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Editors’ Summary

An advanced control technology that has had tremendous practical impact over the last two decades
or so is model predictive control (MPC). By embedding an optimization solution in each sampling in-
stant within the control calculation, MPC applications have demonstrated dramatic improvements
in control performance. To date, this impact has largely been limited to the process industries.
The reasons for the domain-specific benefit have to do with the relatively slow time constants of
most industrial processes and their relatively benign dynamics (e.g., their open-loop stability). For
aerospace systems to avail of the promise of MPC, research is needed in extending the technology
so that it can be applied to systems with nonlinear, unstable, and fast dynamics.

This chapter presents a new framework for MPC and optimization-based control for flight
control applications. The MPC formulation replaces the traditional terminal constraint with a
terminal cost based on a control Lyapunov function. This reduces computational requirements and
allows proofs of stability under a variety of realistic assumptions on computation.

The authors also show how differential flatness system can be used to computational advantage.
(A system is differentially flat if, roughly, it can be modeled as a dynamical equation in one variable
and its derivatives.) In this case the optimization can be done over a space of parametrized basis
functions and a constrained nonlinear program can be solved using collocation points. A software
package has been developed to implement these theoretical developments.

There is an experimental component to this research as well. A tethered ducted fan testbed has
been developed at Caltech that mimics the longitudinal dynamics of an aircraft. High-performance
maneuvers can safely be flown with the ducted fan and an interface to high-end workstations
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Figure 1: Two degree of freedom controller design for a plant P with uncertainty A. See text for
a detailed explanation.

allows complex control schemes to be solved in real-time. The chapter presents results from several
experiments, detailing among other things the effects of different MPC optimization horizons on
computing time and dynamic performance.

Another model predictive control approach is discussed in Chapter 10.

1 Introduction

A large class of industrial and military control problems consist of planning and following a trajec-
tory in the presence of noise and uncertainty. Examples include unmanned airplanes and submarines
for surveillance and combat, mobile robots in factories and on the surface of Mars, and medical
robots performing inspection and manipulation tasks inside the human body under the control of
a surgeon. All of these systems are highly nonlinear and demand accurate performance.

To control such systems, we make use of the notion of two degree of freedom controller design.
This is a standard technique in linear control theory that separates a controller into a feedforward
compensator and a feedback compensator. The feedforward compensator generates the nominal
input required to track a given reference trajectory. The feedback compensator corrects for errors
between the desired and actual trajectories. This is shown schematically in Figure 1.

In a nonlinear setting, two degree of freedom controller design decouples the trajectory gener-
ation and asymptotic tracking problems. Given a desired output trajectory, we first construct a
state space trajectory x4y and a nominal input ug that satisfy the equations of motion. The error
system can then be written as a time-varying control system in terms of the error, e = = — z4.
Under the assumption that that tracking error remains small, we can linearize this time-varying
system about e = 0 and stabilize the e = 0 state. A more detailed description of this approach,
including references to some of the related literature, is given in [24].

In optimization-based control, we use the two degree of freedom paradigm with an optimal
control computation for generating the feasible trajectory. In addition, we take the extra step
of updating the generated trajectory based on the current state of the system. This additional
feedback path is denoted by a dashed line in Figure 1 and allows the use of so-called receding
horizon control techniques: a (optimal) feasible trajectory is computed from the current position



to the desired position over a finite time 1" horizon, used for a short period of time § < T', and then
recomputed based on the new position.

Many variations on this approach are possible, blurring the line between the trajectory genera-
tion block and the feedback compensation. For example, if § < T, one can eliminate all or part of
the “inner loop” feedback compensator, relying on the receding horizon optimization to stabilize
the system. A local feedback compensator may still be employed to correct for errors due to noise
and uncertainty on the fastest time scales. In this chapter, we will explore both the case where we
have a relatively large d, in which case we consider the problem to be primarily one of trajectory
generation, and a relatively small §, where optimization is used for stabilizing the system.

A key advantage of optimization-based approaches is that they allow the potential for cus-
tomization of the controller based on changes in mission, condition, and environment. Because the
controller is solving the optimization problem online, updates can be made to the cost function, to
change the desired operation of the system; to the model, to reflect changes in parameter values
or damage to sensors and actuators; and to the constraints, to reflect new regions of the state
space that must be avoided due to external influences. Thus, many of the challenges of designing
controllers that are robust to a large set of possible uncertainties become embedded in the online
optimization.

Development and application of receding horizon control (also called model predictive control,
or MPC) originated in process control industries where plants being controlled are sufficiently
slow to permit its implementation. An overview of the evolution of commercially available MPC
technology is given in [27] and a survey of the current state of stability theory of MPC is given in
[20]. Closely related to the work in this chapter, Singh and Fuller [29] have used MPC to stabilize a
linearized simplified UAV helicopter model around an open-loop trajectory, while respecting state
and input constraints.

In the remainder of this chapter, we give a survey of the tools required to implement online con-
trol customization via optimization-based control. Section 2 introduces some of the mathematical
results and notation required for the remainder of the chapter. Section 3 gives the main theoreti-
cal results of the paper, where the problem of receding horizon control using a control Lyapunov
function (CLF) as a terminal cost is described. In Section 4, we provide a computational frame-
work for computing optimal trajectories in real-time, a necessary step toward implementation of
optimization-based control in many applications. Finally, in Section 5, we present an experimental
implementation of both real-time trajectory generation and model-predictive control on a flight
control experiment.

The results in this chapter are based in part on work presented elsewhere. The work on receding
horizon control using a CLF terminal cost was developed by Jadbabaie, Hauser and co-workers and
is described in [16]. The real-time trajectory generation framework, and the corresponding software,
was developed by Milam and co-workers and has appeared in [21, 23, 25]. The implementation
of model predictive control given in this chapter is based on the work of Dunbar, Milam, and
Franz [8, 10].

2 Mathematical Preliminaries

In this section we provide some mathematical preliminaries and establish the notation used through
the chapter. We consider a nonlinear control system of the form

= f(z,u) (1)
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Figure 2: Planar ducted fan engine. Thrust is vectored by moving the flaps at the end of the duct.

where the vector field f : R” x R™ — R™ is at least C? and possesses a linearly controllable
equilibrium point at the origin, e.g., £(0,0) = 0 and (A, B) := (D1 £(0,0), D2f(0,0)) is controllable.

2.1 Differential Flatness and Trajectory Generation

For optimization-based control in applications such as flight control, a critical need is the ability
to compute optimal trajectories very quickly, so that they can be used in a real-time setting. For
general problems this can be very difficult, but there are classes of systems for which simplifications
can be made that vastly reduce the computational requirements for generating trajectories. We
describe one such class of systems here, so-called differentially flat systems.

Roughly speaking, a system is said to be differentially flat if all of the feasible trajectories for
the system can be written as functions of a flat output z(-) and its derivatives. More precisely,
given a nonlinear control system (1) we say the system is differentially flat if there exists a function
2(z,u,1, . ..,uP)) such that all feasible solutions of the differential equation (1) can be written as

(2)

Differentially flat systems were originally studied by Fliess et al. [9]. See [24] for a description of the
role of flatness in control of mechanical systems and [33] for more information on flatness applied
to flight control systems.

Example 1 (Planar ducted fan). Consider the dynamics of a planar, vectored thrust flight
control system as shown in Figure 2. This system consists of a rigid body with body fixed forces
and is a simplified model for the Caltech ducted fan described in Section 5. Let (z,y,6) denote the
position and orientation of the center of mass of the fan. We assume that the forces acting on the
fan consist of a force fi; perpendicular to the axis of the fan acting at a distance r from the center
of mass, and a force fo parallel to the axis of the fan. Let m be the mass of the fan, J the moment
of inertia, and g the gravitational constant. We ignore aerodynamic forces for the purpose of this
example.



The dynamics for the system are

mi = f1cosf — fosin6
my = fisinf + facosf —mg (3)
JO =rf1.

Martin et al. [19] showed that this system is differentially flat and that one set of flat outputs is
given by
21 =x — (J/mr)sinf

29 =y + (J/mr)cos@. )

Using the system dynamics, it can be shown that
Z1cos @+ (%2 + g)sinf = 0. (5)

and thus given z;(t) and 2o(t) we can find 6(t) except for an ambiguity of = and away from the
singularity Z] = Z3 + g = 0. The remaining states and the forces fi(¢) and f2(¢) can then be
obtained from the dynamic equations, all in terms of z1, 29, and their higher order derivatives.

Having determined that a system is flat, it follows that all feasible trajectories for the system
are characterized by the evolution of the flat outputs. Using this fact, we can convert the problem
of point to point motion generation to one of finding a curve z(-) which joins an initial state
2(0), 2(0), ..., 29(0) to a final state. In this way, we reduce the problem of generating a feasible
trajectory for the system to a classical algebraic problem in interpolation. Similarly, problems in
generation of trajectories to track a reference signal can also be converted to problems involving
curves z(-) and algebraic methods can be used to provide real-time solutions [33, 34].

Thus, for differentially flat systems, trajectory generation can be reduced from a dynamic
problem to an algebraic one. Specifically, one can parameterize the flat outputs using basis functions

z = Zai¢i(t)7 (6)

and then write the feasible trajectories as functions of the coefficients a:

xg=o(z,2,..., z(q)) = z4(a)

g = Bz %, D) = ug(a).

(7)

Note that no ODEs need to be integrated in order to compute the feasible trajectories (unlike
optimal control methods, which involve parameterizing the input and then solving the ODEs).
This is the defining feature of differentially flat systems. The practical implication is that nominal
trajectories and inputs which satisfy the equations of motion for a differentially flat system can be
computed in a computationally efficient way (solution of algebraic equations).

2.2 Control Lyapunov Functions

For the optimal control problems that we introduce in the next section, we will make use of a
terminal cost that is also a control Lyapunov function for the system. Control Lyapunov functions
are an extension of standard Lyapunov functions and were originally introduced by Sontag [30].
They allow constructive design of nonlinear controllers and the Lyapunov function that proves their
stability. A more complete treatment is given in [17].



Definition 1. Control Lyapunov Function
A locally positive function V' : R® — Ry is called a control Lyapunov function (CLF) for a control
system (1) if
) ov
ulerﬁgm (%f(x,u)> <0 for all = # 0.

In general, it is difficult to find a CLF for a given system. However, for many classes of
systems, there are specialized methods that can be used. One of the simplest is to use the Jacobian
linearization of the system around the desired equilibrium point and generate a CLF by solving an
LQR problem.

It is a well known result that the problem of minimizing the quadratic performance index,

J = /OOO(:CT(t)Qx(t) + uT Ru(t))dt subject to & = Az + Bu, z(0) = o, (8)

results in finding the positive definite solution of the following Riccati equation:
ATP+PA—-PBR'BTP+Q=0 (9)
The optimal control action is given by
u=—-R'BTPz

and V = 27 Pz is a CLF for the system.
In the case of the nonlinear system & = f(x,u), A and B are taken as

Of (x,u) Of (x,u)
A= Tko,o) B = Tko,o)

where the pairs (A4, B) and (Q%,A) are assumed to be stabilizable and detectable respectively.
Obviously the obtained CLF V(z) = 2T Pz will be valid only in a region around the equilibrium
(0,0).

More complicated methods for finding control Lyapunov functions are often required and many
techniques have been developed. An overview of some of these methods can be found in [15].

3 Optimization-Based Control

In receding horizon control, a finite horizon optimal control problem is solved, generating an open-
loop state and control trajectories. The resulting control trajectory is then applied to the system
for a fraction of the horizon length. This process is then repeated, resulting in a sampled data
feedback law. Although receding horizon control has been successfully used in the process control
industry, its application to fast, stability critical nonlinear systems has been more difficult. This
is mainly due to two issues. The first is that the finite horizon optimizations must be solved in a
relatively short period of time. Second, it can be demonstrated using linear examples that a naive
application of the receding horizon strategy can have disastrous effects, often rendering a system
unstable. Various approaches have been proposed to tackle this second problem; see [20] for a
comprehensive review of this literature. The theoretical framework presented here also addresses
the stability issue directly, but is motivated by the need to relax the computational demands of
existing stabilizing MPC formulations.



A number of approaches in receding horizon control employ the use of terminal state equality
or inequality constraints, often together with a terminal cost, to ensure closed loop stability. In
Primbs et al. [26], aspects of a stability-guaranteeing, global control Lyapunov function were used,
via state and control constraints, to develop a stabilizing receding horizon scheme. Many of the
nice characteristics of the CLF controller together with better cost performance were realized.
Unfortunately, a global control Lyapunov function is rarely available and often not possible.

Motivated by the difficulties in solving constrained optimal control problems, we have developed
an alternative receding horizon control strategy for the stabilization of nonlinear systems [16]. In
this approach, closed loop stability is ensured through the use of a terminal cost consisting of a
control Lyapunov function that is an incremental upper bound on the optimal cost to go. This
terminal cost eliminates the need for terminal constraints in the optimization and gives a dramatic
speed-up in computation. Also, questions of existence and regularity of optimal solutions (very
important for online optimization) can be dealt with in a rather straightforward manner. In the
remainder of this section, we review the results presented in [16].

3.1 Finite Horizon Optimal Control

We first consider the problem of optimal control over a finite time horizon. Given an initial state
xo and a control trajectory u(:) for a nonlinear control system & = f(x,u), the state trajectory
x¥(+; o) is the (absolutely continuous) curve in R” satisfying

24t 39) = 70 + / (73 20), u(r)) dr

for ¢t > 0.
The performance of the system will be measured by a given incremental cost ¢ : R x R™ — R
that is C? and fully penalizes both state and control according to

q(z,u) > co(ll® + Jul®), 2 €R",ueR™

for some ¢, > 0 and ¢(0,0) = 0. It follows that the quadratic approximation of ¢ at the origin is
positive definite, D?q(0,0) > ¢,I > 0.

To ensure that the solutions of the optimization problems of interest are well behaved, we
impose some convexity conditions. We require the set f(z,R™) C R" to be convex for each
x € R™. Letting p € R™ represent the co-state, we also require that the pre-Hamiltonian function
w s pl f(z,u) +q(z,u) =: K(z,u,p) be strictly convex for each (x,p) € R" x R” and that there is
a C? function a* : R"® x R™ — R™ : (z, p) — @*(x,p) providing the global minimum of K (x,u, p).
The Hamiltonian H(x,p) := K(x,a*(z,p),p) is then C?, ensuring that extremal state, co-state,
and control trajectories will all be sufficiently smooth (C! or better). Note that these conditions
are trivially satisfied for control affine f and quadratic q.

The cost of applying a control u(-) from an initial state = over the infinite time interval [0, c0)
is given by

Tatau) = [ ata(rio).utr) dr

The optimal cost (from z) is given by

Joo(@) = g(lg Joo (@, u(:))



where the control functions u(-) belong to some reasonable class of admissible controls (e.g., piece-
wise continuous or measurable). The function = — JZ () is often called the optimal value function
for the infinite horizon optimal control problem.

For the class of f and ¢ considered, we know that J* (-) is a positive definite C? function on
a neighborhood of the origin. This follows from the geometry of the corresponding Hamiltonian
system (see [13] and the references therein). In particular, since (x,p) = (0,0) is a hyperbolic
critical point of the C! Hamiltonian vector field Xy (w,p) := (D2H (x,p), —D1H (x,p))T, the local
properties of J% (-) are determined by the linear-quadratic approximation to the problem and,
moreover, D2J* (0) = P > 0 where P is the stabilizing solution of the appropriate algebraic
Riccati equation.

For practical purposes, we are interested in finite horizon approximations of the infinite horizon
optimization problem. In particular, let V(-) be a nonnegative C? function with V(0) = 0 and
define the finite horizon cost (from x using u(-)) to be

T
Trwu)) = [ alat(rin).a() dr +Va(T5a) (10)
0
and denote the optimal cost (from x) as

Jr(x) = inf Jp(z,u(")) .
u()

As in the infinite horizon case, one can show, by geometric means, that J7(-) is locally smooth

(C?). Other properties will depend on the choice of V and T.

Let I'*° denote the domain of JZ (-) (the subset of R™ on which JZ is finite). It is not too
difficult to show that the cost functions JX (-) and J3(-), T > 0, are continuous functions on
' [15]. For simplicity, we will allow JX () to take values in the extended real line so that, for
instance, JZ () = +00 means that there is no control taking x to the origin.

We will assume that f and ¢ are such that the minimum value of the cost functions JX (x),
J3(x), T > 0, is attained for each (suitable) x. That is, given 2 and 7" > 0 (including 7" = oo
when z € I'™®), there is a (C! in t) optimal trajectory (z%(t;z),uk(t;x)), t € [0,7], such that
Jr(z,uwi(;z)) = Jr(x). For instance, if f is such that its trajectories can be bounded on finite
intervals as a function of its input size, e.g., there is a continuous function 3 such that ||z"(¢; )| <
Bllzoll; lu(-)llz, 0,¢); then (together with the conditions above) there will be a minimizing control
(cf. [18]). Many such conditions may be used to good effect; see [15] for a more complete discussion.

It is easy to see that J% (-) is proper on its domain so that the sub-level sets

= {z eT>: J () <r?}

are compact and path connected and moreover I'™® = | J, ., I'2°. Note also that I'** may be a proper
subset of R” since there may be states that cannot be driven to the origin. We use r? (rather than
r) here to reflect the fact that our incremental cost is quadratically bounded from below. We refer
to sub-level sets of J7.(-) and V/(-) using

I'7" .= path connected component of {z € T : J5(z) < r*} containing 0,

and
Q, := path connected component of {x € R™: V(z) < r*} containing 0.

These results provide the technical framework needed for receding horizon control.



3.2 Receding Horizon Control with CLF Terminal Cost

Receding horizon control provides a practical strategy for the use of model information through on-
line optimization. Every § seconds, an optimal control problem is solved over a T" second horizon,
starting from the current state. The first § seconds of the optimal control u}.(-; z(t)) is then applied
to the system, driving the system from x(t) at current time t to 2%.(d, z(t)) at the next sample time
t + 0 (assuming no model uncertainty). We denote this receding horizon scheme as RH (T, ).

In defining (unconstrained) finite horizon approximations to the infinite horizon problem, the
key design parameters are the terminal cost function V(-) and the horizon length 7' (and, perhaps
also, the increment ¢). What choices will result in success?

It is well known (and easily demonstrated with linear examples), that simple truncation of the
integral (i.e., V(z) = 0) may have disastrous effects if 7" > 0 is too small. Indeed, although the
resulting value function may be nicely behaved, the “optimal” receding horizon closed loop system
can be unstable.

A more sophisticated approach is to make good use of a suitable terminal cost V(-). Evidently,
the best choice for the terminal cost is V(x) = JX (x) since then the optimal finite and infinite
horizon costs are the same. Of course, if the optimal value function were available there would be
no need to solve a trajectory optimization problem. What properties of the optimal value function
should be retained in the terminal cost? To be effective, the terminal cost should account for the
discarded tail by ensuring that the origin can be reached from the terminal state z*(T;x) in an
efficient manner (as measured by ¢). One way to do this is to use an appropriate control Lyapunov
function which is also an upper bound on the cost-to-go.

The following theorem shows that the use of a particular type of CLF is in fact effective,
providing rather strong and specific guarantees.

Theorem 1. [16] Suppose that the terminal cost V() is a control Lyapunov function such that

min (V + ¢)(z,u) <0 (11)
u€eR™
for each x € Q,, for some r, > 0. Then, for every T > 0 and ¢ € (0,T], the resulting receding
horizon trajectories go to zero exponentially fast. For each T > 0, there is an 7(T') > r, such that
F;:F(T) is contained in the region of attraction of RH(T,d). Moreover, given any compact subset A

of I'™°, there is a T™ such that A C I‘E(T) for oll T > T*.

Theorem 1 shows that for any horizon length 7' > 0 and any sampling time § € (0,77], the
receding horizon scheme is exponentially stabilizing over the set I‘Zv. For a given T, the region of
attraction estimate is enlarged by increasing r beyond r, to #(7T") according to the requirement that
V(2%(T;x)) < r2 on that set. An important feature of the above result is that, for operations with
the set F?(T), there is no need to impose stability ensuring constraints which would likely make the
online optimizations more difficult and time consuming to solve.

An important benefit of receding horizon control is its ability to handle state and control
constraints. While the above theorem provides stability guarantees when there are no constraints
present, it can be modified to include constraints on states and controls as well. In order to ensure
stability when state and control constraints are present, the terminal cost V(-) should be a local
CLF satisfying min,cy V + q(z,u) < 0 where U is the set of controls where the control constraints
are satisfied. Moreover, one should also require that the resulting state trajectory ¢ () € X,
where X is the set of states where the constraints are satisfied. (Both X and U are assumed to be
compact with origin in their interior). Of course, the set €2, will end up being smaller than before,
resulting in a decrease in the size of the guaranteed region of operation (see [20] for more details).



4 Real-Time Trajectory Generation and Differential Flatness

In this section we demonstrate how to use differential flatness to find fast numerical algorithms for
solving optimal control problems. We consider the affine nonlinear control system

&= f(z)+g(x)u, (12)

where all vector fields and functions are smooth. For simplicity, we focus on the single input case,
u € R. We wish to find a trajectory of equation (12) that minimizes the performance index (10),
subject to a vector of initial, final, and trajectory constraints

Ibo < o (x(to), u(to)) < ubo,
lhy < y(alty).ulty)) < uby, (13
Iby < S(z,u) < uby,

respectively. For conciseness, we will refer to this optimal control problem as

&= f(z) +g(x)u,
b < ce(x,u) < ub.

(z,u)

min J(x, u) subject to {

4.1 Numerical Solution Using Collocation

A numerical approach to solving this optimal control problem is to use the direct collocation method
outlined in Hargraves and Paris [12]. The idea behind this approach is to transform the optimal
control problem into a nonlinear programming problem. This is accomplished by discretizing time
into a grid of N — 1 intervals

t0:t1<t2<...<t]v:tf (15)

and approximating the state x and the control input u as piecewise polynomials & and u, respec-
tively. Typically a cubic polynomial is chosen for the states and a linear polynomial for the control
on each interval. Collocation is then used at the midpoint of each interval to satisfy equation (12).
Let (x(t1),...,z(tn)) and u(u(ty),...,u(ty)) denote the approximations to x and wu, respectively,
depending on (x(t1),...,z(ty)) € R™ and (u(t1),...,u(ty)) € RV corresponding to the value of
x and u at the grid points. Then one solves the following finite dimension approximation of the
original control problem (14):

min, F(y) = J(2(y),a(y))  subject to Ib< c(i"(yz,‘ﬂ(y)) < ub, (16)

where y = (x(t1),u(t1),...,z(tny),u(ty)), and M = dimy = (n + 1)N.

Seywald [28] suggested an improvement to the previous method (see also [2] page 362). Following
this work, one first solves a subset of system dynamics in (14) for the the control in terms of
combinations of the state and its time derivative. Then one substitutes for the control in the
remaining system dynamics and constraints. Next all the time derivatives z; are approximated by
the finite difference approximations



to get
p(E(t:), z(t;) =0 o )
q(z(t:), x(t;)) <0 } 1=0,...,N -1

The optimal control problem is turned into

. p(z(t:), z(t;))
min F(y)  subject to {Q(f(ti)ax( ti))

GRJ\J
where y = (z(t1),...,2z(ty)), and M = dimy = nN. As with the Hargraves and Paris method, this
parameterization of the optimal control problem (14) can be solved using nonlinear programming.
The dimensionality of this discretized problem is lower than the dimensionality of the Hargraves
and Paris method, where both the states and the input are the unknowns. This induces substantial
improvement in numerical implementation.

; (17)

IN

4.2 Differential Flatness Based Approach

The results of Seywald give a constrained optimization problem in which we wish to minimize a
cost functional subject to n — 1 equality constraints, corresponding to the system dynamics, at each
time instant. In fact, it is usually possible to reduce the dimension of the problem further. Given
an output, it is generally possible to parameterize the control and a part of the state in terms of
this output and its time derivatives. In contrast to the previous approach, one must use more than
one derivative of this output for this purpose.

When the whole state and the input can be parameterized with one output, the system is dif-
ferentially flat, as described in Section 2. When the parameterization is only partial, the dimension
of the subspace spanned by the output and its derivatives is given by r the relative degree of this
output [14]. In this case, it is possible to write the system dynamics as

w=0(z%,...,29) (18)

where z € RP, p > m represents a set of outputs that parameterize the trajectory and ¢ : R® x R™
represents n — r remaining differential constraints on the output. In the case that the system is
flat, » = n and we eliminate these differential constraints.

Unlike the approach of Seywald, it is not realistic to use finite difference approximations as
soon as r > 2. In this context, it is convenient to represent z using B-splines. B-splines are
chosen as basis functions because of their ease of enforcing continuity across knot points and ease
of computing their derivatives. A pictorial representation of such an approximation is given in
Figure 3. Doing so we get

pj
5= B 0C.  py =Lk —my) +m,

where By (t) is the B-spline basis function defined in [6] for the output z; with order j, Cij are
the coefficients of the B-spline, /; is the number of knot intervals, and m; is number of smoothness
conditions at the knots. The set (21,z2,...,2p—y) is thus represented by M = 3 ;i 11 3 Dj
coefficients.

11
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m; at knotpoints defines smoothness

k; — 1 degree polynomial between knotpoints

\J

Figure 3: Spline representation of a variable.

In general, w collocation points are chosen uniformly over the time interval [t,, ]| (though opti-
mal knots placements or Gaussian points may also be considered). Both dynamics and constraints
will be enforced at the collocation points. The problem can be stated as the following nonlinear
programming form:

D(2(y), 2(y), ..., 2" (y)) =0

min F subject to 19
yeRM ) J { b <c(y) <ub (19)
where

y=(C1,....Cy,C{t ot CF O ).

The coeflicients of the B-spline basis functions can be found using nonlinear programming.

A software package called Nonlinear Trajectory Generation (NTG) has been written to solve
optimal control problems in the manner described above (see [23] for details). The sequential
quadratic programming package NPSOL by [11] is used as the nonlinear programming solver in
NTG. When specifying a problem to NTG, the user is required to state the problem in terms of
some choice of outputs and its derivatives. The user is also required to specify the regularity of
the variables, the placement of the knot points, the order and regularity of the B-splines, and the
collocation points for each output.

5 Implementation on the Caltech Ducted Fan

To demonstrate the use of the techniques described in the previous section, we present an im-
plementation of optimization-based control on the Caltech Ducted Fan, a real-time, flight control
experiment that mimics the longitudinal dynamics of an aircraft. The experiment is show in Fig-
ure 4.

5.1 Description of the Caltech Ducted Fan Experiment

The Caltech ducted fan is an experimental testbed designed for research and development of non-
linear flight guidance and control techniques for Uninhabited Combat Aerial Vehicles (UCAVs).
The fan is a scaled model of the longitudinal axis of a flight vehicle and flight test results validate
that the dynamics replicate qualities of actual flight vehicles [22].
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Figure 4: Caltech Ducted Fan.

The ducted fan has three degrees of freedom: the boom holding the ducted fan is allowed
to operate on a cylinder, 2 m high and 4.7 m in diameter, permitting horizontal and vertical
displacements. Also, the wing/fan assembly at the end of the boom is allowed to rotate about its
center of mass. Optical encoders mounted on the ducted fan, gearing wheel, and the base of the
stand measure the three degrees of freedom. The fan is controlled by commanding a current to
the electric motor for fan thrust and by commanding RC servos to control the thrust vectoring
mechanism.

The sensors are read and the commands sent by a dSPACE multi-processor system, comprised
of a D/A card, a digital I/O card, two Texas Instruments C40 signal processors, two Compaq
Alpha processors, and a ISA bus to interface with a PC. The dSPACE system provides a real-time
interface to the 4 processors and I/O card to the hardware. The NTG software resides on both of
the Alpha processors, each capable of running real-time optimization.

The ducted fan is modeled in terms of the position and orientation of the fan, and their velocities.
Letting x represent the horizontal translation, z the vertical translation and 6 the rotation about
the boom axis, the equations of motion are given by

mi + Fx, — Fx, cost)l — Fz, sinf =0

mZ + Fz, + Fx, sin0 — Fz, cos 0 = mgeqt (20)

.. 1
JO — M, + —1,Qxcost) — Fzry =0,
Ts

where Fy, = Dcosvy + Lsiny and Fz, = —Dsin~y + Lcos~y are the aerodynamic forces and F,
and Fz, are thrust vectoring body forces in terms of the lift (L), drag (D), and flight path angle (7).
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I, and €2 are the moment of inertia and angular velocity of the ducted fan propeller, respectively.
J is the moment of ducted fan and r is the distance from center of mass along the X axis to the
effective application point of the thrust vectoring force. The angle of attack a can be derived from
the pitch angle 6 and the flight path angle v by

a=0-—r.
The flight path angle can be derived from the spatial velocities by
—Z
vy = arctan —.
x
The lift (L) ,drag (D), and moment (M) are given by
L =¢SCL(a) D =¢SCp(a) M =¢eSCy(a),

respectively. The dynamic pressure is given by ¢ = %pVQ. The norm of the velocity is denoted
by V, S the surface area of the wings, and p is the atmospheric density. The coeflicients of lift
(Cr(@)), drag (Cp(«)) and the moment coefficient (Cjps(«)) are determined from a combination of
wind tunnel and flight testing and are described in more detail in [22], along with the values of the
other parameters.

5.2 Real-Time Trajectory Generation

In this section we describe the implementation of a two degree of freedom controller using NTG to
generate minimum time trajectories in real time. We first give a description of the controllers and
observers necessary for stabilization about the reference trajectory, and discuss the NTG setup used
for the forward flight mode. Finally, we provide example trajectories using NTG for the forward
flight mode on the Caltech Ducted Fan experiment.

Stabilization Around Reference Trajectory

Although the reference trajectory is a feasible trajectory of the model, it is necessary to use a
feedback controller to counteract model uncertainty. There are two primary sources of uncertainty
in our model: aerodynamics and friction. Elements such as the ducted fan flying through its own
wake, ground effects, and thrust not modeled as a function of velocity and angle of attack contribute
to the aerodynamic uncertainty. The friction in the vertical direction is also not considered in the
model. The prismatic joint has an unbalanced load creating an effective moment on the bearings.
The vertical frictional force of the ducted fan stand varies with the vertical acceleration of the
ducted fan as well as the forward velocity. Actuation models are not used when generating the
reference trajectory, resulting in another source of uncertainty.

The separation principle was kept in mind when designing the observer and controller. Since
only the position of the fan is measured, we must estimate the velocities. The observer that works
best to date is an extended Kalman filter. The optimal gain matrix is gain scheduled on the
(estimated) forward velocity. The Kalman filter outperformed other methods that computed the
derivative using only the position data and a filter.

The stabilizing LQR controllers were gain scheduled on pitch angle, 6, and the forward velocity,
#. The pitch angle was allowed to vary from —7/2 to m/2 and the velocity ranged from 0 to 6
m/s. The weights were chosen differently for the hover-to-hover and forward flight modes. For
the forward flight mode, a smaller weight was placed on the horizontal (z) position of the fan
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compared to the hover-to-hover mode. Furthermore, the z weight was scheduled as a function of
forward velocity in the forward flight mode. There was no scheduling on the weights for hover-
to-hover. The elements of the gain matrices for each of the controller and observer are linearly
interpolated over 51 operating points.

Nonlinear Trajectory Generation Parameters

We solve a minimum time optimal control problem to generate a feasible trajectory for the system.
The system is modeled using the nonlinear equations described above and computed the open loop
forces and state trajectories for the nominal system. The three outputs 21 = x, 29 = z, and 23 = 0
are each parameterized with four (intervals), sixth order, C* (multiplicity), piecewise polynomials
over the time interval scaled by the minimum time. The last output (z4 = T), representing the time
horizon to be minimized, is parameterized by a scalar. By choosing the outputs to be parameterized
in this way, we are in effect controlling the frequency content of inputs. Since we are not including
the actuators in the model, it would be undesirable to have inputs with a bandwidth higher than
the actuators. There are a total of 37 variables in this optimization problem. The trajectory
constraints are enforced at 21 equidistant breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of the outputs. Clearly
there is a trade between the parameters (variables, initial values of the variables, and breakpoints)
and measures of performance (convergence, run-time, and conservative constraints). Extensive
simulations were run to determine the right combination of parameters to meet the performance
goals of our system.

Forward Flight

To obtain the forward flight test data, the operator commanded a desired forward velocity and
vertical position with the joysticks. We set the trajectory update time, § to 2 seconds. By rapidly
changing the joysticks, NTG produces high angle of attack maneuvers. Figure 5(a) depicts the
reference trajectories and the actual § and @ over 60 sec. Figure 5(b) shows the commanded forces
for the same time interval. The sequence of maneuvers corresponds to the ducted fan transitioning
from near hover to forward flight, then following a command from a large forward velocity to a
large negative velocity, and finally returning to hover.

Figure 6 is an illustration of the ducted fan altitude and x position for these maneuvers. The
air-foil in the figure depicts the pitch angle (). It is apparent from this figure that the stabilizing
controller is not tracking well in the z direction. This is due to the fact that unmodeled frictional
effects are significant in the vertical direction. This could be corrected with an integrator in the
stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the average computation time
was less than one second. FEach of the 30 trajectories converged to an optimal solution and was
approximately between 4 and 12 seconds in length. A random initial guess was used for the first
NTG trajectory computation. Subsequent NTG computations used the previous solution as an
initial guess. Much improvement can be made in determining a “good” initial guess. Improvement
in the initial guess will improve not only convergence but also computation times.

5.3 Model Predictive Control

The results of the previous section demonstrate the ability to compute optimal trajectories in
real time, although the computation time was not sufficiently fast for closing the loop around the
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Figure 5: Forward Flight Test Case: (a) § and & desired and actual, (b) desired Fx, and F, with
bounds.

optimization. In this section, we make use of a shorter update time 9, a fixed horizon time T with
a quadratic integral cost, and a CLF terminal cost to implement the receding horizon controller
described in Section 3.

We have implemented the receding horizon controller on the ducted fan experiment where the
control objective is to stabilize the hover equilibrium point. The quadratic cost is given by

. 1 ~T A - 1 ~T 5~
q(xz,u) = 5 QT + 5 R (21)
V(z) =~viT Pz

where .
T=0—Teq=(x,2,0 —7/2,%,2,0)
U=1u—Ueq = (Fx, —mg,Fz,)

Q = diag{4,15,4,1,3,0.3}

R = diag{0.5,0.5},

v = 0.075 and P is the unique stable solution to the algebraic Riccati equation corresponding to
the linearized dynamics of equation (3) at hover and the weights @ and R. Note that if v = 1/2,
then V(-) is the CLF for the system corresponding to the LQR problem. Instead V' is a relaxed (in
magnitude) CLF, which achieved better performance in the experiment. In either case, V is valid
as a CLF only in a neighborhood around hover since it is based on the linearized dynamics. We
do not try to compute off-line a region of attraction for this CLF. Experimental tests omitting the
terminal cost and/or the input constraints leads to instability. The results in this section show the
success of this choice for V for stabilization. An inner-loop PD controller on 6,6 is implemented
to stabilize to the receding horizon states 67, 92} The 6 dynamics are the fastest for this system
and although most receding horizon controllers were found to be nominally stable without this
inner-loop controller, small disturbances could lead to instability.

The optimal control problem is set-up in NTG code by parameterizing the three position states
(z,2,60), each with 8 B-spline coefficients. Over the receding horizon time intervals, 11 and 16
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Figure 6: Forward Flight Test Case: Altitude and z position (actual (solid) and desired (dashed)).
Airfoil represents actual pitch angle (#) of the ducted fan.

breakpoints were used with horizon lengths of 1, 1.5, 2, 3, 4 and 6 seconds. Breakpoints specify the
locations in time where the differential equations and any constraints must be satisfied, up to some
tolerance. The value of F)r(n:"‘ for the input constraints is made conservative to avoid prolonged
input saturation on the real hardware. The logic for this is that if the inputs are saturated on the
real hardware, no actuation is left for the inner-loop 6 controller and the system can go unstable.
The value used in the optimization is F)r(n:"‘ =9 N.

Computation time is non-negligible and must be considered when implementing the optimal
trajectories. The computation time varies with each optimization as the current state of the ducted
fan changes. The following notational definitions will facilitate the description of how the timing
is set-up:

1 Integer counter of MPC computations
t; Value of current time when MPC computation 7 started
0c(1) Computation time for computation 4

wi(i)(t) Optimal output trajectory corresponding to computation i, with time
interval ¢ € [t;,t; + T

A natural choice for updating the optimal trajectories for stabilization is to do so as fast as possible.
This is achieved here by constantly resolving the optimization. When computation ¢ is done,
computation i + 1 is immediately started, so t;11 = t; + d.(i). Figure 7 gives a graphical picture
of the timing set-up as the optimal input trajectories u’.(-) are updated. As shown in the figure,
any computation i for w}(7)(-) occurs for ¢t € [t;, ;1] and the resulting trajectory is applied for
t € [tit1,tiy). At t =t;11 computation i + 1 is started for trajectory w}(i+1)(-), which is applied
as soon as it is available (t = t;42). For the experimental runs detailed in the results, d.(7) is
typically in the range of [0.05,0.25] seconds, meaning 4 to 20 optimal control computations per
second. Each optimization i requires the current measured state of the ducted fan and the value of
the previous optimal input trajectories w}.(i — 1) at time ¢ = ¢;. This corresponds to, respectively, 6
initial conditions for state vector x and 2 initial constraints on the input vector u. Figure 7 shows
that the optimal trajectories are advanced by their computation time prior to application to the
system. A dashed line corresponds to the initial portion of an optimal trajectory and is not applied
since it is not available until that computation is complete. The figure also reveals the possible
discontinuity between successive applied optimal input trajectories, with a larger discontinuity
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Figure 7: Receding horizon input trajectories

more likely for longer computation times. The initial input constraint is an effort to reduce such
discontinuities, although some discontinuity is unavoidable by this method. Also note that the
same discontinuity is present for the 6 open-loop optimal state trajectories generated, again with a
likelihood for greater discontinuity for longer computation times. In this description, initialization
is not an issue because we assume the receding horizon computations are already running prior to
any test runs. This is true of the experimental runs detailed in the results.

The experimental results show the response of the fan with each controller to a 6 meter horizontal
offset, which is effectively engaging a step-response to a change in the initial condition for x. The
following details the effects of different receding horizon control parameterizations, namely as the
horizon changes, and the responses with the different controllers to the induced offset.

The first comparison is between different receding horizon controllers, where time horizon is
varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each controller uses 16 breakpoints. Figure 8(a)
shows a comparison of the average computation time as time proceeds. For each second after
the offset was initiated, the data corresponds to the average run time over the previous second
of computation. Note that these computation times are substantially smaller than those reported
for real-time trajectory generation, due to the use of the CLF terminal cost versus the terminal
constraints in the minimum-time, real-time trajectory generation experiments.

There is a clear trend toward shorter average computation times as the time horizon is made
longer. There is also an initial transient increase in average computation time that is greater for
shorter horizon times. In fact, the 6 second horizon controller exhibits a relatively constant average
computation time. One explanation for this trend is that, for this particular test, a 6 second
horizon is closer to what the system can actually do. After 1.5 seconds, the fan is still far from the
desired hover position and the terminal cost CLF is large, likely far from its region of attraction.
Figure 8(b) shows the measured x response for these different controllers, exhibiting a rise time of
8-9 seconds independent of the controller. So a horizon time closer to the rise time results in a
more feasible optimization in this case.
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Figure 8: Receding horizon control: (a) moving one second average of computation time for MPC
implementation with varying horizon time, (b) response of MPC controllers to 6 meter offset in z
for different horizon lengths.

6 Summary and Conclusions

This chapter has given a survey of some basic concepts required to analyze and implement on-
line control customization via optimization-based control. By making use of real-time trajectory
generation algorithms that exploit geometric structure and implementing receding horizon control
using control Lyapunov functions as terminal costs, we have been able to demonstrate closed-loop
control on a flight control experiment. These results build on the rapid advances in computational
capability over the past decade, combined with careful use of control theory, system structure, and
numerical optimization. A key property of this approach is that it explicitly handles constraints in
the input and state vectors, allowing complex nonlinear behavior over large operating regions.

The framework presented here is a first step toward a fundamental shift in the way that con-
trol laws are designed and implemented. By moving the control design into the system itself, it
becomes possible to implement much more versatile controllers that respond to changes in the sys-
tem dynamics, mission intent, and environmental constraints. Experimental results have validated
this approach in the case of manually varied end points, a particularly simple version of change in
mission.

Future control systems will continue to be more complex and more interconnected. An impor-
tant element will be the networked nature of future control systems, where many individual agents
are combined to allow cooperative control in dynamic, uncertain, and adversarial environments.
While many traditional control paradigms will not operate well for these classes of systems, the
optimization-based controllers presented here can be transitioned to systems with strongly non-
linear behavior, communications delays, and mixed continuous and discrete states. Thus, while
traditional frequency domain techniques are likely to remain useful for isolated systems, design of
controllers for large-scale, complex, networked systems will increasingly rely on techniques based
on Lyapunov theory and (closed loop) optimal control.

However, there are still many gaps in the theory and practice of optimization-based control.
Guaranteed robustness, the hallmark of modern control theory, is largely absent from our present
formulation and will require substantial work in extending the theory. Existing approaches such as
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differential games are not likely to work in an online environment, due to the extreme computational
cost required to solve such problems. Furthermore, while the extension to hybrid systems with
mixed continuous and discrete variables (in both states and time) is conceivable at the theoretical
level, effective computational tools for mixed integer programs must be developed that exploit the
system structure to achieve fast computation.

Finally, we note that existing optimization-based techniques are still primarily aimed at the
lowest levels of control, despite their potential to apply more broadly. Higher level protocols for
control and decision making must be developed that build on the strength of optimization-based
control, but they are likely to require substantially new paradigms and approaches. At the same
time, new methods in designing software systems that take into account external dynamics and
environmental factors are also required.

Acknowledgments

The authors would like to thank Mario Sznaier and John Doyle for many helpful discussions on the
results presented here. The support of the Software Enabled Control (SEC) program and the SEC
team members is also gratefully acknowledged.

References

[1] A. E. Bryson. Dynamic optimization. Addison Wesley, 1999.
[2] C. de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

[3] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray. Model predictive control of a
thurst-vectored flight control experiment. In Proc. IFAC World Congress, 2002. Submitted.

[4] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat nonlinear systems.
Comptes Rendus des Séances de l’Académie des Sciences, 315:619-624, 1992. Serie 1.

[5] R. Franz, M. B. Milam, and J. E. Hauser. Applied receding horizon control of the caltech
ducted fan. In Proc. American Control Conference, 2002. Submitted.

6] P. E. Gill, W. Murray, M. A. Saunders, and M. Wright. User’s Guide for NPSOL 5.0: A
Fortran Package for Nonlinear Programming. Systems Optimization Laboratory, Stanford
University, Stanford, CA 94305.

[7] C. Hargraves and S. Paris. Direct trajectory optimization using nonlinear programming and
collocation. AIAA J. Guidance and Control, 10:338-342, 1987.

[8] J. Hauser and H. Osinga. On the geometry of optimal control: the inverted pendulum example.
In American Control Conference, 2001.

9] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 2nd edition, 1989.

[10] A. Jadbabaie. Nonlinear Receding Horizon Control: A Control Lyapunov Function Approach.
PhD thesis, California Institute of Technology, Control and Dynamical Systems, 2001.

[11] A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained receding horizon control of nonlinear
systems. IEFEE Transactions on Automatic Control, 46, May 2001.

20



[12]

[13]
[14]

[15]

[16]

[17]

[18]

[24]

[25]

[26]

[27]

M. Krstié, 1. Kanellakopoulos, and P. Kokotovié. Nonlinear and Adaptive Control Design.
Wiley, 1995.

E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Wiley, New York, 1967.

P. Martin, S. Devasia, and B. Paden. A different look at output tracking—Control of a VTOL
aircraft. Automatica, 32(1):101-107, 1994.

D. Q. Mayne, J. B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789-814, 2000.

M. B. Milam, R. Franz, and R. M. Murray. Real-time constrained trajectory generation applied
to a flight control experiment. In Proc. IFAC World Congress, 2002. Submitted.

M. B. Milam and R. M. Murray. A testbed for nonlinear flight control techniques: The Caltech
ducted fan. In Proc. IEEE International Conference on Control and Applications, 1999.

M. B. Milam, K. Mushambi, and R. M. Murray. A computational approach to real-time
trajectory generation for constrained mechanical systems. In Proc. IEEE Control and Decision
Conference, 2000.

R. M. Murray. Nonlinear control of mechanical systems: A Lagrangian perspective. Annual
Reviews in Control, 21:31-45, 1997.

N. Petit, M. B. Milam, and R. M. Murray. Inversion based trajectory optimization. In IFAC
Symposium on Nonlinear Control Systems Design (NOLCOS), 2001.

J. A. Primbs, V. Nevisti¢, and J. C. Doyle. A receding horizon generalization of pointwise
min-norm controllers. IEEE Transactions on Automatic Control, 45:898-909, June 2000.

S.J. Qin and T.A. Badgwell. An overview of industrial model predictive control technology.
In J.C. Kantor, C.E. Garcia, and B. Carnahan, editors, Fifth International Conference on
Chemical Process Control, pages 232-256, 1997.

H. Seywald. Trajectory optimization based on differential inclusion. J. Guidance, Control and
Dynamics, 17(3):480-487, 1994.

L. Singh and J. Fuller. Trajectory generation for a uav in urban terrain, using nonlinear mpc.
In Proceedings of the American Control Conference, 2001.

E. D. Sontag. A Lyapunov-like characterization of asymptotic controllability. SIAM Journal
of Control and Optimization, 21:462-471, 1983.

M. J. van Nieuwstadt and R. M. Murray. Rapid hover to forward flight transitions for a thrust
vectored aircraft. Journal of Guidance, Control, and Dynamics, 21(1):93-100, 1998.

M. J. van Nieuwstadt and R. M. Murray. Real time trajectory generation for differentially flat
systems. International Journal of Robust and Nonlinear Control, 8(11):995-1020, 1998.

21





