisticated approach for trajectory generation in the presence
of internal dynamics is to extend the trajectory for the outputs and their
derivatives to a full state space trajectory. One such method is reported
by Chen and Paden [6] and Devasia and Paden [7], who use noncausal in-
version for trajectory generation for systems with well-defined, hyperbolic
zero dynamics. The method of noncausal inversion tries to find a stable so-
lution for the full state space trajectory by steering from the unstable zero
dynamics manifold to the stable zero dynamics manifold. The noncausality
results from the fact that we first have to get from the origin to the right
position on the unstable zero dynamics manifold. The solution is found by
repeatedly solving a two point boundary value problem for the linearized
zero dynamics driven by the desired trajectory. This iteration can also be
performed in the frequency domain, as shown by Meyer et al. [30].

Finally, an approach that does not generate a feasible state space tra-
jectory, but improves on the output-only trajectory has been explored by
Getz et al. [14]. The method generates an approximate trajectory for the
internal dynamics by following an instantaneous equilibrium for the internal
dynamics. The first and higher order derivatives of the internal states are
set to zero. Therefore the total state trajectory is not feasible. Further
refinements of this technique can be found in [13].

In this paper we concentrate on a special class of systems, called differen-
tially flat systems, for which there is a one-to-one correspondence between
trajectories of a set of “flat outputs” and full state space and input trajecto-
ries. Trajectories can be planned in output space and then lifted to the state
and input space, through an algebraic mapping. Differentially flat systems
were introduced by Fliess et al. [10, 11] and are ideally suited for trajectory
generation tasks. A variety of examples have been shown to be differentially
flat (or approximately flat) and controllers based on trajectory generation
by interpolation and then closing the loop on the obtained trajectory have
been developed. This examples include overhead cranes [9, 12], cars with
trailers [9, 44, 45], conventional aircraft [23, 28], induction motors [5, 27],
active magnetic bearings [22], and chemical reactors [42, 43]. An introduc-
tion to differentially flat systems, and a description of their relationship with
feedback linearizable systems, is given in Section 2.

The point of view taken in this paper also exploits differential flatness,
but with a stronger emphasis towards real-time trajectory generation and ex-
plicit tradeoffs between performance in the tracking variables and stability
of the internal variables. In Section 3 we introduce the real-time trajec-
tory generation problem and provide two algorithms for tracking a (possibly
non-minimum phase) output. These algorithms are shown to converge for
a reasonable class of output trajectories and allow explicit tradeoff between
stability and performance. We apply one of these algorithms to simulations
and experiments of a flight control experiment in Section 4. We demon-
strate that the two degree of freedom techniques advocated in this paper
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provide significant improvement over traditional linear controls. Finally, we
summarize our results and outline some directions for future research in
Section 5.

2. DIFFERENTIAL FLATNESS

In this section we provide a brief description of differential flatness and
compare it with (dynamic) feedback linearization. More details about dif-
ferentially flat systems can be found in [10, 11, 22, 37]. For an introduction
to feedback linearization, see [17, 38].

2.1. Differentially flat systems. Differential flatness was originally in-
troduced by Fliess et al. [10] in a differentially algebraic context and later
using Lie-Béicklund transformations [11]. The important property of flat
systems is that we can find a set of outputs (equal in number to the number
of inputs) such that we can express all states and inputs in terms of those
outputs and their derivatives. More precisely, a nonlinear system

T = f(z,u) zeR", ueR”

(1)

y = h(z) y €ER™
is differentially flat if we can find outputs z € R™ of the form
z=((z,u,1,. .., u®) (2)
such that
r=1x(z%...,29) = z(2)
e 3)
u=u(z,2,...,2") = u(2).

We call y the tracking outputs and z the flat outputs. These outputs are
not necessarily the same and care must be taken when the tracking outputs
result in right half plane zeros for the linearized system, in order to avoid
exciting instabilities in the internal dynamics. For ease of notation, we stack
the flat outputs and their derivatives in the flat flag, z := (2,2, ... ,z(l)).

Differentially flat systems are useful in situations where explicit trajectory
generation is required. Since the behaviour of flat systems is determined by
the flat outputs, we can plan trajectories in output space, and then map
these to appropriate inputs. A common example is a kinematic car, where
the zy position of the rear wheels provides flat outputs [44, 45]. This implies
that all feasible trajectories of the system can be determined by specifying
only the trajectory of the rear wheels. This idea is illustrated in more detail
in the following sections.

Differential flatness can also be characterized using tools from exterior dif-
ferential systems [37]. In the beginning of this century, the French geometer
E. Cartan developed this set of powerful tools for the study of equivalence of
systems of differential equations [2, 3, 47]. Equivalence need not be restricted
to systems of equal dimensions. In particular a system can be prolonged to a
bigger system on a bigger manifold, and equivalence between these prolon-
gations can be studied. Two systems that have equivalent prolongations are
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FiGURE 2. Differential flatness and absolute equivalence. A
system & = f(x,u) is said to be differentially flat if the solu-
tions are in one-to-one equivalence with the solutions of the
trivial system z(¢) € M (no dynamics).

called absolutely equivalent. Differentially flat systems can be interpreted
as being those systems which are absolutely equivalent to the trivial sys-
tem, i.e., having no dynamic constraints on the free variables [37]. This is
illustrated in Figure 2.

2.2. Flatness versus feedback linearization. It is easy to show that any
(full-state) feedback linearizable system is differentially flat by choosing the
flat output as the feedback linearizing output. Indeed, differential flatness
can be shown to be equivalent to dynamic feedback linearization on an open
and dense set using a class of invertible dynamic feedbacks [4, 8, 19, 29].
Hence, the class of systems which is differentially flat is essentially the same
as dynamically feedback linearizable systems (up to some regularity con-
ditions). However, the point of view used in controlling differentially flat
systems is substantially different than feedback linearization: one concen-
trates on generating feasible trajectories rather than transforming the system
into a single linear system. Consistent with the two degree of freedom para-
digm discussed in the introduction, a (scheduled) linear controller can then
be used to maintain stability of the system around the generated trajectory.
This has the advantage of allowing the local control design to be performed
in the original coordinates for the system, where the various weights and
other characteristics of the controller can be specified more naturally (see,
for example, [1]).
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To illustrate this viewpoint, consider the feedback linearization problem
for a single input, single output nonlinear control system

&= f(z) +g9(z)u

y = h(z).
Suppose that the output y has relative degree n, so that the system is full
state linearizable. Then the dynamics of the system can be transformed
to a linear system using a state transformation ¢ = ¢(z) and an input
transformation v = a(z) + f(z)v where £ € R" is the new state vector
and v is the new input. The functions a(z) and B(z) are determined using
repeated Lie derivatives of the output function (see [38]). A standard control
law for tracking a desired trajectory in y is one of the form

u=al@) + Be) (yg"” + K€~ &), (4)
where y4(-) is the desired output trajectory and &, is determined by differ-
entiating the desired output (see [38] for a more complete description).

The control law in equation (4) can be viewed as a two degree of freedom
controller by slightly rearranging terms:

u = (ale) + Ba)yd") +B)K(E — &)

~ >

feedforward feedback

The feedforward terms are the inputs that are required in order to track the
trajectory; the feedback terms are used to correct any errors due to system
uncertainty. Note that the “feedforward” controller makes use of the current
state information as well as the desired output signal, 4.

Treating the system as being differentially flat instead of feedback lin-
earizable, a controller for trajectory tracking would take the form

u = (alz, 2a) + Bz, 20) 25" + K (, 20) (2 — z4(2a))- (5)

There are several differences between this controller and the feedback lin-
earizing controller. First, the nominal inputs are allowed to depend on both
the current state and the flat flag, depending on how one implements certain
computations. Thus, the entire trajectory can be computed in a truly open-
loop fashion (as in optimal control) or the current state can be used (as in
feedback linearization). Second, feedback of the error term in the feedback
linearizing controller inverts the coupling function £G(z). This can lead to
numerical problems if 5(z) is near singularities or the system has substan-
tial uncertainty. In contrast, the controller in equation (5) uses a scheduled
gain, allowing tradeoffs between performance and input magnitude to be
varied depending on the operating conditions. Finally, as we show in the
sequel, the flatness based controller allows numerical methods to be used for
trajectory generation, rather than requiring symbolic computations.
Additional differences between flatness and feedback linearization are ev-
ident when the outputs that one wants to track are different than the flat
outputs. In this case, standard I/O linearization techniques can fail if the
zero dynamics of the system are unstable (non-minimum phase). And even
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FiGURE 3. Rolling penny.

if the zero dynamics are stable, it is possible that the controller may cause
the internal motion to have unacceptably large transient performance. The
flatness based controllers which we develop in the next section avoid this
problem by allowing an explicit tradeoff between the trajectory tracking
performance and the stability of the internal motions (see [34] for a more
complete discussion of this point).

2.3. Examples. In this subsection we give various examples of mechanical
systems that are flat. Additional examples and characterizations of flat
systems can be found in [9, 25, 26, 31, 32, 45].

Example 1 (Rolling penny). Consider the motion of a rolling penny, as
shown in Figure 3. Let (z1,x2) represent the zy position of the penny on
the plane, x3 represent the heading angle of the penny relative to a fixed
line on the plane, and x4 represent the rotational velocity of the angle of
Lincoln’s head, i.e., the rolling velocity. We restrict z3 € [0,7) since we
cannot distinguish between a positive rolling velocity z4 at a heading angle
z3 and a negative rolling velocity at a heading angle x3 + .
The dynamics of the penny can be written as

T1 = COST3 T4

To = sinxs T4

T3 = Ts (6)
3.74 = U
j:5 = ug,

where x5 = &3 is the velocity of the heading angle. The controls u; and s
correspond to the torques around the rolling and heading axes.

This system is differentially flat using the outputs z; and zs plus knowl-
edge of time. Given x; and z2, we can use the first two equations to solve
uniquely for 3 and z4. Then given these three variables plus time, we can
solve for all other variables in the system by differentiation with respect to
time.

Example 2 (Planar ducted fan). Consider the motion of the planar, vec-
tored thrust vehicle shown in Figure 4. This system consists of a rigid body
with body fixed forces and is a simplified model for the Caltech ducted fan
described in [20].
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Available thrust modes

FIGURE 4. Planar ducted fan engine. Thrust is vectored by
moving the flaps at the end of the duct, as shown on the
right.

The ducted fan is mounted on a stand with a counterweight that moves
in as the fan moves up. This results in inertial masses m, and my in the
z and y direction respectively, that change with the y coordinate. We do
not take the variation of these inertial masses with y into account but take
their value around hover. The counterweight also results in an effective
weight my different than the inertial masses in x and y direction. We can
apply any force on the center of mass by adjusting the magnitude and the
direction of the thrust, or equivalently by commanding the parallel and
perpendicular thrust. After shifting the control variables to compensate for
gravity, us — uz + myg, the equations of motion are

My L cosf —sind w 0
myij | = | sinf cos6 ( ) + | —mgg |, (7
J6 r 0 uz +mgg 0

where (z,y) are the coordinates center of the center of mass, 6 is the angle
with the vertical, u; is the force perpendicular to the fan shroud, us is the
force parallel to the fan shroud, r is the distance between the center of mass
and the point where the force is applied, g is the gravitational constant,
My, My is the inertial mass of the fan in the (z,y) direction respectively,
mgg is the weight of the fan, and J is the moment of inertia. The tracking
outputs are the (z,y) coordinates of the center of mass. Analogous to [7, 24],
the flat outputs are

J
= — 1 0 == B — 0_
Tf=x sin yr=vy+ .. cos (8)

myT y
Note that these outputs are not fixed in body coordinates. The variable 6
can be expressed in terms of the flat outputs as

tanf = —Malf

(9)

myijs +mgg
From 6 and the flat outputs we can find the other states and the inputs.
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Fi1GURE 5. Simplified helicopter.

Example 3 (Simplified helicopter model). Consider the simplified helicopter
depicted in Figure 5. At some level of abstraction we can look at the he-
licopter as a rigid body actuated by the thrust of the main rotor and the
tail rotor. The tail rotor exerts a thrust along the body ¥y axis and a torque
along the body z axis. The tail rotor force is small compared to the thrust
of the main rotor and we neglect it. The main thrust is roughly aligned
with the body z axis. We can measure the XYZ Euler angles (¢, 8,). The
tail rotor torque 7, and the main thrust 7; then both act along the body z
axis and can be transformed to spatial coordinates by rotations about the y
and z axis about angles # and ¢ respectively. The subscript b indicates that
the vector is in body coordinates, the subscript s indicates spatial coordi-
nates. Note that according to aerodynamic convention the z axis is positive
pointing down, hence T, < 0 is a thrust upward. Writing (z,y, z) for the
center of mass in spatial coordinates, the rigid body equations for the model
helicopter then take the form

mi Ty sin @

my _ —T}y cos @ sin ¢ (10)
mz | | Tpcospcos@+mg |’

Jy Tp €OS ¢ cos

where m is the mass of the helicopter, J is the moment of inertia about the
z axis, and g is the gravitational acceleration. Note that we have no direct
control over roll (¢) and pitch () but only through left-right (aileron) and
fore-aft (elevator) cyclic control respectively (see [34] for more details). The
thrust 7y and the torque 73 are real control inputs, the pitch angle § and
the roll angle ¢ are pseudo inputs.
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The system of rigid body equations (10) is flat since from (z,y, z,%) we
can recover the inputs (73, 7) and pseudo-inputs (¢, 6):

Ty|> = m?(@® + % + (5 — 9)%)

. mi
6 = arcsin —

Ty
my (11)

Tycos

¢ = — arcsin

ol =
J cos ¢ cos 8
We cannot determine the sign of T}, since flying right side up with positive
thrust cannot be distinguished from flying upside down with negative thrust.
We will assume that the the helicopter always flies right side up.

3. REAL TIME TRAJECTORY GENERATION

In this section we will try to come to a meaningful definition of the real
time trajectory generation problem and present some algorithms for generat-
ing feasible trajectories in real time, along with their proofs of convergence.

3.1. Trajectory tracking: definition and limitations. The notion of
“real time” is somewhat ill defined and must be considered relative to the
physical process under consideration. In our case we reference the time scale
to the rate at which the reference signal is updated. A real time computation
will therefore be one that can be performed faster than the reference update.
As before, we consider nonlinear systems of the form

T = f(z,u) zeR", ueR"
y = h(z) y € R™.

Usually control objectives are stated as performance criteria subject to
stability. For real time trajectory generation we only have a finite time his-
tory of the desired trajectory available, and therefore stability as defined
in an infinite time horizon does not make sense. Instead we can capture
the notion of stability as some norm bound on the internal dynamics gen-
erated when following a desired trajectory. The “performance under sta-
bility” requirement then translates to minimizing a weighted norm between
tracking error and magnitude of the internal dynamics. In agreement with
H>° control theory we take this norm to be the Ls norm on a finite time
interval. This leads to the following cost to be minimized at each time
instant:

(12)

t
/t (h(z) = ya(s))* (h(z) — ya(s)) + AK (2, u)ds, (13)

_Td
where K is an appropriate penalty on the internal dynamics, and T, defines
the time horizon, or the delay with which the trajectory is generated.
This formulation allows a tradeoff between performance and stability, as
seen in [34, 35]. We can increase stability at the expense of performance by
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increasing the penalty on the internal dynamics (i.e. A). Since we have to
minimize the cost in equation (13) at every time instant, we need to do this
subject to fixed initial conditions, namely, the state that we happen to be
at.

There are theoretical limits to the tracking performance that can be ob-
tained in systems with unstable zero dynamics, as was shown in a theorem
by Grizzle et al. [15] that we repeat here for completeness. Recall that a
left inverse of a system X is a system 3Yp, that reconstructs the unique input
that generates a given output of X, given that output and the initial state
(see [38]).

Theorem 1 (Grizzle et al. [15]). Suppose the nonlinear control system (12)

1. is analytic

2. possesses a zero dynamics manifold
3. is left invertible

4. has a controllable linearization,

and let Y(e,N) = {y@®) | ly@®)| < &...,|y™M(@)|| < €,Vt}. Then a neces-
sary condition for asymptotic tracking of signals in Y (e, N) for any N and
€ is that the system have asymptotically stable zero dynamics.

Note that this theorem shows that we cannot achieve asymptotic tracking
even by decreasing the magnitude of the desired outputs and their deriva-
tives. To achieve asymptotic tracking we need to relax either the analyticity
requirement, or reduce the set of desired trajectories, or resort to some ap-
proximate scheme. The relevance of this theorem for trajectory generation is
born out by the fact that trajectory generation combined with a linear con-
troller based on the Jacobi linearization of the plant will achieve asymptotic
tracking of signals in Y (e, N) for N large enough and € small enough. This
follows from Lemma 4.5 in [21] and the fact that the higher order terms in
the error system for z — x4 are uniformly Lipschitz in time for desired signals
in Y (¢, N). Hence asymptotically stable zero dynamics are also necessary for
real time trajectory generation, unless we relax the conditions of Theorem
1 somehow. Theorem 1 is proven by the construction of a signal that can-
not be asymptotically tracked by non-minimum phase systems. An essential
feature of this signal is that it has a time derivative with infinite support.
One way to circumvent the requirement for minimum phase zero dynamics
is to restrict attention to asymptotic tracking of signals whose derivatives
have finite support. More precisely, we make the following definition.

Definition 1 (eventually constant signals). The set of functions
S ={y(t) € Loo(R™)| T ts:9(t) =0 for t > ¢,}, (14)

where t; is not given in advance, is called the set of eventually constant
signals.
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Definition 2 (asymptotic trajectory generation). We say an algorithm
achieves asymptotic trajectory generation for a class of signals Y if the al-
gorithm generates from y; € Y a feasible full state and input trajectory
(zg4,uq) such that limy_,o0 h(z4(t)) —ygq(t) =0 for all yg € Y.

From the above discussion, it follows that asymptotic trajectory gener-
ation combined with a linear controller based on the Jacobi linearization
(assuming the Jacobi linearization is controllable, as in the conditions of
Theorem 1) results in local asymptotic tracking. In practice, the desired
trajectory is only updated at discrete times, so we replace the continuous
limit with limg_,o h(z4(tx)) — ya(tx) = 0 in applications.

We require that our trajectory generation scheme achieve asymptotic tra-
jectory generation for all signals in S. This comes down to requiring zero
steady state error. Of course we need to make sure that eventually constant
output signals lead to feasible state space trajectories. Hence the following
assumption.

Assumption 1. We assume that to each value of the output y4, there is an
equilibrium value for the states and inputs, i.e. there exist (x4, u4) such that
yqg = h(zq), f(r4,uq) = 0. We denote the mapping that maps each output
value y4 to a full state and input space equilibrium by Eq : R™ — R™*" 5o

that f(Eq(yas)) = 0 and h(Eq(yq)) = ya-
Based on the above discussion we pose the following problem:

Problem 1 (Real time trajectory generation). Find an algorithm that cal-
culates in real time from y4(¢) a feasible full state and input trajectory
(z4(t), ug(t)) while trading off stability of the internal dynamics against
tracking error, and such that limy_, o h(z4(t)) — ya(t) = 0 for all yz € S.

One might object that this problem definition still allows the trajectory
generation module to wait until the desired trajectory reaches its steady
state value and then compute the trajectory offline. We still would achieve
asymptotic trajectory generation. The key is that the time t; after which
y(t) = 0 is not given to us in advance, so that we cannot determine when
to start the offline computation. This point is mainly philosophical, since it
should be clear that it is better to start acting when sufficient knowledge of
the desired trajectory is available.

3.2. Point to point motion using flatness. We begin by considering the
problem of steering from an initial state to a final state. For flat systems,
we parametrize the flat outputs z;, 2 =1...m by

Zi(t) = Cz(:lj(t)) = Aijgbj(t), (15)

where the ¢;(t), j = 1... N are basis functions. This reduces the problem
from finding a function in an infinite dimensional space to finding a finite
set of parameters.

Suppose we have available to us an initial state zy at time 79 and a final
state zy at time 7;. Steering from an initial point in state space to a desired
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point in state space is trivial for flat systems. We have to calculate the
values of the flat outputs and their derivatives from the desired points in
state space and then solve for the coefficients A;; in the following system of
equations:

zi(10) = Aijpj(10)  2i(1y) = Aijj(Ty)
: : (16)
2 () = 4 (r0) 2 (1)) = Ay (7).

To streamline notation we write the following expressions for the case of
one flat output only. The multi-output case follows by repeatedly applying
the single output case, since the algorithm is decoupled in the flat outputs.

Let ®(¢) be the  + 1 by N matrix ®;;(t) = ¢\ () and let

J
20 = (251 (7’0), ,z%l) (7-0))
z = (a(ry), -, 2 (1) (17)

Then the constraint in equation (16) can be written as

7= ( gg:% ) A=:DA. (18)

That is, we require the coefficients A to be in the plane defined by equation
(18). The only condition on the basis functions is that ® is full rank, in
order for (18) to have a solution.

3.3. Basic algorithm for trajectory generation with point to point
steering. Suppose now that we are at time ¢, and have available to us the
desired output trajectory over the time interval [t — Ty, t], where Ty is a
delay time. We consider t — Ty and ¢ as the initial and final time for a
point-to-point steering trajectory, so we set [, 7¢] := [t — Ty,t]. For each
interval [79, 7;] we can generate a full state space trajectory from zy to zj.
On this trajectory we pick a state corresponding to some time 7 € |79, 7]
and use this as the instantaneous desired state for the linear controller. This
simple idea is illustrated in Figure 6. The solid line is the desired reference
output. At time t; we know the reference between A; and B;. We then
generate an arbitrary trajectory from Ay to By, depicted as the dashed line
in Figure 6. We expand By to a full state and input by using the map
Eq(-). On this dashed line we pick a destination point, say Cj to be fed
forward as the desired goal for sampling instant k£ + 1. Then at sampling
time k+1 we know the reference output up to point By ;. The intermediate
point C}, takes the role of the initial point A1, and we generate the dotted
trajectory from Agi; to Biyi. Again we pick a point Cyy; as the desired
goal for sampling time k + 2. This process is repeated ad infinitum.
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FIGURE 6. Description of algorithm for real time trajectory
generation.

The generated trajectory can be anything that connects Ay to By, but a
simple and elegant solution is obtained if we solve this as a simple point-to-
point steering, as described in Section 3.2. This leads to the first algorithm:

Algorithm 1. Given: the delay time Ty, the current flat flag 2y, the desired
output y4. At each sampling instant t:

L. Let 75 = ty, 10 = ty — Tu, 25 = C(Ea(ya(tr)))-

2. Compute a trajectory of the flat outputs by solving zy = ®(79)A,
Zy = ®(77)A for A.

3. Compute a point on that trajectory with z;(r) = ®(7)A where 7 €
[7-077-f]'

4. Solve for (z1(7),u1(7)) from z; (7).

5. (z1(7),u1(7)) is the next desired state and input to feed forward at
time t.

The times 7, are “virtual” times within the algorithm that shift along as
physical time proceeds. They are reassigned with every new sample time.
The times t, are physical times. This algorithm steers us from the current
position to an equilibrium state with the desired values for the outputs. We
generate a trajectory over the time interval [ty — Ty, tx], and pick a time 7
and corresponding point (z1,u1) on this trajectory. This will be the desired
state to steer to. We repeat this process at every sampling instant.

Figure 7 illustrates the application of the algorithm to a step change in
the desired output. Note that even though the input is delayed by Ty, the
response to the reference input is immediate.

A particular feature of the point-to-point steering trajectory is that we
can bypass solving for the coefficients A;; in the matrix A by noting that

7= ®(1)® 'z =: F(1)z + G(1)%;, (19)

for some matrices F' and G that only depend on 7. If we execute this scheme
every sample instant we get a dynamical equation for z; =: Zx41 for each
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FIGURE 7. Trajectory shifting for the algorithm for real time
trajectory generation.

Zo =: Zj, namely
Zp+1 = F(1)z + G(T),?f(k), (20)

which has the desired output z;(k) = ((Eq(ya(tx))) at time instant & for its
input.

Proposition 1. There is a T €]1, 7¢[ such that Algorithm 1 achieves real
time asymptotic trajectory generation of all desired outputs in S.

Proof. We will show that F'(7) is stable for appropriate choice of 7, and then
that the steady state error is zero for y4 € S. Since we constructed the F(7),
G(7) to steer us from Zy to Zy, it follows that G(7;) = 0 and F(1y) = I. So
for 7 = 7 all eigenvalues of F'(7) are at the origin. Since the eigenvalues
of F(r) are continuous functions of 7, there exists a 7 € [79, 7f] such that
the eigenvalues of F(7) are in the open unit circle. Now y4 € S means that
there is a ks such that zf(k) is a constant, say 2y, for all £ > ks. Therefore
Z), converges to a constant value, say Z,, which will be a multiple of z; due
to linearity of (20). So Z = yzf, where y depends only on F' and G, and
not on zy. Since there is a trajectory from Z,, to z; that will bring us closer
to zy for appropriate choice of 7, we have v = 1 for that value of 7. Then
we have limg_, o0 2 = Zj- O

This algorithm does not involve the explicit minimization of a cost func-
tion to trade off stability versus performance. However, the choice of Ty
can be used to affect this tradeoff. Picking T; = tx — tx—1 in the above
scheme corresponds to a one step deadbeat controller. This requires large
control signals which might saturate the actuators and generate unaccept-
able internal motion. Increasing T; will increase stability at the expense of
performance, as we demonstrate below in Section 4.1.

Note that the matrices F(7) and G(7) are fixed once 7 is selected, and
can be computed ahead of time. We should mention that it is not hard to
find 7 such that F(7) is stable. In fact, it requires considerable effort to
construct a set of basis functions and a 7 such that F(7) is unstable. For
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polynomial basis functions any 7 € ]ry, 7¢[ will do. This follows from the
fact that the degree of a polynomial is an upper bound on the number of its
ZEros.

Finally, we point out the important role played by the equilibrium map
Eq(-) in Algorithm 1. It serves to extend the final reference output to a full
state, allowing the point-to-point computation to be performed. For some
systems, it may not be possible to find an equilibrium point corresponding
to every output. A straightforward extension of Algorithm 1 for this case is
to replace the map Eq(-) by a map Eq : R™ — R**™ that only maps some
output values to an equilibrium and replace the set of eventually constant
signals by

S ={y(t) € Loo(R™)| 3, : §(t) = 0 for t > £, and f(Eq(y(t,))) = 0}(-21)

That is, we only require existence of an equilibrium for a set of outputs that
we are interested in. The preceding development carries through directly
and Algorithm 1 converges as before.

3.4. Improved algorithm with performance optimization. Step 2 in
Algorithm 1 computes a trajectory between the flat flags Zp and z; by using
a point-to-point steering algorithm. In fact, we can use any trajectory that
links zg to zy. It just so happens that the point-to-point steering problem is
particularly attractive since it results in a linear update for the flat flag, as
in equation (19). In particular, we can augment this algorithm with an addi-
tional minimization that allows tradeoff between stability and performance
as discussed in Section 3. The cost criterion takes the form

Tf
7 =min [ (4(4:5) < 3a(e))" (WA 8) ~ ) + AR (A, s, (22)
7o
subject to Zy = ®(m)A,Zf = ®(75)A. Here y is the tracking output, and
yq the desired tracking output. K is a function that bounds the internal
dynamics. We can perform this minimization by finding a particular solution
that satisfies the initial and final constraints, A9 = ®'Z, and parametrizing
the general solution as A = Ag+ & A; where & is a basis for the nullspace
of ®. This optimization problem is in general nonlinear and nonconvex. We
therefore have to resort to an iterative scheme. Since the optimization has to
be performed in real time, we might not be able complete the minimization
procedure and have to preempt the procedure. We will show that this will
not result in loss of convergence. This leads to the following algorithm:

Algorithm 2. Given: the delay time Ty, the current flat flag 2y, the desired
output y4. At each sampling instant z:

1. Let 7p = ty, 10 = ty, — Ty, Z5 = C(Eq(y(tk)))-
2a. Compute a trajectory for the flat outputs by finding a particular solu-
tion Ay to Zp = @(19) A, Zf = @(Tf)A.
2b. Optimize A; to minimize J in equation (22).
2c. Let A=Ay + NJ‘Al.
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3. Compute a point on the nominal trajectory with z;(7) = ®(7)A where
T € [10, 7¢)-

4. Solve for (z1(7),u1(7)) from z; (7).

5. (z1(7),u1(7)) is the next desired state and input to feed forward at
time tk'

Note that the optimization over A; can be preempted if computation time
runs out.

Proposition 2. There is a T € [0, Tf] such that Algorithm 2 achieves real
time asymptotic trajectory generation of all desired outputs in S.

Proof. We will show that z; converges to a constant value for constant zy,
and then that this constant value equals zy. Even though we cannot dispense
with the computation of the coefficients A as we could in Algorithm 1, we
know that for 7 = 7 the algorithm steers to the desired output in one step.
Regardless of the values for A;, from continuity of z; = ®(7)A in 7, we can
find a 7 such that

121 = 27 (R) | < ll20 — 27 (K] (23)

so that if Z;(k) is a constant for k > k,, say Zy, we achieve convergence to
a constant value for z;. Similar to the proof of Proposition 1 we can show
that this constant value has to be z;. O

It might seem curious at first sight that convergence of Algorithm 2 does
not depend on the cost criterion J. On second thought this is quite advanta-
geous since we cannot guarantee that the optimization of J converges in the
allotted computation time. Preemption of the minimization will not result
in loss of convergence. The additional optimization allows us to get better
performance (in the sense of a lower cost criterion J) if the computation
time allows it. If no improvement can be obtained, the algorithm returns
the solution of the point-to-point steering algorithm 1. This is essential for
convergence.

As a final comment, we note that it is somewhat unsatisfactory that
we have to fix the final conditions in the above algorithms. For nonlinear
systems we have in general multiple equilibria corresponding to the same
output values, most of which are undesirable. Without fixing the final con-
dition we cannot guarantee that the trajectory will converge to the desired
equilibrium, even though we still get asymptotic tracking for signals in S.
Indeed, simulations showed that the trajectory might end up in an undesired
equilibrium.

4. APPLICATION TO THE CALTECH DUCTED FAN

In this section we apply the real time trajectory generation algorithms to
the Caltech ducted fan, a thrust vectored, flight control experiment pictured
in Figure 8.

The numerical computations in this section are done using the trajectory
generation library tglib, developed by M. van Nieuwstadt at Caltech. This
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F1GURE 8. Photograph of the Caltech ducted fan experiment
(courtesy of R. Bodenheimer).

library is available through anonymous ftp from avalon.caltech.edu in
the file /pub/vannieuw/software/trajgen.tar.gz. This file contains the
libraries, examples and documentation. The routines are in ANSI C and will
compile under different platforms. In particular, the simulations presented
in this paper used the library compiled on a UNIX platform, and the real
time experiments used the library compiled under MS-DOS.

4.1. Simulations. We first simulate the real time algorithms to study the
role of the parameter Ty and the tradeoff between tracking and stability. For
this study we have used a nonlinear model of the original Caltech ducted
fan, described in detail in [20]. The main difference between this model
and the experiment shown in Figure 8 is the stand dynamics are slightly
more complicated for the original experiment and no wing was attached to
the fan unit. The simulation model takes into account the nonlinear stand
dynamics, aerodynamic drag, inertial effects from the rotating propeller,
and viscous friction. The flat model in equation (7) is used to generate the
nominal trajectories and only models the dynamics of the thrust and gravity.

We simulate the reference input as a file from which successive samples are
read every sample instant. The reference trajectory is input to a trajectory
generation module, whose output serves as a nominal trajectory. We wrap
a simple static LQR controller around a nonlinear model of the fan. This
controller was designed to stabilize hover. See [20] for a detailed analysis of
several controller designs for this experiment. We assume we have knowledge
of the full state. On the experiment this is achieved by differentiating and
filtering the position signals.

First we show how the ducted fan behaves without feedforward. The
reference input is used to generate an error signal to the controller. The



20 VAN NIEUWSTADT AND MURRAY

Xp(=), X(=-) yp(=), y(=-)
15 0.1
0.05
E o _— —
>
-0.05
-05 -0.1
0 2 4 6 2 4 6
time [s] time [s]
th(—-) fperp (-) fpara (--)
20
1
10
_ 05 .
S Ve —_ - - - - _
£ of - . T Z o—7—
=] h e h
-05 N~
-10
-1
-15 -20
0 2 4 6 0 2 4 6
time [s] time [s]

FIGURE 9. Ducted fan simulation: tracking with one degree
of freedom controller.

reference input is a 1 meter ramp in 3 seconds in the z direction at constant
altitude. At each time instant we stabilize around the equilibrium point
generated by setting « and y equal to the reference input, and all other states
equal to zero. This is the conventional “one degree of freedom” controller.
Figure 9 shows that the trajectory followed by the fan lags far behind the
desired trajectory.

In this plot and subsequent plots, the reference input is denoted by
(zp,yp), the generated desired trajectory (identical to the reference input in
the one degree of freedom case) is denoted (zd,yd) and the variable name
without a suffix denotes the real (experimental or simulated) time trace of a
quantity. The force parallel to the fan shroud is denoted “fpara”, the force
perpendicular to the fan shroud is called “fperp”.

Next we show for Algorithm 1 plots of the reference input, the generated
trajectory, the simulated trajectory for the (x,y) position of the fan, as well
as the generated and simulated trajectory for # and the nominal forces.

Figure 10 shows these for a delay time of T; = 60 sampling periods of Ty =
0.01 seconds. We see that the fan follows the reference input much better
than in the one degree of freedom design. Clearly, there is an advantage
in real time trajectory generation. Figure 11 shows these for a delay time
of Ty = 100 sampling periods. It is clear that the larger delay results in
better stability, i.e. lower magnitude of § and the nominal forces, but poorer
performance, since the delay is bigger.



REAL TIME TRAJECTORY GENERATION

xp(-), xd(=.), x(=-)

yp(=), yd(=.), y(=-)

th [rad]

15 0.1
= N
0.05 / \
/A/ 7 \ . - , -~
E o L Y
>
-0.05
-05 -0.1
0 2 4 6 2 4 6
time [s] time [s]
thd (=), th(--) fperp (-) fpara (--)

time [s]

fIN]

2 4 6
time [s]

FI1GURE 10. Ducted fan simulation: tracking with algorithm
1, Ty =60xTs=0.6 s.
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FIGURE 11. Ducted fan simulation: tracking with algorithm
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0

FI1GURE 12. Ducted fan with stand.

Figures 10 and 11 both show a large error in € right after the first and
second peak of the nominal § trace. We suspect this is caused by the inertia
changing with altitude, which is not taken into account in the nominal flat
model, but is present in the simulation model. Note that the errors occur
simultaneously with a substantial error in altitude y.

Algorithm 2 was tested in simulation and the results are reported in [34,
35]. It behaves as expected, in the sense that it penalizes the cost. The
major problem is that the optimization is a factor 10 too slow for realistic
operator sampling rates. Improvement of this optimization is a subject of
current research.

4.2. Hover to hover experiments. To demonstrate the viability of the
two degree of freedom approach, we first show some hover to hover transi-
tions, both with one and two degree of freedom controllers. These experi-
ments are performed on the Caltech ducted fan experiment. The ducted fan
is mounted on a stand, as shown in Figure 12, and is controlled by an Intel
486 66 MHz PC. It uses a linear current amplifier to regulate the current
to the propeller, and PWM servos to steer the paddles. It has a NACA
0015 airfoil to generate lift, although for the experiments presented in this
paper, the lift forces are negligible. Horizontal, vertical and pitch position
are measured with encoders. Velocities are obtained by numerical differenti-
ation and smoothing. Closed loop control of the ducted fan is accomplished
using the Sparrow real time kernel [33]. Sparrow takes care of reading sen-
sor input, writing actuator output, data logging, and necessary controller
computations.

The dynamics of the ducted fan are essentially those given in Example 2,
with additional aerodynamic forces playing a role at high flight speeds. In
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the absence of these forces, the fan dynamics are very close to the flat model.
Therefore, for the hover to hover transitions considered in this section, the
flat model provides a good approximation to the actual dynamics of the
system.

The computations in Section 3.2 were used to generate point-to-point mo-
tion of the system. The desired trajectory is a 4 meter step in the positive
z direction in 4 seconds. The one degree of freedom controller uses a linear
interpolation between initial and final state while keeping pitch zero. The
two degree of freedom controller generates a non-zero nominal pitch tra-
jectory. Figures 13 and 14 show that the two degree of freedom controller
achieves considerable performance increase. The steady-state error in y is
due to stiction in the stand.

4.3. Real time trajectory generation experiments. Algorithm 1 was
also implemented on the experimental apparatus, with the reference input
comes from a joystick with two degrees of freedom. In order to obtain
repeatable experiments, we record the joystick input and read it back from
a file for each trial (but without making use of the knowledge of future
inputs). The joystick is interpreted as a commanded velocity signal, so that
the reference trajectory for the (z,y) position is given by

k
p(k) = fo Y noli) * T
=0 (24)

k
yp(k) = fyzny(z) * T,
=0

with 7z, the joystick command in the (z,y) direction respectively, and
(fz, fy) some scaling factors. We run the trajectory generation algorithm
at 100 Hz, and the controller at 200 Hz. The delay time Ts = 1.0 seconds,
corresponding to 100 samples for the trajectory generation algorithms.

We conducted 2 experiments. The first one was the one degree of freedom
controller: the reference signal was used to generate an error signal in the
output around which the fan was stabilized. As in the simulations, the
reference is denoted by (xp, yp), the desired trajectory by (zd,yd), and the
measured position by (z,y). In the one degree of freedom case (zp,yp) =
(zd,yd). The results are depicted in Figure 15.

In the second experiment, we used the reference signal to generate a
trajectory, as described in this paper. The desired trajectory (zd,yd) is
generated by the trajectory generation module and is no longer equal to the
reference input (zp,yp). The results are depicted in Figure 16. The real
time trajectory generation algorithm gives a more aggressive response.

5. SUMMARY

In this paper, we have proposed a formulation for the real time trajec-
tory generation problem which is compatible with a two degree of freedom
approach for tracking in motion control algorithms. We considered only the
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FIGURE 13. Ducted fan experiment: hover to hover transi-
tion for one degree of freedom controller.
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FIGURE 14. Ducted fan experiment: hover to hover transi-
tion for two degree of freedom controller.



REAL TIME TRAJECTORY GENERATION

xp (=), xd (=), X(=-) yp (7). yd (=), y(=-)

0 5 10 15 0 5 10 15
time [s] time [s]
thd (=), th (=) fperp (=), fpara (—-)
15 20
1
10
0.5 — e
=) N Z [ T
g op=""">= = g o~
S S
-0.5 h
-10
-1
-15 -20
0 5 10 15 0 5 10 15
time [s] time [s]
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case of differentially flat systems, for which the trajectory generation prob-
lem can be formally reduced to an algebraic problem in terms of the flat
outputs for the system. By explicitly separating the tracking problem into
a trajectory generation block and a feedback compensation block, we are
able to exploit the geometric structure of differentially flat systems without
transforming the system into a single linear system. We thereby avoid some
of the pitfalls commonly associated with feedback linearization and allow
more freedom in the control design.

We have described two algorithms for real time trajectory generation for
differentially flat systems with unstable zero dynamics, and proved stability
and convergence properties. The first algorithm generated a trajectory that
steers from the current position to a desired final position given by the
reference input. We can trade off stability versus performance by varying
the delay time. The second algorithm steers to a desired final position
while minimizing a cost criterion, that typically limits the magnitude of the
zero dynamics and/or the control inputs. The current implementation of
the minimization is too slow for real time implementation. Improving this
algorithm is a subject of current research.

We have implemented the trajectory generation algorithms on a vectored
thrust, flight control experiment constructed at Caltech. Experimental re-
sults show that the two degree of freedom controllers perform much bet-
ter than simpler linear controllers. For the experiments in this paper, the
fan was flown at low speeds. More aggressive trajectories have also been
tested [34, 36].

Much work remains to be done on differentially flat systems, both from the
theoretical perspective and in the context of applications. At the present,
constructive conditions for finding the flat outputs of a mechanical system
are not available except in a few special (i.e. low-dimensional) cases [40, 41].
In addition, for systems which are not differentially flat, it is likely that
approximations can be used which will allow fast and efficient generation of
approximately feasible trajectories. Bounds on the sizes of the error in the
performance of the system as a function of the degree of approximation will
be needed in order to pursue efforts in this direction.

Acknowledgments. The authors would like to thank Mark Milam for his
work on the ducted fan experiment.
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