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Abstract

This paper gives a survey of some recent results on control of systems with magnitude and
rate limits, motivated by problems in real-time trajectory generation and tracking for unmanned
aerial vehicles. Two problems are considered: stabilization using “nonlinear wrappers” to rescale
a given control law and real-time trajectory generation using differential flatness. For both
problems, simplified versions of the general problem are studied using tools from differential
geometry and nonlinear control to give insights into the limitations imposed by magnitude and
rate limits and provide insights into constructive solutions to the trajectory generation and
tracking problems.

1 Introduction

One of the most significant sources of nonlinearities in control systems is actuator saturation, which
occurs in virtually all modern systems but is widely ignored by the existing analysis and synthesis
tools. At present, there is no systematic means of analyzing and designing nonlinear control systems
in the presence of magnitude and rate saturations.

One application area in which saturation nonlinearities are particularly prevalent is flight control
of high agility aircraft, where actuator saturation has a significant effect on the overall stability
of aircraft. A specific instance is the YF-22 crash of April, 1992, which has been blamed on a
pilot-induced oscillation (PIO) caused in part by time-delay effects introduced by rate saturation of
control surfaces [9]. A similar example is the Gripen JAS 39 aircraft, which crashed in August, 1993
due to pilot-induced oscillations in which saturation played a strong role. As the complexity and
performance of flight systems increase, stronger theoretical understanding is required to avoid such
situations and guarantee performance of the system in the face of noise and unmodeled dynamics.

At the practical level, saturation in most systems is handled in an ad hoc fashion. Gains are
chosen and artificial saturations are inserted such that the system performs well in simulations and
experimental tests. Rate saturations are sometimes modeled as equivalent time-delays to allow
the use of linear control theory [4]. While these techniques work for systems of low dimension and
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reasonably straightforward dynamics, as systems get more complicated the difficulties in this ad hoc
approach become more noticeable (as in the crash of the YF-22). Further demands for increased
performance and agility will exacerbate this problem.

Many techniques are available in the linear literature for incorporating actuator saturations into
the design process. One example is the use of l1 analysis and synthesis techniques, which allow
specification of the maximum output response as a function of the maximum size of noise and
disturbances [6, 7]. Other techniques include the use of convex optimization to design controllers
with a variety of input and performance constraints [3] and recently Lin [19] introduced a low-
and-high gain linear optimal control law for semi-global stabilization. A major limitation of these
approaches is that they only work for linear systems and they generate linear controllers. As a
result, the designs can be very conservative (since the gain must be small enough to tolerate the
worst case scenario) and it may be difficult to achieve high performance.

Several new nonlinear tools have been introduced in the last several years for analyzing and
controlling linear and nonlinear systems with saturation. One of the fundamental techniques is
based on the thesis work of Teel [29, 30], who showed how to stabilize a chain of integrators using
nested saturation functions. This result is significant since it is known that it is not possible to
stabilize a chain of three or more integrators using a linear control law followed by a saturation
function. Thus even simple linear systems with simple saturations can give rise to difficult nonlinear
problems. Teel’s approach generates nonlinear controllers which are locally linear, but become
nonlinear as the inputs grow toward the saturation limits. Another approach has been introduced by
Megretski [22], who uses a gain scheduling approach to generate nonlinear stabilizers for saturated
linear systems. In addition to stability, Megretski shows that for stable plants the map from plant
disturbances to control inputs is L2 bounded. A more general approach has been recently developed
by Teel [31, 28], who shows how to dynamically combine a local and global controller to achieve
stability and performance in the presence of input constraints.

In this paper we make use of tools from differential geometry to propose new approaches to
design of control systems in the presence of magnitude and rate limits. Our thesis is that geometric
tools can expose the underlying principles that describe the limits imposed by magnitude and rate
constraints, and that they can be used to develop new techniques for controller synthesis for this
important class of systems. Section 2 considers the stabilization problem, focusing on the class of
homogeneous systems and introducing the notions of nonlinear wrappers and dynamic rescaling.
Section 3 focuses on the trajectory tracking problem, making use of differential flatness techniques
and presenting algorithms for real-time trajectory generation for linear systems. Finally, Section 4
gives a broad summary of the results and discusses some of the directions for future work.

2 Stablization of Homogeneous Systems

We begin with the problem of stabilization of an equilibrium in the presence of actuator constraints.
We consider first the specialized problem of stabilization of homogeneous systems in the presence
of magnitude constraints and make use of a “nonlinear wrapper” to convert an existing control
law into a bounded control. With this as motivation, we then consider a technique for “dynamic
rescaling” of control laws in the presence of magnitude and rate limits, applied to a specific flight
control example.
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2.1 A brief introduction to homogeneous systems

We begin with a brief introduction to homogeneous systems, following [21]. Additional information
on homogeneous systems can be found in the work of Kawski [15].

Conventionally, a function is said to be homogeneous in a set of variables x1, . . . , xn if it is a
polynomial function and each term in the polynomial is the same total order. For our purposes, we
allow each variable to be weighted differently and hence we will define a dilation δr

λ : R
n → R

n as

δr
λ(x) = (λr1x1, . . . , λ

rnxn) (1)

where λ > 0 and r = (r1, . . . , rn) is a vector of rationals that describes the nonuniform weights for
each coordinate. We write δλ in place of δr

λ for simplicity.
Given this dilation, a function h : R

n → R is homogeneous of degree l > 0 with respect to δλ if
h(δλ(x)) = λlh(x). It is easily verified that this corresponds to the usual definition of a homogeneous
(polynomial) function in the case that δλ is given by the standard dilation corresponding to r =
(1, . . . , 1). We will make use of the fact that a homogeneous, degree zero function is a bounded
function since f(δλ(x)) = f(x), which remains bounded as λ → ∞.

A vector field F : R
n → R

n is homogeneous of degree m with respect to δλ if the ith component
Fi(x) is degree ri − m for i = 1, . . . , n. Note that m is typically non-positive with this particular
definition of homogeneity for vector fields. It can be easily verified that if h is a homogeneous
function of degree l and F is a vector field of degree m, the Lie derivative of h with respect to F ,
LF h, is homogeneous of degree l + m (remembering that m is negative). Similarly, the Lie bracket
[F1, F2] is homogeneous order m1 + m2.

For a given dilation, we define the Euler vector field corresponding to δλ as

Er(x) =











r1x1

r2x2
...

rnxn











. (2)

A more geometric definition of homogeneity can be given by starting with an asymptotically un-
stable vector field E (corresponding to the Euler vector field) and defining a function α to be
homogeneous order l if LEα = lα and a vector field F to be homogeneous order m if [E, F ] = mF .
One can easily verify that for the Euler vector field, this corresponds precisely to the coordinate
definitions just given.

Example 1 (Linear vector fields). All linear vector fields F (x) = Ax are homogeneous order 0
with respect to the standard dilation, r = (1, . . . , 1). The flow of the Euler vector field associated
with this dilation consists of radial lines emanating from the origin.

Example 2 (Chain of integrators). The vector field corresponding to a chain of integrators

F (x) =















x2

x3
...

xn

0















(3)
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Figure 1: Flow associated with the dilation given by r = (2, 1). The closed curves show the
evolution of level sets under the flow of the Euler vector field.

is homogeneous order -1 with respect to the dilation given by r = (n, n − 1, . . . , 1). (Since it is
linear, it is also homogeneous order 0 with respect to the standard dilation.) The flow of this vector
field for the case n = 2 is show in Figure 1. Notice that the rescaling is non-uniform in the different
coordinate axes, causing an ellipse to change its principal axes under the dilation.

2.2 Nonlinear Wrappers for Homogeneous Systems with Magnitude Constraints

In this section we show how to modify control laws for homogeneous systems to produce bounded
control laws. We make use of a notion that we term a “nonlinear wrapper”, which takes a given
control law and modifies its inputs and outputs to produced a bounded, composite control law
(depicted in Figure 2). The modification of the input to the control and the output from the
control is done so as to preserve the overall stability of the system while keeping the magnitude
of the control action bounded. The advantage of such an approach, if successful, is that it allows
the modification of a previously synthesized control law (that ignored the magnitude constraints)
into a control law that respects those constraints. It is thus hoped that the original performance
of the control law can be maintained when the constraints are not active and the performance can
be degraded gracefully as the system pushes against the constraints.

Consider a homogeneous system

ẋ = F (x) + G(x)u (4)

where F and G are homogeneous order τ < 0 and u = α(x) is a control law that gives global
asymptotic stability for the closed loop system. We also assume the existence of a Lyapunov
function V (x) > 0 such that V̇ < 0 along trajectories of the closed loop system.
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Figure 2: A nonlinear wrapper for modifying a control law to take into account actuation con-
straints.

Theorem 1 (Morin et al [24]). Let λ(x) be a scalar function given by

λ(x) =

{

1 V (x) ≤ 1

solution of V (δλ(x)) = 1 otherwise
(5)

Then rescaled feedback law given by

ũ =

{

0 x = 0
1

λ(x)α(δλ(x)(x)) x 6= 0,
(6)

is homogeneous order 0 when V (x) > 1 (and hence ũ is bounded) and the closed loop system is
globally asymptotically stable.

The proof of this theorem is given in [24] and amounts to showing that 1/λ(x) is decreasing
and using this to show that x is decreasing. This is illustrated in the following example.

Example 3 (Chain of two integrators). Consider the case of a double chain of integrators

ẋ1 = x2

ẋ2 = u
(7)

together with a stabilizing controller u = −a1x1−a2x2 and the Lyapunov function V (x) = a1x
2
1+x2

2.
The control law given by the theorem has the form

ũ = −a1λ
2x1 − a2λx2 (8)

and, away from x = 0, λ is given by

λ =

√

2

x2
2 +

√

x4
2 + 4a1x2

1

. (9)

We now consider the feedback given by using the scaled feedback for all x such that V (x) > 1 and
the original feedback otherwise.
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To show that this system is stable, let γ(x) = 1/λ(x) and let

V (γ, x) = V (δ1/γ(x)) =
a1

γ4
x2

1 +
1

γ2
x2

2. (10)

Thus

γ =

√

x2
2 +

√

x4
2 + 4a1x2

1

2
. (11)

Differentiating the equality V (γ(x), x) = 1, we obtain

∂γ

∂x
ẋ = −

(

∂V

∂γ

)−1 ∂V

∂x
ẋ. (12)

Since ∂V
∂γ < 0 and ∂V

∂x ẋ < 0, it follows that γ is non-increasing along the trajectories of the system.
From the form of γ, it is clear that this implies that ‖x‖ is also decreasing and it follows (with
some details omitted) that x is asymptotically stable.

A few remarks are in order with respect to the results of this theorem. First, the theorem
requires both a control law and a Lyapunov function, which controls the rescaling process. In
many cases the determination of such a Lyapunov function is easily done, but it is not clear which
of many possible functions one should use or the effect of that function on the overall performance
of the system. Second, although the theorem guarantees that the rescaled control law is bounded,
it does not give a specific computation for what this bound is. Thus, one must compute the bound
and modify the Lyapunov function (by rescaling) if the bound is too large. Finally, the theorem
requires that the open loop system be homogeneous of order τ < 0. Unfortunately this is a quite
restricted set of systems and does not even include most linear systems.

A particularly insightful special case of the theorem is to consider the case of a chain of n
integrators

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = u

(13)

with a linear state feedback law

u = k1x1 + k2x2 + · · · + knxn. (14)

The rescaled control law in this case takes the form

u = k1λ
nx1 + k2λ

n−1x2 + · · · + knλxn. (15)

The form of the scaling is quite interesting: for λ small (which will occur when V and hence x is
large), the control law is scaled such that the effect of the states at the top of the integrator chain
are much smaller than those at the bottom. In effect, this forces the control law to react in such
a way to first make the states nearest the input small. As these states decrease in magnitude, the
control will pay increasing attention to states toward the top of the integrator chain.
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Figure 3: Dynamic rescaling for control in the presence of magnitude and rate limits.

In effect, this nonlinear scaling insures that the states at the top of the chain do not dominate the
response of the system until the states at the bottom have been reduced to a reasonable magnitude.
This is almost precisely the concept used in the “nested saturation” controller devised originally
by Teel [30].

This approach has been extended by Morin to allow the results to be applied to a much more
general class of systems, including general linear systems (which, as we noted above, are only
homogeneous of order τ < 0 in the chain of integrators case) [24]. Using a nonlinear rescaling
theorem, Morin is able to rescale nonlinear controllers and achieve bounded controllers for a broad
class of nonlinear systems as well. In order to apply the theorem, one must be given a one-parameter
family of control laws and a one-parameter family of associated Lyapunov functions which satisfy
certain stability and transversality properties.

2.3 Dynamic Rescaling of a Flight Control Experiment

In the previous section we described a method for rescaling a control law to allow bounded inputs.
The approach consisted of two components: determine how to rescale the control law as a function
of a single parameter and then determine the value of the parameter (based on the use of a Lyapunov
function). In this section we demonstrate an approach for dynamically choosing the value of the
parameter based on the commanded and actual inputs.

Consider a linear control system with magnitude and rate limits

ẋ = Ax + BσM (u)

u̇ = σN (v)
(16)

where σM represents a magnitude saturation of magnitude M and σN represents a rate limit of
magnitude N . Suppose we have a parameterized control law given by

uc = Kλ(x − xd) (17)

where λ ∈ R is the rescaling parameter. As an example, for a chain of integrators, this control law
could have the form derived above using homogeneous rescalings.

We now seek to choose the value of the rescaling parameter in a dynamic fashion, based on
whether the control is saturating in either magnitude or rate. The basic idea is simple: if the control
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Figure 4: Root locus plots for rescaling control laws: (a) linear rescaling of gains for a chain of
integrators; (b) nonlinear rescaling based on homogeneous properties.

law is saturating, reduce the “gain” of the system by decreasing λ. This is shown schematically in
Figure 3. There are two obvious issues that must be addressed: (1) the one parameter family of
control laws must be chosen such that for any fixed λ the system is stable and (2) the update law
for λ must be chosen such that it does not just leave the system on the magnitude or rate limit (in
which case there is no point to adjusting the control law).

To address these points, we restrict attention to a chain of integrators with a linear feedback
control law. A naive approach to choosing the rescaling law for the gain would be to choose the
control as

u = λ(k1x1 + k2x2 + · · · + knxn). (18)

Note however, that for fixed λ the closed loop system is not necessarily stable, as shown in the root
locus plot in Figure 4a. To remedy this, we might choose a rescaling rule that keeps the damping
of the system constant, as shown in Figure 4b. This update law turns out to be precisely the
homogeneous rescaling law from the previous section:

u = k1λ
nx1 + k2λ

n−1x2 + · · · + knλxn. (19)

To choose the value of the rescaling parameter, we use a variation of an automatic gain control
algorithm originally reported in [32]. The basic idea is to rapidly decrease the gain whenever the
commanded input, uc, is not equal to the actual input (after saturation). Then, we slowly increase
the gain when the input is no longer on one of its limits. The reason to slowly increase the gain is
to insure that we do not simply sit on the magnitude and/or rate limit, in which case the automatic
gain control logic has no real effect.

A specific control law of this form was derived for a chain of integrators by Lauvdal and reported
in [17]. Let h(t) be a piecewise continuous function of time given by

h(t) = 0 if u = uc, ḣ(t) = 1 otherwise. (20)

where u and uc are the actual and commanded input, respectively. Let Tk denote the time instance
when u = uc for the kth time, λk = λ(Tk), λ0 = 1, N a positive number and g(t) = (t − TN ).
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Figure 5: Sketch illustrating the evolution of the scaling factor when the input is saturating.

Define λ(t) as

λ(t) =























λk 0 < h(t) ≤ δT

λ
1/p
k

(

δT
h(t)

)p
k ≤ N and h(t) > δT

λ
1/p
k

(

δT
g(t)

)q
k > N and g(t) > δT

λ
1/q
N

(21)

where p ≥ 0, q > 1 and δT > 0.
The complicated nature of this control law is due to the form of the proof of convergence,

which can be found in [18]. The intuition behind this scaling feature is illustrated in Figure 5 and
described more fully in [17]. Roughly, the control begins by waiting for a time δT , chosen to be less
than the maximum amount of time the system can be saturated and still converge using a linear
control action. This places an upper bound on the amount of time the controller will wait before
decreasing the system gain. Once this limit is reached the control gain is rapidly decreased until
time T1, when the commanded input and the actual input are equal (and λ1 is set to the resulting
value of λ). At this point, h(t) is reset to zero, and we again wait for some period of time before

potentially further decreasing the control gain (at time T1+δT/λ
1/p
1 ). Then λ is decreased a second

time and this process repeats until λ is small enough. It is shown in [18] that this iteration occurs
a finite number of times for a step function and that the response of the system converges to the
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desired value.
Once the commanded an actual input match, λ should be slowly increased to return the system

to its original performance level. It is important that λ be increased in a way that does not imme-
diately saturate the input since this will simply cause the gain to be further decreased (according
to the scaling law described above). The rule used in [17] is given by the formula

λ(tk+1) = κλ(tk) (22)

where tk is the sampling time (in a discrete time implementation), κ > 1 is a free parameter and
the increase is stopped when λ(t) = 1.

Although the particular form of this update law is quite messy (and apparently required in order
to prove convergence), the performance of the control law is quite extraordinary, as illustrated in
the following example.

Example 4 (Altitude control of the Caltech ducted fan). The approach described above was
implemented on a flight control experiment at Caltech, show in Figure 6. The system consists of
a vectored thrust engine attached to a wing. The motor speed, engine flap angles, and wing flap
angle can all be actuated and the position of the vehicle is sensed using optical encoders on the
stand. The flight dynamics of the system approximate the longitudinal dynamics of an aircraft.

The dynamics of the system roughly decouple into the forward and vertical motion of the fan.
In the vertical direction, the dynamics are approximated by a chain of four integrators: the wing
flap generates a torque on the system, which changes the angle of attack (two integrators), and the
angle of attack changes the lift coefficient, generating vertical motion (two integrators). Thus, we
can roughly apply the techniques described above to the problem of stabilizing the vertical position
of the system.

Artificial rate limits of 20 deg/sec were imposed on the wing flap and the system was commanded
to change altitude. Figures 7–9 show the response of the system with and without rescaling of the
input. Note that the responses in the 20 deg/sec rate limited case is almost as good as the case
with no rate limits in place.
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Extensions of this work have been explored in the thesis work of Lauvdal [16]. In particular,
the results have been extended to general linear systems and have been applied to rudder-roll
stabilization of ships.

3 Trajectory Generation Using Differential Flatness

In this section we consider the problem of generating trajectories for control systems in the presence
of magnitude and rate saturations. We motivate the problem in terms of two degree of freedom
design approaches and then make use of differential flatness to simplify the trajectory generation
problem. Finally, we give some preliminary results in real-time trajectory generation in the presence
of magnitude and rate constraints for linear systems.

3.1 Two degree of freedom control design

A large class of industrial and military control problems consist of planning and following a trajec-
tory in the presence of noise and uncertainty. Examples range from unmanned and remotely piloted
airplanes and submarines performing surveillance and inspection tasks, to mobile robots moving on
factory floors, to multi-fingered robot hands performing inspection and manipulation tasks inside
the human body under the control of a surgeon. All of these systems are highly nonlinear and
demand accurate performance.

Modern geometric approaches to nonlinear control often rely on the use of feedback transfor-
mations to convert a system into a simplified form which can then be controlled with relatively
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standard techniques (such as linear feedback). While this approach very effectively exploits the
nonlinear nature of the system, it often does so by “converting” the nonlinear system into a linear
one. This can be disadvantageous if one is concerned with disturbance rejection and other perfor-
mance specifications since the nonlinear transformations typically do not preserve many important
properties of the system.

One way around this limitation is to make use of the notion of two degree of freedom controller
design for nonlinear plants. Two degree of freedom controller design is a standard technique in
linear control theory that separates a controller into a feedforward compensator and a feedback
compensator. The feedforward compensator generates the nominal input required to track a given
reference trajectory. The feedback compensator corrects for errors between the desired and actual
trajectories. This is shown schematically in Figure 10.

Many modern nonlinear control methodologies can be viewed as synthesizing controllers which
fall into this general framework. For example, traditional nonlinear trajectory tracking approaches,
such as feedback linearization [12, 14] and nonlinear output regulation [13], are easily viewed as
a feedforward piece and a feedback piece. Indeed, when the tracking error is small, the primary
difference between the methods is the form of the error correction term: output regulation uses
the linearization of the system about a single equilibrium point; feedback linearization uses a linear
control law in an appropriate set of coordinates. It is important to note that these approaches rely
on the availability of state feedback in order to generate feedforward commands. Thus, they are
not traditional open loop feedforward controllers and this difference is crucial to their operation.

This two step approach can be carried one step further by completely decoupling the trajectory
generation and asymptotic tracking problems. Given a desired output trajectory, we first construct
a state space trajectory xd and a nominal input ud that satisfy the equations of motion. The error
system can then be written as a time-varying control system in terms of the error, e = x − xd.
Under the assumption that that tracking error remains small, we can linearize this time-varying
system about e = 0 and stabilize the e = 0 state.

The use of two degree of freedom techniques has been studied in a variety of applications. It
is a relatively standard approach in classical robotics [26] and has also seen recent application in
flexible robot systems [2, 8, 27]. Applications to flight control include the work of Meyer et al. [23]
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and Martin et al. [20]. General theoretical results have been explored by Paden and Chen [5, 27] as
well as ourselves [25, 35, 33]. It is also implicit in the output regulation problem studies by Isidori
and Byrnes [13].

In this section we explore the problem of trajectory generation in the presence of magnitude
and rate limits. We are motivated by flight control problems with a remote pilot, and hence we seek
techniques that can be implemented in “real time”, meaning that they are computational efficient
and can be run as part of a online, closed loop implementation. The technique that we explore is
the use of differential flatness, which is introduced in the next section.

3.2 Introduction to differential flatness

A system is said to be differentially flat if all of the feasible trajectories for the system can be
written as functions of a flat output z(·) and its derivatives. In other words, given a nonlinear
control system

ẋ = f(x, u)

y = h(x)
(23)

we say the system is differentially flat if there exists a function z(x, u, u̇, . . . , u(p)) such that all
feasible solutions of the underdetermined differential equation (23) can be written as

x = α(z, ż, . . . , z(q))

u = β(z, ż, . . . , z(q)).
(24)

Differentially flat systems were originally studied by Fliess et al. in the context of differential
algebra [10] and later using Lie-Backlünd transformations [11]. In [33] we reinterpreted flatness in
a differential geometric setting. We made extensive use of the tools offered by exterior differential
systems and the ideas of Cartan. Using this framework we were able to recover most of the
results currently available using the differential algebraic formulation and achieve a deeper geometric
understanding of flatness. We also showed that differential flatness is more general than feedback
linearization in the multi-input case. More importantly, the point of view is quite different, focusing
on trajectories rather than feedback transformations. See [25] for a description of the role of flatness
in control of mechanical systems and [34, 35] for more information on flatness applied to flight
control systems.

Example 5 (Linear systems). All linear systems are differentially flat, with the flat outputs cor-
responding to the top of the integrator chain(s) when the system is put into controller canonical
form. It is clear that given this set of outputs, one can determine the states of the system as well
as the inputs by repeated differentiation of the flat outputs. This example also makes clear that all
full state, feedback linearizable systems are flat (with the linearizing output corresponding to the
flat output).

Example 6 (Planar ducted fan). As a nonlinear example, consider the dynamics of a planar,
vectored thrust flight control system as shown in Figure 11. This system consists of a rigid body
with body fixed forces and is a simplified model for the Caltech ducted fan described in Section 2.3.
Let (x, y, θ) denote the position and orientation of the center of mass of the fan. We assume that
the forces acting on the fan consist of a force f1 perpendicular to the axis of the fan acting at a
distance r from the center of mass, and a force f2 parallel to the axis of the fan. Let m be the
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mass of the fan, J the moment of inertia, and g the gravitational constant. We ignore aerodynamic
forces for the purpose of this example.

The dynamics for the system are

mẍ = f1 cos θ − f2 sin θ

mÿ = f1 sin θ + f2 cos θ − mg

Jθ̈ = rf1.

(25)

Martin et al. [20] showed that this system is flat and that one set of flat outputs is given by

z1 = x − (J/mr) sin θ

z2 = y + (J/mr) cos θ.
(26)

Using the system dynamics, it can be shown that

z̈1 cos θ + (z̈2 + g) sin θ = 0. (27)

and thus given z1(t) and z2(t) we can find θ(t) except for an ambiguity of π and away from the
singularity z̈1 = z̈2 + g = 0. The remaining states and the forces f1(t) and f2(t) can then be
obtained from the dynamic equations, all in terms of z1, z2, and their higher order derivatives.

Having determined that a system is flat, it follows that all feasible trajectories for the sys-
tem are characterized by the evolution of the flat outputs. Using this fact, we can convert the
problem of point to point motion generation to one of finding a curve z(·) which joins an initial
z(0), ż(0), . . . , ż(q)(0), corresponding to the initial state, to a final set of values for the same quan-
tities, corresponding to the final state. In this way, we reduce the problem of generating a feasible
trajectory for the system to a classical algebraic problem in interpolation. Similarly, problems in
trajectory generation can also be converted to problems involving curves z(·) and algebraic methods
can be used to provide real-time solutions [34, 35].

Thus, for differentially flat systems, trajectory generation can be reduced from a dynamic
problem to an algebraic one. Specifically, one can parameterize the flat outputs using basis functions
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φi(t),

z =
∑

aiφi(t), (28)

and then write the feasible trajectories as functions of the coefficients a:

xd = α(z, ż, . . . , z(q)) = xd(a)

ud = β(z, ż, . . . , z(q)) = ud(a).
(29)

Note that no ODEs need to be integrated in order to compute the feasible trajectories (unlike
optimal control methods, which involve parameterizing the input and then solving the ODEs).
This is the defining feature of differentially flat systems. The practical implication is that nominal
trajectories and inputs which satisfy the equations of motion for a differentially flat system can be
computed in a computationally efficient way (solution of algebraic equations).

3.3 Real-time trajectory generation for linear systems with input constraints

If input constraints are present for a differentially flat system, these constraints can be written in
terms of the coefficients of the basis functions. In particular, for a magnitude constraint |u| < M ,
the constraints have the form

|u(z, ż, . . . , z(q))| < M (30)

and substituting

z =
∑

aiφi(t), (31)

gives a nonlinear, algebraic constraint on the coefficients ai.
To illustrate how this problem might be attacked, we restrict ourselves to the case of a single

input, linear system
ẋ = Ax + Bu

z = Fx,
(32)

where z is the flat output that corresponds to the end of the integrator chain if the system were
placed in controller canonical form. Since the initial and final state can be written in terms of z
and it’s derivatives, the endpoint constraints become
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= Ma (33)

The dimension of the matrix M depends on the number of basis functions and this will generally
be chosen to be more than the minimum number required to make M full rank.

Similarly, the constraints on the input can be written as

G0z + G1ż + · · · + Gpz
(q) + d < 0 (34)
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where we use the fact that u is a linear function of z and its derivatives, and rewrite the constraint
|u| < M as two constraints, u < M and u > −M . Similar constraints can be written for rate limits
and the matrices Gi and vector d are obtained by stacking these constraints. We now substitute
the expansion z in terms of basis functions to obtain a constraint on the coefficients of the form

P (t)a < d. (35)

Notice that these constraints must hold for each instant in time.
Pulling these equations together, we must find a set of coefficients that satisfy

Ma = c

P (t)α < d.
(36)

This example immediately illustrates the difficulty in solving the trajectory generation problem
in the presence of input constraints. While the endpoint constraints generate a finite number of
conditions on the basis function coefficients, the input limits generate constraints at each instant
in time. One cannot a priori guarantee that these constraints can be satisfied with a finite number
of basis functions for a given set of end conditions. Assuming that a solution exists, one is still left
with the problem of finding a solution that satisfies the constraints.

One approach to such a solution is to attempt to place bounds on the inequality constraints
in a way that allows a finite number of conditions to be checked. For example, if we choose basis
functions that are monotonically increasing (eg, powers of t) then the constraint might be satisfied
by choosing all coefficients to have the same sign. It is easy to see, however, that this will not work
for two-sided constraints generated by limits of the form |u| < M .

A second approach is to approximate the constraints by evaluating them at an array of times,
thus converting them to a (potentially large) set of affine constraints of the form P (ti)a < d where
ti represents the sampling time. This is the approach taking in [1], which we describe in more detail
below. By choosing basis functions with sufficiently bounded derivatives, it is possible to enforce
slightly more restrictive limits and give bounds on the spacing of points that is required to insure
that the constraints are satisfied between sampling instants.

An additional advantage of the sampling approach is that the constraints have a particularly
nice representation in the coefficient space. We first rewrite our flat solution as

z = Φ0(t) +
∑

aiφi(t) (37)

where Φ0 is chosen to satisfy the end conditions and φi are chosen so that the function plus q
derivatives is identically zero at t = 0 and t = T . Then the resulting input constraints are of the
form P (ti)a < N(ti) where N(ti) contains terms generated by Φ0 and its derivatives. A solution to
this constraint can be found by looking at the hyperplanes given by P (ti)a − N(ti) = 0 and then
looking for regions which are on the proper side of each hyperplane. This is shown in Figure 12 for
the case of two free parameters.

To illustrate the efficacy of this approach, it was implemented on an experimental system briefly
described in the following example.

Example 7 (Pursuit-evasion experiment [1]). S. Agrawal and N. Faiz have implemented the method
outlined above on a mass spring damper experiment (see Figure 13). The system consists of three
masses, with a single motor acting on the first mass and the first and second mass connected by
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Figure 12: Feasible regions in parameter space. Each constraint on the parameters is represented
by a hyperplane in parameter space and the interior of the corresponding convex set gives the
feasible parameters.

springs. A third mass is disconnected as moved manually to provide a “target” for the system.
Using the position of the third mass as input, a computer control system computes a feasible
trajectory for the rest of the system that attempts to track the position of the third mass using
the second mass. The constraints on the system are the physical positions of the second and third
masses, as well as the input magnitude on the first mass. More details on the experiment are given
in [1].

The collocation technique describe above was implemented, using polynomials for basis func-
tions. Due to computational limits, 6 constraints (3 two-sided constraints) with 3 collocation points
and 2 free modes were used. The position of the third mass was computed every second and a fea-
sible trajectory was computed and used as an input to the linear control law. Figure 14 shows the
results of a typical run. The six constraints are satisfied by the desired trajectory for masses 1 and
2 at all times.

4 Conclusions and Future Work

The problem of control design in the presence of magnitude and rate limits is one which has received
a large amount of attention over the years but there are still very few design oriented techniques for
analyzing such systems. In this paper we have focused on two specific problems, stabilization and
trajectory generation, and used tools from differential geometry to study some particularly simple
special cases, such as chains of integrators and linear systems. While these approaches do not cover
the wide variety of practical problems that are faced in applications, they do provide interesting
insights into some of the difficulties and possible approaches to control design in the presence of
magnitude and rate limits.

For the problem of saturation, our approach is to design “nonlinear wrappers” that modify an
existing control law to operate in the presence magnitude and/or rate limits. When the system is
operating in a region that does not push the inputs against the constraints, the wrapper function
performs no action and the nominal control law is used. When the system begins to saturate, the
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Figure 13: Pursuit-evasion experiment. Mass 2 is used to generate a reference trajectory which is
tracked by mass 3.

wrapper modifies the inputs and outputs of the control law such that the desired control action is
achieved without violating the constraints or causing the system to go unstable.

The form of the nonlinear wrapper is based on rescaling the control law using a nonlinear gain
function. Using tools from homogeneous systems, we derived a rescaling procedure that maintained
stability of the system while giving inputs with bounded controls. For the specific case of a chain of
integrators, this gain function has the effect of minimizing the size of errors in states far away from
the input in order to first stabilize the states near the input. This is the same type of approach
as Teel’s “nested saturation” framework. The approach can be generalized to non-homogeneous
systems subject to finding families of control laws and Lyapunov functions that satisfy the conditions
of the rescaling theorem.

With this rescaling approach as motivation, we then explored a “dynamic rescaling” technique
for choosing the nonlinear gain parameter. The main idea was to select the value of the scaling
parameter based on the difference between the actual and commanded input values. Once the gain
had been reduced to a level that allowed the system to stop saturating, the gain was slowly increased
towards its original value to allow the performance of the system to be maintained. Although the
form of the control law and its proof of convergence are cumbersome, the experimental behavior of
the approach is very encouraging.

Finally, we considered the problem of trajectory generation in the presence of magnitude and
rate limits for differentially flat systems. For this class of systems, the trajectory generation prob-
lem can be reduced to a spline problem with the input constraints appearing as nonlinear algebraic
conditions on the coefficients. We presented one specific approach to solving the constrained alge-
braic problem for the special case of linear systems, where the constraints become hyperplanes in
the spline coefficient space.

By combining the problem of trajectory generation and stabilization, it is possible to build sys-
tem that achieve high performance trajectory tracking in the presence of both magnitude and rate
constraints. The real-time trajectory generation algorithm generates state and input trajectories
that simultaneously satisfy the dynamics, input constraints, and output requirements. The inner
loop then stabilizes along this trajectory and handles additional saturations that might occur due
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Figure 14: Real-time trajectory generation for the pursuit-evasion experiment.

to system uncertainties such as noise, parametric errors, or unmodeled dynamics.
The work presented in this paper is only a start on a more complete geometric theory for non-

linear control systems in the presence of magnitude and rate constraints. The notion of combining
nonlinear wrappers with dynamic rescaling remains appealing (and performs extremely well), but
stronger analytical tools are required to apply these techniques to a broader class of systems and
reduce the gap between theory and practice. Our experimental results hint that this approach
may be particularly effective in practical systems. Most of the current literature is based on static
rescaling (similar the the results we presented for homogeneous systems) and these seem to be quite
conservative compared with our approach.

Similarly, more powerful techniques for generating trajectories are needed to handle the new
systems that are being planned, such as remotely operated systems operating underwater, on
land, in the air, and in space. One approach which seems particularly appealing is the use of
basis functions that are tuned for the specific system and task. In particular, if one can show
that by choice of basis function it is possible to simplify the computations required for online
implementation, this would have important implications for highly aggressive, real-time trajectory
generation. Choice of basis function might also be used to provide more rigorous approaches to the
surface allocation problem in flight control.

Finally, we note that although we have focused here on motion control problems, the role of
magnitude and rate constraints is also of considerable important in many other classes of problems.
In particular, actuation limits appear to be a primary driver in active control of fluid systems
(see [37] for an example in the context of compression systems). These limits are both temporal
limits (magnitude, bandwidth, and rate) as well as spatial limits (the number and spacing of
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actuators in a fluidic systems, for example). Preliminary work in the role of magnitude and rate
constraints in control of bifurcations [36] shows some of the possible techniques for approaching
this interesting class of problems.
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