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Abstract

This paper describes the application of differential flatness
techniques from nonlinear control theory to mechanical (La-
grangian) systems. Systems which are differentially flat have
several useful properties which can be exploited to generate
effective control strategies for nonlinear systems. For the
special case of mechanical control systems, much more geo-
metric information is present and the purpose of this paper
is to explore the implications and features of that class of
systems. We concentrate on several worked examples which
illustrate the general theory and present a detailed catalog
of known examples of differentially flat mechanical systems.

Keywords: nonlinear control, mechanical systems, trajec-
tory generation, differential flatness.

1 Introduction

An emerging paradigm in nonlinear control is the use of two
degree of freedom design techniques to generate nonlinear
controllers for mechanical systems performing motion con-
trol tasks. The basic approach of two degree of freedom
design is to initially separate the nonlinear controller syn-
thesis problem into design of a feasible trajectory for the
nominal model of the system, followed by regulation around
that trajectory using controllers that have guaranteed per-
formance in the presence of uncertainties. This splitting of
the problem offers several advantages over existing nonlinear
methods and allows the use of advances in linear controller
synthesis to help achieve robust performance. Sample appli-
cations include high-performance control of piloted aircraft
using vectored thrust propulsion, navigation and control of
unmanned flight vehicles performing surveillance and other
tasks, motion control and stabilization of underwater vehi-
cles and ships, and control of land-based robotic locomotion
systems.

One of the classes of systems for which trajectory gen-
eration is particularly easy are so-called differentially flat
systems. Roughly speaking, a system is differentially flat if
we can find a set of outputs (equal in number to the number
of inputs) such that all states and inputs can be determined
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from these outputs without integration. More precisely, if
the system has states ¥ € R™, and inputs u € R™ then the
system is flat if we can find outputs y € R™ of the form

y=y(o,u,d,... u") (1)
such that

z = x(y7yv"'7y(q))
(2)

u = u(y,y',...,y(q)).

Differentially flat systems are useful in situations where ex-
plicit trajectory generation is required. Since the behavior
of flat system is determined by the flat outputs, we can plan
trajectories in output space, and then map these to appro-
priate inputs.

Differentially flat systems were originally studied by Fliess
et al. in the context of differential algebra [4] and later using
Lie-Béacklund transformations [5]. In [27] we reinterpreted
flatness in a differential geometric setting. We made exten-
sive use of the tools offered by exterior differential systems
and the ideas of Cartan. Using this framework we were able
to recover most of the results currently available using the
differential algebraic formulation and achieve a more geo-
metric understanding of flatness.

In this paper we concentrate on characterizing differential
flatness for mechanical control systems. More specifically,
we attempt to exploit the structure of second order systems
whose unforced motion is described by Lagrangian mechan-
ics. There are several existing results which indicate that
differential flatness for this class of systems is highly depen-
dent on the special structure available due to the Lagrangian
nature of the system. For example, it can be shown that all
of the following systems are differentially flat: a car pulling
N trailers with the hitch of the ith trailer attached at the
axle of the preceding vehicle in the chain [22, 24, 25]; any
planar rigid body with forces whose lines of action do not
intersect at the center of mass [14]; an airplane towing a ca-
ble with a rigid body attached at the end of the cable [19];
and a satellite system with three control torques and a single
thruster whose line of action intersects the center of mass.

In all of these examples, the differentially flat output is not
an arbitrary combination of the configuration variables and
velocities of the system, but rather consists of a set of points
and angles. The exact reason for this is not yet understood,



but certainly involves the second order nature of the system,
combined with symmetry relations (when present) and the
structure of the inertia tensor for the system.

The implications of flatness for these systems is that the
trajectory generation problem can be reduced to simple al-
gebra, in theory, and computationally attractive algorithms
in practice. For example, in the case of the towed cable
system, a reasonable state space representation of the sys-
tem consists of approximately 128 states. Traditional ap-
proaches to trajectory generation, such as optimal control,
cannot be easily applied in this case. However, it follows
from the fact that the system is differentially flat that the
feasible trajectories of the system are completely charac-
terized by the motion of the point at the bottom of the
cable. By converting the input constraints on the system to
constraints on the curvature and higher derivatives of the
motion of the bottom of the cable, it is possible to compute
efficient techniques for trajectory generation.

In this paper we present initial results on the character-
ization of differential flatness for mechanical systems and
show how symmetries and inertial properties relate to dif-
ferential flatness. We give a complete characterization of
differential flatness for a planar rigid body with one, two or
three body-fixed forces and present more specialized results
for rigid bodies in R? and coupled rigid bodies.

2 Differential Flatness

Differential flatness was originally characterized by Fliess
et al. [4] using tools from differential algebra. While this
technique is quite powerful, it is difficult to apply differential
algebraic results to systems with strong geometric structure
while at the same time exploiting that structure. In [27] we
gave an alternative characterization of flatness using using
tools from differential geometry, and in particular within the
framework of exterior differential systems. In this section we
briefly review those results and attempt to cast them into a
somewhat less formal framework for the benefit of readers
who are not familiar with the details of exterior differential
systems.

2.1 Basic definitions

Formally, we work within the context of Pfaffian systems
(see [2] for a detailed description). For the purposes of this
paper, it is sufficient to work in local coordinates and we
assume all functions and maps are smooth (C*). For a
more rigorous treatment of the specific material summarized
here, see [27].

Roughly speaking, we convert a control system of the form

&= f(z,u) rER"uecR™

into a Pfaffian system by “multiplying through by dt” and
writing the system as a collection of forms,

I'={dzy — fi(z,u)dt,. .., dz, — fu(z, u)dt}. (3)

The collection [ is called a Pfaffian system on M = Ry x
R™xR™, where R is the time coordinate ¢. It is important
to note that while we often study a nonlinear control system
in terms of vector fields on R™, the one forms in a Pfaffian
system are objects on a larger space. We will write (I, M)
when necessary to indicate both the Pfaffian system and the
space on which it lives.

A solution or integral curve of a Pfaffian system is a curve
¢ :R — M such that the tangent vector ¢(s) is annihilated
by the one forms in the Pfaffian system /. We usually also
impose an independence condition, which is an extra one-
form 7 on which ¢/(s) is required not to vanish. A standard
choice for control systems is to choose 7 = dt, which insures
that time is always increasing. We write (I, 7) or (I,7; M)
for a Pfaffian system [/ together with independence condition
7 (on a manifold M).

Pfaffian systems can be used to study controllability and
linearizability properties of nonlinear control systems in
much the same way that vector fields are used. The ex-
terior derivative plays the role of Lie brackets and the de-
rived flag plays the role of the controllability distribution.
We will omit a complete discussion, concentrating instead
of the results directly applicable to differential flatness. It is
interesting to note that many of the main techniques in ex-
terior differential systems have been in place since the 1920s
while the corresponding vector field versions of those results
became available only in the 1970s. Indeed, the original re-
sults by Chow which are usually the starting point for mod-
ern geometric nonlinear control theory were actually done
in the context of differential forms [3].

An essential operation on Pfaffian systems is that of pro-
longation. Given a Pfaffian system (I; M) and another Pfaf-
fian system (J; N) with M C N, we say that J is a Cartan
prolongation of I if I C J and there is a one-to-one corre-
spondence of solutions curves on .JJ with solution curves on
I. A special case of Cartan prolongation is a prolongation
by differentiation, in which one of the inputs is differenti-
ated with respect to time (for the special case of a control
system). For example, we can have

I ={dx — f(z,u)dt}
M=R;xR"xR™

J ={dz — f(z,u)dt,du, — vidt}
N=MxR

corresponding to dynamic extension of the first input. If
all of the inputs of a control system are differentiated with
respect to time, the extended system is a total prolongation
of the original control system. The coordinate v, in the
previous example is called a fiber coordinatefor the mapping
7 : N — M given by projection.

Although the use of dynamic extension is common in
nonlinear control theory, it is important to note that Car-
tan prolongations are more general than dynamic extension.
This distinction is important, for example, when dealing
with mechanical systems with nonholonomic constraints.



Cartan prolongations allow us to define a notion of equiv-
alence which allows, among other things, equivalence of con-
trol systems under certain types of dynamic feedback. We
say that two Pfaffian systems (I;, M1) and (I2, M2) are ab-
solutely equivalent if there exist respective Cartan prolon-
gations (J1, N1) and (J2, N2) such that J; and J are equiv-
alent in the ordinary sense, i.e., there exists a diffeomor-
phisms ¢ : N1 — N> such that the pullback of J> is equal
to Ji: ¢*Jo = J1. The following diagram captures this
definition:

J1<—>J2

¢
T l lﬂ'Q
I Iy

With these definitions in place, we are now in a position
to state the formal definition for differential flatness. We
make use of the notion of a trivial system on a manifold M,
which corresponds to a zero Pfaffian system (no one-forms).
For such a system, any curve on M is an integral curve.
We write ({0}, dt) for the trivial system with independence
condition 7 = dt.

Definition 1 ([27]). A Pfaffian system (I,dt) is differen-
tially flat if it is absolutely equivalent to the trivial system

({0}, dt).

Notice that we require that the independence condition
be preserved by the Cartan prolongations and diffeomor-
phisms, and hence our notion of time is the same for both
systems. However, we do allow time to enter into the vari-
ous mappings from one system to the other. If time is not
required in any of the various mappings then we say the
system is time-independent differentially flat.

The following lemma establishes the relationship between
our definition and the differential algebraic notion of flat-
ness.

Lemma 1 ([27]). Let (I,dt) be a system on a manifold M
with local coordinates (t,x) € R' x R™ and let (J,dt) be
a Cartan prolongation on the manifold = : N — M with
fiber coordinates y € R". Then, under suitable regularity
conditions and on an open dense set, each y; can be uniquely
determined from t,z and a finite number of derivatives of .

Example 1. As a simple example, consider a chain of in-
tegrators,

This system is absolutely equivalent to the system (0, dt) on
R4 x R given by (¢,z) — (¢,z1). To see, this consider the
correspondence of solution curves of the chain of integra-
tors with curves in x1: Given a solution for the full control

system we clearly get a well-defined curve for x; and, con-
versely, given any z,(¢) we can find a unique solution of the
full control system by differentiation of x;.

2.2 Known results

As the previous example shows, chains of integrators, and
in fact all controllable linear or state feedback linearizable
systems, are differentially flat. The converse is also true on
an open dense set if we allow dynamic feedback (although
equilibrium points may not be included in the dense set, so
this statement should be taken with care). In this section
we summarize some of the various results which exist for
differentially flat systems.
We recall that a control system

&= f(z,u) rER"uecR™

is full-state feedback linearizable if there exists a change of
coordinates ¢ = ¢(z) and a feedback control law u = a(z)+

B(z)v with 2 full rank, such that
¢ = A¢ + Bu.

A system is dynamic feedback linearizable if there is a dy-
namic compensator of the form

a(z,z) + bz, z)v
u=c(zr,z)+d(z,2)v

z

z€RFPveER™

such that the original system plus dynamic feedback is full
state linearizable.

Every system which is dynamic feedback linearizable via
an “endogenous” feedback (roughly, an invertible dynamic
feedback; see [11, 12] for details) is differentially flat by using
state feedback to convert the system to a chain of integrators
and then choosing the outputs at the end of each integrator
chain as flat output. The converse is also true, on an open
and dense set:

Theorem 2 ([27, 15]). If a conirol system is differentially
flat then it s dynamic feedback linearizable on an open dense
set, with the dynamic feedback possibly depending explicitly
on time.

Much more can be said in the case of single input sys-
tems. In particular, it can be shown that explicit time de-
pendence and dynamic feedback are both unnecessary in
the single input case. These results stem in part from that
fact that in codimension two (i.e., the number of one-forms
in I is two less than the dimension of M) it can be shown
that every Cartan prolongation is a total prolongation and
that total prolongations do not affect feedback linearizabil-
ity (see [23]). We state these results as two theorems:

Theorem 3. Let I be a differentially flat, autonomous con-
trol system (with a possibly time varying flat output),

I ={dzy — fi(z,u)dt,. ..  dz, — fn(z, u)dt},

where u is a scalar control, i.e., the system has codimension
two. Then I is feedback linearizable by static autonomous

feedback.



Theorem 4. Let I be an single input autonomous control
system,

I'={dzy — fi(z,uw)dt,... . dey — fn(z,u)dt}.

If T is time-independent differentially flat around an equi-
librium point, then I is feedback linearizable by static au-
tonomous feedback at that equilibrium point.

Most of the other results which are known for differential
flatness of are in the context of low-dimensional examples,
where it 1s possible to directly work out the various cases
in detail to check for flatness. Many of these results are
summarized in the following theorem:

Theorem 5 ([11, 16]). Fvery controllable, codimension
three Pfaffian system with no more than five states is dif-
ferentially flat.

Unfortunately, general conditions for flatness are not
known, but all (dynamic) feedback linearizable systems are
differentially flat, as are all driftless systems which can be
converted into chained form (see [27] for details). Another
large class of differentially flat systems are those in “pure

feedback form”:

&1 = fi(z1, 22)

&2 = fo(z1,22,23)

En = falz1,..., 20, u).

Under certain regularity conditions these systems are differ-
entially flat with output y = z;. These systems have been
used for so-called “integrator backstepping” approaches to
nonlinear control by Kokotovic et al. [9].

2.3 The utility of differentially flat systems

The advantage of using differentially flat outputs, when they
are available, is similar to that of using configuration space
approaches to path planning for robot manipulators (see [10]
for a detailed discussion of these methods). In configura-
tion space based motion planning, one converts the geom-
etry of the problem for the workspace (usually SE(3)) to
the configuration space of the manipulator. This has the
effect of reducing the robot to a point which can then be
guided through the transformed obstacles using any num-
ber of generic algorithms.

Similarly, for differentially flat systems we are able to
transform the system such that the equations of motion for
the flat output variables become trivial. Since the flat out-
put functions are completely free, the only constraints that
must be satisfied are the initial and final conditions on the
endpoints, their tangents, and higher order derivatives. Any
other constraints on the system, such as bounds on the in-
puts, can be transformed into the flat output space and
(typically) become limits on the curvature or higher order
derivative properties of the curve.

Figure 1: A rigid body controlled by two body fixed forces.

If there is a performance index for the system, this index
can be transformed and becomes a functional depending on
the flat outputs and their derivatives up to some order. By
approximating the performance index we can achieve paths
for the system which are suboptimal but still feasible. This
approach is often much more appealing than the traditional
method of approximating the system (for example by its
linearization) and then using the exact performance index,
which yields optimal paths but for the wrong system.

Some initial computational approaches along the lines dis-
cussed here can be found in [26].

3 Differential Flatness of Lagrangian Sys-
tems

Differential flatness is a concept which was originally defined
in the context of general first order control systems evolving
on a manifold. In this section, we concentrate on Lagrangian
systems and indicate how the special structure of mechanical
systems can be used to determine if a system is differentially
flat.

3.1 Motivating example: planar rigid body

Consider a planar rigid body moving in a vertical plane
under the influence of gravity and controlled by two forces
having lines of action that are fixed with respect to the
body and intersect at a single point (see Figure 1). Let
(z,y) represent the horizontal and vertical coordinates of
center of mass GG of the body with respect to a stationary
frame, and let 6 be the counterclockwise orientation of a
body fixed line through the center of mass. The choice of
this line will be made to simplify algebra depending on the
case being considered. Take m as the mass of the body and
J as the moment of inertia. Let g &~ 9.8 m/sec?® represent
the acceleration due to gravity.

Without loss of generality, we will assume that the lines
of action for I} and F% intersect the y axis of the rigid body
and that F; and F> are perpendicular. The equations of



Inputs | Picture

| Controllable? | Flat Output ||

Single torque no not flat

Single force, at center of mass no not flat

Single force, off center yes not flat

Two forces, at center of mass no not flat

Two colinear forces, off center yes center of mass
Two noncolinear forces, off center yes center of oscillation
One force, one torque —@ yes center of mass
Two noncolinear forces, one torque yes center of mass

Table 1: Flatness of a rigid body with body fixed forces and torques. For multiple inputs, the forces/torques are assumed to
generate independent generalized forces in SE(2). In addition, all forces and torques are bidirectional.

motion for the system can be written as

m% = Ficosf — Fosind
my = F1sinf + Fycosf — myg
Jb=rFy,

—_
N
Nan?

which we rewrite as
Fi —mgsinf = mi cos 8 + mysin 6
Fy —mgcos = —misinf 4+ mijcos b

Fir = J6.

—~
(@5
o

Fi can be eliminated from the first and third equations to
yield

—ié—l—i‘cose—l—gsin@—l—gsinezo. (6)

mr

Martin et al. [14] showed that this system is flat and that
the flat outputs 21 and 22 are given by

J .
71 =3 — —sinf
mr (7)

J
z2 =y+ — cosé.
mr

Substituting © = 21 + % sinf and y = z2 — % cosd into
equation (6) we obtain
Z1cos8 4 (32 + g)sind = 0. (8)

This shows that given z (¢) and z2(t) we can find 6(t) except
for an ambiguity of 7 and away from the singularity z; =
Z2+g = 0. The forces Fi(t) and F>(t) can then be obtained
from the equations of motion.

It is interesting to observe that the flat outputs corre-
spond to the coordinates of a body fixed point, a point that

is on the line joining the center of mass G and point of in-
tersection P of the forces. This point is distance % from
G on the other side of P. This point is historically known
as center of oscillation and becomes important in the study
of planar rigid pendulums. When this planar rigid body is
fixed at P and allowed to oscillate as a pendulum, its equa-
tions of motion will be identical to that of a point mass pen-
dulum obtained by concentrating the mass m at the center
of oscillation distance r + # from the pivot P.

This example has some practical importance as well. The
PVTOL system studied by Hauser et al. [8] is exactly of this
form, as is the simplified planar ducted fan described in [26].
Variations of this example can be formed by changing the
number and type of the inputs. Table 1 summarizes the
different possible choices of inputs and indicates which ones
are controllable and which ones are flat.

3.2 Symmetries and flatness: the rigid body
with S! symmetry

A common feature of many examples of differentially flat
mechanical systems is that they evolve on manifolds which
consist of, or include, a Lie group as part of the configuration
space. For example, the ducted fan evolves on SE(2), the
group of Euclidean motions in the plane. Problems involving
mobile robots also naturally include this group as part of the
the configuration space. Flight vehicle systems are described
by their internal shape and their position and attitude, the
latter two quantities taking values in SE(3), the group of
Euclidean motions on R®

In addition, the uncontrolled dynamics for many of the
known examples for flat systems have symmetries with re-
spect to an action of the Lie group on the configuration space
of the system. For unconstrained systems, these symmetries
lead to conservation laws (for the constrained case, see [1]).



Figure 2: A rigid body in R® with S' symmetry.

It is clear that the flat outputs for the system must “break”
symmetries, since if the flat output is invariant with respect
to some action, then the free motion of the system can only
be retrieved up to an initial choice of the group variable. A
more complete understanding of symmetry breaking in this
context remains to be established but seems to be a common
feature of many problems.

To illustrate how symmetry and reduction can affect flat-
ness, we consider the example of a rigid body in R? with
three body fixed forces all acting at a single point. This
example was originally presented in [26] and is the gener-
alization of the planar rigid body example to R® Since
there are three principle moments of inertia, the center of
oscillation is no longer a well defined quantity and detailed
calculations have failed to find a body fixed point which is
a flat output.

Suppose now that the rigid body is actually a surface of
revolution about an axis which passes through the applica-
tion point of the three forces, as shown in Figure 2. This
is roughly the configuration of a submarine (in a vacuum),
where the body consists of an ellipsoid with forces applied
by the propeller and vectored using a set of rudders. The
equations of motion for such a system are given by

mi 0
mij| = RF+ | 0
mz —m
N ’ ©)
1W1 0
Jotro | = | (Jo = T W)ws + rFs
Jsws (J1 — J2)(<]1_1[,l)w2 —rF,

where (z,y,z) € R? is the position of the center of mass,
R € SO(3) is the orientation, F' € R? is the vector of body
forces, m € R is the mass, Ji, J2,Js € R are the principal
moments of inertia, w € R? is the body angular velocity,
and p := Jywi is the conserved body angular momentum
about the axis of revolution. Note that J> = Js due to the
body symmetry.

We choose as our candidate flat output the function cor-
responding to the center of oscillation:

J
w=p+R W(ST , (10)
0

where J = (J2 + J3)/2. A detailed but otherwise straight-

input
forces f1 ,

Figure 3: A chain of coupled rigid bodies in the plane.

forward computation shows that

Fo = (J/r)lwll® = (J/r)wi 0
mw =R (p/r)ws + 0
(u/r)ws —mg

If o = O then given the flat outputs w(-) we can deter-
mine the direction of the first column of the rotation matrix,
which contains all of the information about the orientation
up to rotation about the first axis. However, if ¢ = 0 then
this angle is fixed and hence we can recover the entire con-
figuration of the rigid body. Further differentiations lead to
expressions for the velocity and forces as a function of the
motion of the flat output.

3.3 Flatness of coupled rigid bodies

In some cases, a mechanical system may be differentially flat
only for certain choices of parameters. The previous exam-
ple required that two of the principal moments of inertia to
be equal. In this section, we consider a somewhat different
example where we don’t rely explicitly on body symmetries,
but we do require that certain parameters of the system be
properly related in order to determine flatness.

Consider the case of a chain of coupled rigid bodies, with
a pair of forces acting on the first body in the chain, as
shown in Figure 3. We assume that the line connecting the
interconnection points on each rigid body goes through the
center of mass and that the forces applied to the first body
are on the line formed by the interconnection point and the
center of mass. From the example in Section 3.1, it is clear
that if we choose the center of oscillation of the last rigid
body in the chain as an output, then we can determine the
motion of that rigid body as well as the forces applied at
the interconnection point.

Consider now the next rigid body in the chain (moving
from right to left in the figure). The equations of motion
are given by

mi = ficosf — fosind + Fy
my = fisinf + facos —mg + F>
Jo = —rf1 +b(F cosf + Fhsin§),

where (f1, f2) is the pair of forces from the next rigid body
in the chain, written in body coordinates; r is the distance



from the center of mass to the interconnection point of the
next rigid body; (F1, F2) is the force from the last rigid body
(whose motion is known), written in spatial coordinates; b is
the distance from the center of mass to the interconnection
point of the last rigid body; and the rest of the variables are
as in the single rigid body case.

We know the motion of the point of attachment between
the current rigid body and the last rigid body as well as the
forces F1 and F>. Our goal is to determine the motion of
the attachment point of the next rigid body, as well as the
forces f1 and fo. Let (21, 22) be the coordinates of the point
of attachment,

z21 =%+ bsinf

zp =y — bcos.

Computing the second derivative of z along the flow of the
system yields

mi1 = fice = faso + Py + mbeo (=5 f1 +

b b .
7F1ce + szse) — mb5962,

where ¢y = cosé and sg = sind, and a similar equation is
obtained for mZs. If we choose b = # then the equations
for Z1 and %> become

J

T)’LT’2

J.
soFi 4 —0%) + F2(1+

J . J
C9F2 - ?02) -|—F1(1 -|— 2)

C
T)’LT’2

so(—fa +
J

T)’LT’2

T)’L}o’.l

J 2
5 s5) — mg.
mr

mZy = co(fa

Rewriting s2 and c¢Z, we obtain

mél — Fl(l —|— mr2) =
J J
—so(fo + —5s0F)y — ——coFs + =67)
mr mr r
mza —F2(1-|— mr2)—|—mg:
J .
co(fo+ —5sob)t — ——coFa2 + =6°)
mr mr r

The left hand side consists of known quantities and hence we
can determine # by computing the ratio of the two equations.

The motion of the remainder of the chain is determined
by recursion, giving the motion of the entire chain and the
forces applied to the first rigid body as a function of the
trajectory of the center of oscillation of the last rigid body.
Thus, the system is differentially flat using the position cen-
ter of oscillation of the last body in the chain as the flat
output and assuming b = #

A more general procedure for determining constraints be-
tween parameters of the system is described in [21]. In that
paper, one fixes the flat outputs up to a set of undeter-
mined constants or functions and then derives conditions
on the outputs and the parameters of the system in order
to make the system flat. It is shown, for example, that if
we add torques to the joints in the two coupled rigid bod-
ies example, then the system can be made flat by using a
body fixed point on the outer rigid body combined with a

non-obvious linear combination of the orientation angles of
the two bodies. In that case, the rigid bodies need not be
attached at the centers of oscillation and there are no other
constraints on the parameters of the system.

3.4 Other mechanical examples

Over the past several years, a number of examples of me-
chanical systems which are differentially flat have emerged.
Table 2 gives a partial list of these systems, along with
references to more detailed information. Additional infor-
mation is also available via the World Wide Web at URL
http://avalon.caltech.edu/ murray/mechsys.html.

4 Summary

In this paper we have summarized some of the recent re-
sults in differential flatness of nonlinear control systems and
indicated some of the specialized results that are possible
by restricting attention to mechanical systems. This area of
work 1s part of an ongoing research effort in nonlinear control
of mechanical systems, with particular application to prob-
lems in robotics, flight control, and space vehicles. For all of
these systems, the structural information contained in La-
grange’s equations must be exploited to achieve maximum
performance over a wide range of operating conditions.

The advantage of using differentially flat outputs when
they are available is that the problem of trajectory gener-
ation reduces to algebra instead of a problem in dynamic
programming. This is true even if the flat outputs are not
the actual outputs which are to be tracked (see [26] for a dis-
cussion). Examples of differentially flat mechanical systems
include planar rigid bodies with body fixed forces, mobile
robots with and without trailers, and flight control systems
such as the towed cable system.

Much work remains to be done on this important class of
systems, both from the theoretical perspective and in the
context of applications. At the present, constructive condi-
tions for finding the flat outputs of a mechanical system are
not available except in a few special (i.e. low-dimensional)
cases. In addition, for systems which are not differentially
flat, it is likely that approximations can be used which will
allow fast and efficient generation of approximately feasi-
ble trajectories. Bounds on the sizes of the error in the
performance of the system as a function of the degree of
approximation will be needed in order to pursue efforts in
this direction.
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