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Abstract

This paper considers the problem of synthesizing output-feedback control laws for a class of discrete-time hybrid

systems in order for the trajectories of the system to satisfy certain high-level specifications expressed in linear temporal

logic. By leveraging ideas from robust interpretation of temporal logic formulas and bounded-error estimation, we

identify a subclass of systems for which it is possible to reduce the problem to a state-feedback form. In particular,

we use locally superstable hybrid observers to resolve the partial information at the continuous level. This allows

us to use recent results in temporal logic planning to synthesize the desired controllers based on two-player perfect-

information games. The overall control architecture consists of a hybrid observer, a high-level switching protocol

and a low-level continuous controller. We demonstrate the proposed framework in a case study on designing control

protocols for an aircraft air management system.

I. INTRODUCTION

Correct-by-construction controller synthesis for hybrid systems from temporal logic specifications has attracted

considerable attention in the past decade. At present, hybrid systems are put to use both in industrial settings and in

products such as cars and airplanes [14]. Safety-criticality of such systems creates a need to synthesize controllers

that enforce hybrid systems to satisfy certain high-level specifications, e.g., on safety, reliability and performance.

A typical solution for such control synthesis problems is a hierarchical control architecture with several discrete

and continuous layers (see, for instance, [11], [7], [12], [23], [10] and references therein). One of the limitations of

these approaches is that they rely on availability of the full system state for feedback. However, in many applications

of interest, it is not possible to equip the system with a multitude of sensors both for reasons of economy and

physical space. Motivated by these limitations, in this paper we propose a framework that can guarantee correctness

with limited measurements through output feedback.
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Previous work on synthesis with partial state information has mostly focused on the discrete level [3], [15].

Except for some special cases [8], handling the imperfect state information at the discrete level requires a power set

construction (i.e., construction of a belief space) that has prohibitive computational complexity. In this paper, we

consider partial observability of continuous state. In order not to experience a complexity blow-up at the discrete

level, we deal with the partial state information at the continuous level. We leverage ideas from robust interpretation

of temporal logic formulas [6] and bounded-error estimation [13] to develop a framework for synthesizing provably-

correct output-feedback control laws for discrete-time piecewise-affine systems. In particular, for a class of systems

admitting locally superstable hybrid observers [4], [2], we show that the problem can be reduced to a state-feedback

form, which can then be solved using available tools [24].

The rest of the paper is organized as follows. Section II presents some background results. The problem is

formally stated and an overview of the solution strategy is given in section III. Main results are presented in

sections IV-V. Section VI demonstrates an application of the proposed framework to a case study on aircraft air

management systems. Finally, section VII concludes the paper with some remarks.

II. PRELIMINARIES

A. Notation

All matrix norms considered in this article will be the infinity norms, denoted without subscripts. Therefore,

given a matrix A = (A)ij and a vector x = [x1, . . . , xn]T , we define kAk = maxi

P
j |Aij |, kxk = maxi|xi| and

kxk1 =
Pn

i=1|xi|. The ith row vector of A is written as [A]i. The row and column spaces of A is denoted by

row(A) and col(A), respectively, with dimensions dim(row(A)) and dim(col(A)); and the dimension of the null

space is written as nullity(A). The diameter of a set X ✓ Rn is denoted by diam(X), its closure as X and its

distance from a point p 2 Rn by d(p, X) = infx2Xkp � xk.

With a point p 2 Rn and r 2 R, we denote the ball centered at p with radius r as B(p, r) = {x 2 Rn : kx�pk 
r}. Lastly, given a matrix H 2 Rm⇥n and a vector k 2 Rm, a polytope is a set P = {x : Hx  k} ✓ Rn, where

the inequality is interpreted element-wise, i.e., P = {x : [Hx]i  [k]i, i = 1, . . . , m}.

Given a set Q, Q! (Q+) denotes the set of infinite (non-empty finite) sequences of elements in Q.

B. System and environment models

We consider discrete-time piecewise affine systems formally defined as follows.

Definition 1: A discrete-time piecewise-affine system is a tuple S = (X, {Rk}kmax

k=1 , {Dk}kmax

k=1 ) where:

• X ✓ Rn is a compact set called the state space.

• The regions Rk ✓ X , Ri \ Rj = ; for i 6= j, form a partition of X .

• Dk is the dynamics in region Rk, that is the state x evolves with

x(t + 1) = Akx(t) + Bku(t) + Fk + Ek�(t)

y(t) = Ckx(t)
(1)

September 28, 2013 DRAFT



3

when x(t) 2 Rk ✓ X . In Eq. (1), y(t) 2 Rl is the measured output, u(t) 2 U ✓ Rm is the control input,

x(t) 2 Rn is the state variable, and �(t) 2 W ✓ Rd is the disturbance.

We let Y denote the set of outputs, that is, Y
.
= {Cx : x 2 X}. Given a system S, a subset X 0 ✓ X is said to

respect the dynamics if X 0 \ Rk 6= ; only for a unique k.

In addition to the disturbances in the system model, we consider an external environment to refer to the “discrete”

factors that are relevant to the operation of the system, but do not impact its dynamics directly, i.e., not explicitly

appear in Eq. (1). Since such factors are not necessarily controlled by the system, e.g., traffic lights, weather

conditions, user inputs; they are treated as adversaries. We use a simple transition system to model environment

evolution.

Definition 2: An environment model is a tuple Te = (E , E0,!) where:

• E is a finite set of states.

• E0 ✓ E is a set of initial states, i.e., e(0) 2 E0.

• !✓ E ⇥ E is a transition relation that governs the evolution of the environment. That is, (e(t), e(t + 1)) 2!
for all t � 0.

The discrete environment is assumed to be fully observable by the system.

Remark 1: For the clarity of the presentation, we restrict the system dynamics to the form in Eq. (1). Our

framework can be easily extended to cases where there is measurement noise or where the dynamics include

controllable and uncontrollable switches (e.g., using ideas from [16], [10]). Also, our framework allows general U, W

and {Rk}kmax

k=1 , but, in what follows, we assume these sets are bounded convex polytopes to facilitate computation.

C. Linear temporal logic and protocols

Linear temporal logic (LTL) is a formal language that extends the standard propositional logic with temporal

operators to express complex, temporal tasks [1]. LTL has proven useful in e.g., software and hardware verification,

robotics and other applications of control synthesis, allowing for succinct and expressive specification of system

behavior.

1) Syntax and semantics: Before defining the syntax and semantics of LTL, we need a few definitions. A

combined state of the system and the environment is a tuple s(t)
.
= (e(t), x(t)) 2 E ⇥ X and a trajectory is an

infinite sequence of states of the form s = s(0)s(1) . . . 2 (E ⇥ X)! . An atomic proposition is a function from the

set of states to boolean true and false. We denote the set of all atomic propositions by ⇧. In our context each

⇡i 2 ⇧ is an indicator function of a set J⇡iK = {e}⇥Xi, with e 2 E and Xi ✓ X is a convex polytope, wherein ⇡

evaluates to true. A set X 0 2 X is said to respect the propositions if for all x 2 X 0 the same set of propositions

hold.

The syntax of an LTL formula over a set of atomic propositions ⇧ is given by the following grammar:

' ::= true|⇡|'1 ^ '2|¬'|� '|'1U'2,
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where ⇡ 2 ⇧, and '1 and '2 are LTL formulas. The symbols ^, ¬, � and U stand for the logical operators

conjunction, negation and temporal operators next and until, respectively. These operators can be used to define

additional operators such as disjunction (_), implication (!), always (⇤) and eventually (⌃). We will consider

specifications in assume/guarantee form

'
.
= 'e ! 's, (2)

where 'e encodes assumptions on the environment and 's specifications of the desired system behavior.

Satisfaction of a formula ' at a state s(t) in a trajectory s is denoted by s(t) |= ' and is defined by letting

1) s(t) |= true;

2) For any atomic proposition ⇡, s(t) |= ⇡ if s(t) 2 J⇡K;

3) s(t) |= '1 ^ '2 if s(t) |= '1 and s(t) |= '2;

4) s(t) |= ¬' if s(t) 6|= ';

5) s(t) |= �' if s(t + 1) |= ';

6) s(t) |= '1U'2 if 9j 2 N s.t. s(i) |= '1, s(j) |= '2, 8i 2 [t, j).

The trajectory s satisfies the formula ' if s(0) |= '. We say that a formula ' on the form (2) is satisfied by the

system if it is satisfied by all possible trajectories of the system which are consistent with the dynamics in (1) and

for all environment behaviors captured by the environment model.

A state-feedback control protocol C is a partial function on non-empty sequences of states of the system with

C : (E ⇥ X)+ ⇥ E ! U

(s(0), s(1) . . . , s(t � 1), e(t)) 7! u(t)
(3)

where u(t) is the input signal to be used in the subsequent time-step. Lastly, by letting r(t)
.
= (y(t), e(t)), we

define an output-feedback control protocol as

C : (E ⇥ Y )+ ⇥ E ! U

(r(0), r(1) . . . , r(t � 1), e(t)) 7! u(t)
(4)

where u(t) is decided upon by only using the measured output.

2) Robust satisfaction of LTL formulas: Following [6], this section describes a robust interpretation of LTL

formulas. Given ⇡ 2 ⇧, define ⇡", by J⇡"K = {(e, x) 2 J⇡K : (e, x0) 2 J⇡K, 8x0 2 B(x, ")}. J⇡K denotes a robust

version of the atomic proposition J⇡K, which will be used in connection with estimation errors below. We can extend

the robustness properties to general LTL formulas as follows. Take ' as a formula written on Negation Normal

Form [5]. Form ¬⇧ = {¬⇡ : ⇡ 2 ⇧} and let ⇧̂ = ⇧ [ ¬⇧. Now, interpreting ' as a formula over ⇧̂, replace all

atomic propositions ⇡ by ⇡" and denote the resulting formula by '". We say that a system satisfies a formula '

"-robustly if it satisfies '".

III. PROBLEM FORMULATION AND SOLUTION STRATEGY

Next, we formally state the problem and give an overview of the proposed solution.
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Figure 1. The proposed control architecture.

Problem 1: Given a system S = (X, {Rk}kmax

k=1 , {Dk}kmax

k=1 ), an environment Te = (E , E0,!), a set ⇧ of

propositions together with an LTL formula ' as in (2), and a set X0 ✓ X that respects the propositions and

dynamics, construct an output feedback control protocol that satisfies ' for all initial conditions x(0) in X0 and

for all possible environment behaviors in Te using only the measured output y.

Starting from a system model given in the form of Def. 1 and an LTL specification in the form of (2), we use an

approach centered on observer estimations of the state space in order to solve Problem 1. The proposed framework

exploits the hierarchical approach considered in earlier work [23], [16] and consists of the following steps:

1) Find a locally superstable observer with an appropriate equalized performance level and redefine the system

dynamics and LTL specifications based on the estimated state.

2) Produce a discrete abstraction based on the redefined dynamics.

3) Use existing techniques in automata theory to design a control protocol guaranteeing correctness of the system.

4) Implement the automaton for continuous execution by combining the observer with low-level controllers.

In section IV , we discuss certain types of observers that are suitable for steps 1 and 4. In section V, we prove

that given such an observer, one can still guarantee correctness when using the redefined dynamics in steps 2 and

3 and treating the problem as a state-feedback problem as in [23], [16]. We also briefly overview the results from

[23], [16] necessary to complete these design steps.

The overall control architecture shown in Fig. 1 consists of a hybrid observer, a high-level switching protocol

and a low-level continuous controller.
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IV. OBSERVER DESIGN

In order to utilize possible partially known state information, we use observers

O : (Y ⇥ U)⇤ ! X

(p(0), p(1) . . . , p(t � 1)) 7! x̂(t)
(5)

where p(t)
.
= (y(t), u(t)) and x̂(t) is an estimate of the state. The estimation error at time t is denoted by

⇠(t)
.
= x(t) � x̂(t). The design of an observer is made more difficult for piecewise-affine systems as an error in

the estimate ambiguities the underlying dynamics. Moreover, any atomic proposition ⇡ 2 ⇧ holds true in a limited

region J⇡K ✓ E ⇥ X; and (e, x̂) 2 J⇡K does not imply (e, x) 2 J⇡K. Therefore, upper bounds on the estimation

errors are needed.

Typically, optimal observers that minimize the estimation error when there are persistent disturbances can be

arbitrarily complex even for linear systems [18], [13]. Instead of seeking optimal bounds, we adopt the notion of

equalized performance from [2] to characterize observers.

Definition 3: [Equalized performance] An observer is said to achieve an equalized performance level µ if,

whenever k⇠(t)k  µ, we have k⇠(t + 1)k  µ.

For a piecewise-affine system as in Def. 1, we consider fixed-complexity locally-affine observers of the form

x̂(t + 1) = (Ak � LkCk)x̂(t) + Bku(t) + Fk + Lky(t), (6)

with a collection of linear filter gains Lk 2 Rn⇥l, one for each Rk.

Proposition 1: Consider an observer of the form (6). Assume, for the time being, that the observer has perfect

knowledge of k (i.e., the region Rk the true state x(t) is in) at all times.1 Then, choosing the filter gains Lk in Eq.

(6) such that

kAk � LkCkk  1 � max�2W kEk�k
"

(7)

for all k leads to an equalized performance level ".

Proof: Since k is known by assumption, the estimation error evolves as

⇠(t + 1) = (Ak � LkCk)⇠(t) + Ek�(t). (8)

By equating the norms of both sides of Eq. (8) and with simple manipulation, one can see that if k⇠(t)k  ✏ and

Eq. (7) holds, we have k⇠(t + 1)k  ✏.

Definition 4: [Locally detectable system] An observer of the form (6) that satisfies Eq. (7) is called a locally

superstable observer with equalized performance ". A piecewise affine system is called locally detectable with

performance level " if it admits a locally superstable observer with equalized performance ".

1Note that this is true at t = 0 because X0 respects the dynamics. In section V, we show how to synthesize the control protocol so that it

chooses the consequent control inputs u to ensure this at later time steps.
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Note that this condition is more restrictive than the notion of detectability as, firstly, detectability only concerns the

behavior of a trajectory as time goes to infinity, and secondly, the existence of a matrix L such that kA�LCk < 1

as in Eq. (7) is a sufficient condition for detectability of (A, C).

Since, by assumption, X0 respects propositions, we can pick x̂(0) 2 X0, which yields the bound k⇠(0)k 
diam(X0). To achieve sufficient control of the estimation error, we require the system in Problem 1 to be locally

detectable with performance level diam(X0).

A. Conditions on system matrices for superstability

In this section, we provide a characterization of a subclass of systems for which there exist locally superstable

observers. In what follows we suppress the subscript k. The last section outlines a strategy for synthesizing correct-

by-construction control protocols for systems with partial state information, under the condition that there exists

a matrix L with kA � LCk  "0, for some choice of vector and induced matrix norm. Choosing the infinity

norm reduces the construction of such an L into a linear programming problem, accompanied by simple theoretical

conditions for the existence of a filter as outlined below.

1) Reformulation into linear programming: Take A = (aij)ni,j=1, let li be the ith row vector of L and cj be the

jth column vector of C. Then (A � LC)ij = aij � li · cj , so

kA � LCk = maxi=1,...,n

nX

j=1

|aij � li · cj |. (9)

Minimizing the above for a fixed value of i gives the problem

minxkai � Bxk1, (10)

where we let x = li, ai = (ai1, ai2, . . . , ain), B = CT . This can be phrased as a linear programming problem with

minx,y

nX

i=1

yi

s.t. � y  ai � Bx  y,

(11)

where y = (y1, . . . , yn) and the inequality in the constraints is interpreted elementwise. This is easily solved, but

it is also of interest to characterize when it is at all possible to obtain kA � LCk  "0.

2) Conditions for existence of locally superstable linear observer: By the above, for all i = 1, . . . , n, we consider

the problem of finding li with

kai � CT lik1 < "0. (12)

Evidently, this is possible exactly when there is a di 2 Rn with kdik1 < "0, such that ai + di 2 col(CT ). Stacking

the di as row vectors of the matrix D, we obtain the following result.

Proposition 2: There exists a linear filter L for a system on the form (6) with kA � LCk  "0 if and only if

there exists a D 2 Rn⇥n with

1) row(A + D) ✓ row(C)
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2) kDk < "0

Proof: By the above, existence of a filter is equivalent for each row to satisfy [A + D]i 2 col(CT ) = row(C).

Next,
Pn

j=1|dij | < "0 for all i = 1, . . . , n, so certainly maxi=1,...,n
Pn

j=1|dij | = kDk < "0 and one direction is

done. As all steps are reversible, the converse is also proved.

Note that as dim(col(CT ))  l, a filter achieving the required bound is more easily constructed when A+D has

low rank or when l ! n, which intuitively corresponds to the two cases where either A + D does not hold much

information or when C gives practically full state information, respectively.

Next, the rank-nullity matrix for a matrix A 2 Rn1⇥n2 states that dim(col(A)) + null(A) = n2, which for the

two matrices above becomes

dim(col(AT + DT )) + null(AT + DT ) = n (13)

dim(col(CT )) + null(CT ) = l. (14)

Now, dim(col(AT + DT )) = dim(row(A + D)) and likewise for C and, further, row(A + D) ✓ row(C) )
dim(row(A + D))  dim(row(C)). Subtracting the equations above gives

n � l = dim(col(AT + DT )) � dim(col(CT ))+

+ null(AT + DT ) � null(CT ),
(15)

i.e.,

null(AT + DT ) = n � l + null(CT ) + dim(col(CT ))�

� dim(col(AT + DT )) (16)

� n � l.

Summarizing the calculations above, we obtain

Proposition 3: If there exists a linear filter L for a system on the form (6) with kA�LCk  "0, then there exists

a D 2 Rn⇥n with

1) nullity(AT + DT ) � n � l

2) kDk < "0

Note that this sufficiently characterizes the systems for which the developed framework is possible to use, for

systems with zero measurement error and that violations of these conditions mean that the strategy typically does

not work when there is measurement error present, as this, intuitively speaking, makes the problem more difficult.

Note that this sufficiently characterizes the systems for which the developed framework is possible to use.

V. REDUCTION TO STATE FEEDBACK

Obviously, if we can ensure that the estimated state trajectory robustly satisfies an LTL formula and the estimation

error can be kept globally bounded, then the true trajectory satisfies the LTL formula. This fact is stated formally

next.
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Theorem 1: Let s = s(0)s(1)... be an infinite sequence where s(t) = (e(t), x(t)) for all t. Similarly, define

ŝ = ŝ(0)ŝ(1)... where ŝ(t) = (e(t), x̂(t)) for all t. Given an LTL formula ', if there exists a bound " � 0 such

that ŝ |= '" and ||x̂(t) � x(t)||  " for all t, then s |= '.

Proof: Follows directly from the definition of robust satisfaction of LTL formulas.

In order to be able to employ this result, we need to establish a global bound " on the estimation error using

locally superstable observers. We first consider an intermediate result.

Lemma 1: Let S = (X, {Rk}kmax

k=1 , {Dk}kmax

k=1 ) be a system. If S is locally detectable with performance level

diam(X0) and x̂(t) 2 Sk
max

k=1 R̂k for all t � 0, where R̂k
.
= {x 2 Rk : B(x, diam(X0)) ✓ Rk} then k⇠(t)k 

diam(X0) for all t � 0.2

Proof: Since S is locally detectable with performance level diam(X0), there exist Lk such that Eq. (7) holds.

By Proposition 1, the estimation error can be bounded if the unique region Rk with x 2 Rk is known. By the

assumptions in problem formulation 1, this is known at t = 0 and we proceed by induction on t. Given x(t) 2 Rk,

we know k⇠(t)k  diam(X0). By the definition of the shrunk regions, d(x(t), R̂j) > diam(X0), for j 6= k so if

x̂(t) 62 R̂k, then k⇠(t)k = kx(t) � x̂(t)k � d(x(t), R̂j) > diam(X0), which contradicts the induction hypothesis.

Therefore, x̂(t) 2 R̂k and, in the next time step, we can measure x̂(t + 1) 2 R̂j , for some 1  j  kmax and

obtain k⇠(t + 1)k  diam(X0), by Proposition 1. This concludes the induction step and the proof is done.

We associate each locally detectable system with another system whose outputs are equal to its states.

Definition 5: Given a locally detectable system S = (X, {Rk}kmax

k=1 , {Dk}kmax

k=1 ) that admits a locally superstable

observer with performance level " and corresponding gains Lk, the "-robust observer system Ŝ = (X̂, {R̂k}kmax

k=1 ,

{D̂k}kmax

k=1 ) is given by the following parameters:

• X̂ =
Sk

max

k=1 R̂k,

• R̂k = {x 2 Rk : B(x, ") ✓ Rk},

• D̂k is the dynamics in region R̂k, with

x̂(t + 1) = Âkx̂(t) + B̂kû(t) + F̂k + Êk �̂(t)

ŷ(t) = x̂(t),
(17)

where Âk = Ak, B̂k = Bk, F̂k = Fk, Êk = LkCk, û(t) 2 Û = U and �̂(t) 2 Ŵ = B(0, ").

An observer for S as in Eq. (6) is said to be consistent with an "-robust observer system Ŝ if they use the same

gains Lk.

Now we state the main result of this section where "-robust observer systems are used to pose an alternative

perfect-information problem, the solution of which provides a solution to Problem 1.

Theorem 2: Define "0
.
= diam(X0). Given an instance (S, X0, Te, ') of Problem 1, assume S is locally detectable

with performance level "0. Let Ŝ = (X̂, {R̂k}kmax

k=1 , {D̂k}kmax

k=1 ) be a "0-robust observer system for S. Then, if there

exists a state-feedback control protocol for Ŝ that makes the system satisfy '"0 for some the initial condition

2To be precise, a performance level strictly less than diam(X0) is required to accommodate trajectories with x(t) on a border between two

regions. However, such cases are negligible from a practical standpoint and will be disregarded.
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x̂(0) 2 X0 \ X̂ and for all possible environment behaviors in Te, (S, X0, Te, ') is realizable. Moreover, an output-

feedback protocol for S can be constructed by using an observer consistent with the dynamics of Ŝ and by driving

the system S with the same control signals as applied to Ŝ.

Proof: By definition, the state-feedback control protocol for Ŝ ensures that x̂(t) 2 X̂ for all t as the range of

a protocol is the state space of the system. Therefore, by Lemma 1, the estimation error can be globally bounded

by "0 for any initial condition x̂(0) 2 X0 \ X̂ while running the system S and the observer with the input signal

from this protocol. Finally, invoking Theorem 1 concludes the proof.

A. Overview of full-information synthesis

This section briefly describes the process of obtaining state-feedback control protocols. The full details can be

found in e.g., [16], [23].

Based on previous work [16], [23], a discrete synthesis procedure can be phrased as a two-player perfect

information game, where the environment is treated as an adversary; i.e., it is assumed to make the worst-case

transitions consistent with its transition relation in Def. 2 and the assumption 'e part of the specification. In order

to incorporate the piecewise affine system in this game, constructing a finite transition system representing the

dynamics is required [23]. This construction relies on partitioning the continuous state-space to create discrete-states

and solving short-horizon constrained reachability problems between regions to establish the transition relations.

In order to solve the state-feedback synthesis problem stated in Theorem 2, we create a discrete-transition system

for the "-robust observer system, where the reachability computations are performed on shrunk regions. The first step

in doing so produces a proposition preserving partition X =
Sn

i=1 Pi respecting the system dynamics. Assuming

Pi to be a convex polytope defined by Hix  ki, a shrunk polytope can then be defined as

Ĥix  k̂i, (18)

where Ĥi = Hi and [k̂i]j = [ki]j � "k[Hi]jk. This gives the following result.

Proposition 4: If k⇠(t)k  " and x̂(t) 2 P̂i, then x(t) 2 Pi.

Proof: We have Hix(t) = Hi (x(t) � x̂(t) + x̂(t)) = Hi (x(t) � x̂(t)) + Ĥix̂(t). In the last equality, kx(t) �
ˆx(t)k  ", and by construction, [Ĥix̂(t)]j  [ki]j � "k[Hi]jk, so we obtain [Hix(t)]j  [Ĥix̂(t)]j + "k[Hi]jk 

[ki]i � "k[Hi]ik + "k[Hi]jk = [ki]j .

Now, appealing to Theorem 2, transitions for the estimated state x̂ between regions P̂i and P̂j lead to transitions

of the actual state between regions Pi and Pj , meaning that algorithms for control synthesis [24], [17] applied

directly to the estimated system in Problem ?? lead to control protocols of the original system in Problem 1.

Lastly, note that if a region Pi in Proposition 4 is given by a union of several convex polytopes, shrinking each

of these will yield a valid, although conservative, region for control synthesis.

We summarize the ideas above in the following algorithm:

1) Establish a proposition preserving partition X =
Sn

i=1 Pi of the state space domain X , respecting the system

dynamics.
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2) Shrink each region Pi. Establish transition relations for each of the new polytopes P̂i.

3) Force x̂ to transition between the shrunk polytopes.

B. Simple example

This section uses a simple example to demonstrate the procedure outlined in sections II-V above. We consider

the following problem in robot mission planning. Let the state space be {x = [x1, x2]T 2 R2 : 0  x1  3, 0 
x2  2}, divided into six identical squares which we enumerate as Xi, i = 0, . . . , 5. A robot is to patrol the Xi,

always eventually reaching X0 and X2 and always eventually reaching X3 when receiving a signal to do so. We

introduce a boolean environment variable park which, when true, orders the robot to proceed to X3. In LTL, the

specifications can be written as

(⇤⌃¬park) ! ⇤⌃(X0) ^⇤⌃(X2) ^⇤ (park ! ⌃X3) . (19)

We assume dynamics defined throughout the whole state space of the form (1), where k = 1:
2

4x1(t + 1)

x2(t + 1)

3

5 =

2

40.75 0

0 0.65

3

5

2

4x1(t)

x2(t)

3

5+

2

4u1(t)

u2(t)

3

5+

2

4�1(t)

�2(t)

3

5

y(t) = x1(t) (20)

i.e. only the x-coordinate is measurable. Here, k[u1(t), u2(t)]T k  1.25, k[�1(t), �2(t)]T k  0.05. The initial errors

are taken as kx(0)�x̂(0)k = 0.25, i.e., half of the square is removed in the x-direction. Note that the specification is

not realizable when posing requirements in terms of the measured states, as it requires control in the unmeasurable

y-direction. We use a filter L = [0.375, 0]T , which produces Figure 2. Here, the red trajectory corresponds to the

estimated system and the blue trajectory to the actual system.

The estimation errors are not shown due to space constraints, but these never exceed their initial values, due to

using a locally superstable observer and instead decline to a level determined by the disturbance.

VI. CASE STUDY: AIR MANAGEMENT SYSTEM OF AIRCRAFT

This section uses a simplified and linearized model of an air management system (AMS) of an aircraft as a

test-case for the theory developed in sections II-V above.

A conventional AMS operates by admitting ambient air into the engines of an aircraft and forwarding this to a so

called pressurization and air conditioning kit, where pressure is controlled by electrical compressors, temperature

by a heat exchanger and possibly expansion cooling in a turbine, and finally humidity by a high pressure water

extraction loop [14]. The AMS needs to be designed so as to supply sufficient pressure to the cabin at bearable

temperature and humidity, preferably under comfortable conditions. It is also responsible for providing the cabin

with its supply of fresh oxygen. Restrictions in the amount of power that can be supplied to the electronics and

sensitivity of sensors to e.g, high temperature, exist; also, freezing of different parts of the craft pose operational

problems. Lastly, the AMS should be fault tolerant as it is a critical part of the craft.
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Figure 2. A trajectory for the simple example showing the trajectories for the estimated and actual systems as well as the domains wherein

⇡

" 2 ⇧ evaluate to true.

Table I

THE SYMBOLS USED IN THE SIMPLIFIED AMS MODEL.

Symbol Unit Description

Measurable states

Tx
� C Temperature of metal in heat exchanger

Tc
� C Temperature of cabin

Non-measurable state

pv kPa Outlet air pressure of valve 1

Controllable variables

C1 Valve coefficient for valve 1

C2 Valve coefficient for valve 2

Wa kg/s Mass flow rate of cold inflow in HX

Switched variables

Ta K Temperature of cold inflow in HX (ambient air)

Te K Temperature of the air from the engine

Other derived variables

Wi kg/s Incoming mass flow rate of the air from the engine

Wv kg/s Mass flow rate of the air that goes through valve 2

Wh kg/s Mass flow rate of the air that goes through the HX

Th K Outlet air temperature of the HX

Constant variables

pe kPa Pressure of the air from the engine

pc kPa Pressure of the cabin

Wf kg/s Mass flow rate passing through the fan

A simplified schematic of an AMS is included in Figure VI and the details of the model can be seen in the

Appendix. The symbols used in this section are given in Table III with numerical values listed in Table II. The units

of the parameters are suppressed in the text below. We introduce switching to the system by assuming the engine

temperature to toggle uncontrollably between Te = 207 and Te = 25. Also, the airplane can switch its dynamics

by having ambient air at either Ta = �39 or heated to Ta = 161. The uncontrollable switches are assumed to have

a time scale larger than the sampling time of the controller, and is here set to 0.5sec.
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Table II

NUMERICAL VALUES USED IN THE SIMPLIFIED AMS MODEL

Symbol Value Description

Measurable states

Tx 297.2 K Equilibrium value

Tc 268 K Equilibrium value

Non-measurable state

pv 136791 Pa Equilibrium value

Controllable variables

C1 0.155 Equilibrium value

C2 0.18 Equilibrium value

Wa 2.49 kg/s Equilibrium value

Switched variables

Ta -39, 161 � C Arbitrary value

Te 207, 25 � C Arbitrary value

Constant variables

pe 275.790 kPa Arbitrary value

pc 101.325 kPa Arbitrary value

Figure 3. A simplified AMS.

We consider the state space X = {[Tc, Tx, pv]T 2 R3 : 13  Tc  33, �25  Tx  15, 101.325  pv 
275.790}. Due to the non-linear dynamics of the system, the model results in a set of piecewise affine and

linearized dynamics, with three different regions of definition, for every choice of the two environmental and

controllable switching modes. These are determined by R1 = {[Tc, Tx, pv]T 2 X : 101.325  pv  137.895},

R2 = {[Tc, Tx, pv]T 2 X : 137.895  pv  202.65} and R3 = {[Tc, Tx, pv]T 2 X : 202.65  pv  275.790},

respectively. The control inputs are given by U = {[C1, C2, Wa]T ✓ R3 : 0  C1, C2  1, 0  Wa  8.316}.

Lastly, in order to obtain interesting results with limited hardware, the B-matrices obtained are amplified by a factor
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of 7.5. In all, this gives a discrete-time switched piecewise affine system with dynamics of the form
2

6664

Tc(t + �t)

Tx(t + �t)

pv(t + �t)

3

7775
= Ak

2

6664

Tc(t)

Tx(t)

pv(t)

3

7775
+ Bk

2

6664

C1(t)

C2(t)

Wa(t)

3

7775
+ Fk + Ek�(t)

y(t) =

2

41 0 0

0 1 0

3

5

2

6664

Tc(t)

Tx(t)

pv(t)

3

7775
,

(21)

for k = 1, 2, 3. We use a sampling time �t = 0.1sec.

A. Specifications

We assume the cabin crew to be able to set the reference values of Tc to hot (Tc 2 I1 = [23.5, 25]), cold

(Tc 2 I2 = [21, 22.5]) or intermediate (Tc 2 I3 = [22.5, 23.5]). Cabin crew input is treated as the environment E .

The system should eventually reach the reference levels and stay within these levels until told otherwise and we

require the environment to not change the reference value until the reference interval has been reached. Also, the

cabin temperature should always stay within the temperature range Tc 2 [21, 25]. Lastly, we require to always have

non-freezing heat exchanger temperature in order to prevent freezing. In order to phrase this in LTL, we represent

the cabin crew reference value by a level variable l 2 {1, 2, 3} which corresponds to when the reference value is

hot, cold and intermediate, respectively. We also introduce a timer t 2 {0, 1, . . . , 5} and require the reference values

to be constant when t 6= 5 in order to increase the time scale of the reference value change. The specifications then

become:

'e ! 's,

'e =

 
3̂

i=1

⇤ ((l = i ^ Tc 2 Ii) ! �(l) = i)

!
^⇤ ((t 6= 5) ! (�(t) = t + 1))^

⇤ ((t = 5) ! (�(t) = 0)) ^⇤ ((t 6= 5) ! (�(l) = l)) ,

's =

 
3̂

i=1

⇤(l = i ! ⌃Tc 2 Ii)

!
^
 

3̂

i=1

⇤((l = i ^ Tc 2 Ii) ! �(Tc) 2 Ii)

!
^⇤⌃(Tx � 0).

(22)

The controllers were synthesized using the Temporal Logic Planning (TuLiP) Toolbox [24], which is a software

package designed for temporal logic motion planning interfacing with JTLV [17].

B. Simulation

A sample simulation is included in Figures 4-6 below, where the initial error in Tc and Tx were 0.0175 and the

initial error in pv was 1.75. The disturbance term was bounded by 0.016 and 1.6 for Tc, Tx and pv , respectively.

For these values and the numerical values of the system matrices, Propositions 2 and 3 can be seen to guarantee

existence of a locally superstable observer. In the figures, note the reference following of the cabin temperature

and that Tc and pv always remain within the state space. The error magnitudes never exceed their initial values,
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Figure 4. Cabin temperature for the sample AMS simulation
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Figure 5. Cabin temperature reference intervals for the sample AMS simulation

due to local superstability and reduce to the magnitude of the disturbance term during the simulation. Numerically,

kTc(t) � T̂c(t)k  0.016, kTx(t) � T̂x(t)k  0.016, kpv(t) � p̂v(t)k  1.6 for all times. Note that Tc has an error

term due to the effect of the disturbance for which the observer cannot compensate between a time step and the

next.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we described a framework for synthesizing correct-by-construction control protocols for discrete-

time piecewise-affine systems using only partial state information. The main insight of the proposed approach is

to resolve the uncertainty in the continuous state at the continuous level of a hierarchical controller so that it is
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Figure 6. Pipe fork pressure for the sample AMS simulation

possible to solve a full information problem at discrete level. Ideas from robust estimation were used to design

appropriate local observers that are synergistically integrated with the controller stack to achieve global bounds on

the estimation errors. The approach was demonstrated on a case-study in the form of an air management system

of aircraft.

Future research will consider employing nonlinear or higher-order observers within the proposed framework.

Another interesting direction is to investigate whether the relation between the dynamics of a system and the

corresponding bounded-error observer can be characterized in terms of alternating approximate simulation relations

[20].
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APPENDIX A

DERIVATION OF A PIECEWISE LINEAR MODEL OF A SIMPLIFIED AIR MANAGEMENT SYSTEM

A. Introduction

This appendix aims at constructing a simple yet realistic model of a complicated physical process, usable as a

test case in control synthesis and formal methods. We define firstly a non-linear model defined on a set of polytopes

and then linearize this. Lastly, we provide sample parameters to yield a numerical, piecewise affine system model.

A conventional AMS operates by admitting ambient air into the engines of the aircraft and forwarding this to a

so called pressurization and air conditioning kit, where pressure is controlled by electrical compressors, temperature

by a heat exchanger and possibly expansion cooling in a turbine, and finally humidity by a high pressure water

extraction loop [14]. The AMS needs to be designed so as to supply sufficient pressure to the cabin at bearable
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temperature and humidity, preferably under comfortable conditions. It is also responsible for providing the cabin

with its supply of fresh oxygen. Restrictions in the amount of power that can be supplied to the electronics and

sensitivity of sensors to e.g, high temperature, exist; also, the AMS should be fault tolerant as it is a critical part

of the craft.

A simplified schematic of an AMS is included in Figure VI. Engine bleed air enters the system and proceeds

through a valve where it is divided into two flows, with one passing through a bypass valve and the other flow

passing through a heat exchanger (HX). The leftmost valve has the function of controlling the flow-rate into the

system, whereas the bypass valve directly influences the temperature by controlling the fraction of inflow that is

heated in the HX. Lastly, the flows are recombined and enter the cabin.

B. Modeling of heat exchanger

A critical component of the AMS system in Figure VI is the heat exchanger, denoted by HX. In this section, we

develop a simple dynamic model for this part.

A heat exchanger operates by admitting cold and hot flows and passing heat between these. To model this, we let

the inputs be a hot flow with temperature Te, pressure pv , mass flow Wh and a cold flow with temperature Ta and

mass flow Wa, and the output hot flow be Th, pressure pc, mass flow Wh. Assume a metal with temperature Tx

dividing the two flows, with flux Qh and Qa entering the metal from the cold and hot sides, respectively. Newton’s

cooling law [19] gives

Qh = hhAh(Te � Tx) (23)

Qa = haAa(Tx � Ta), (24)

where the h are heat transfer coefficients and A areas. With Cair as the specific heat capacity of air, this results in

Ṫx =
1

MxCmetal
(hhAh(Te � Tx) � haAa(Tx � Ta)) (25)

WhTe � WhTh =
hhAh

Cair
(Te � Tx), (26)

where Mx is the mass of the heat exchanger and Cmetal is the specific capacity of the metal in the heat exchanger.

Note that heat transfer coefficients are functions of the corresponding flow rate, i.e. ha = ha(Ta, Wa), hh =

hh(Te, Wh). A polynomial of the form hi = aiWi + bi + ciTi for i 2 {a, h} is extrapolated from existing data.

1) Non-linear model: Next, the dynamical and algebraic equations governing the behaviour of the simplified

AMS in Figure VI are summarized. The symbols used in this section are given in Table III. The following equations

govern the simplified AMS:

1) Mass flow rate equation [21] for valve 1:

Wi =

8
><

>:

4.72 ⇥ 10�4 ⇥ C1 (pe + 2pv)

r
1
T
e

⇣
1 � p

v

p
e

⌘
pv > 0.5pe

6.67 ⇥ 10�4 ⇥ C1pe

q
1
T
e

pv  0.5pe

(27)
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Table III

THE SYMBOLS USED IN THE AMS MODEL.

Symbol Unit Description

Measurable states

Tx K Temperature of metal in heat exchanger

Tc K Temperature of cabin

Non-measurable state

pv kPa Outlet air pressure of valve 1

Controllable variables

C1 Valve coefficient for valve 1

C2 Valve coefficient for valve 2

Wa kg/s Mass flow rate of cold inflow in HX

Switched variables

Ta K Temperature of cold inflow in HX (ambient air)

Te K Temperature of the air from the engine

Other derived variables

Wi kg/s Incoming mass flow rate of the air from the engine

Wv kg/s Mass flow rate of the air that goes through valve 2

Wh kg/s Mass flow rate of the air that goes through the HX

Th K Outlet air temperature of the HX

hh(Wh) W/m2K Heat transfer coefficient of hot side of HX

ha(Wa) W/m2K Heat transfer coefficient of cold side of HX

Constant variables

pe kPa Pressure of the air from the engine

pc kPa Pressure of the cabin

Wf kg/s Mass flow rate passing through the fan

Qpassenger W Heat flux generated by passengers in the cabin

�Q W Heat flux transferred from the environment to the cabin

M g/mol Molar mass of air (28.97)

R J/(mol · K) Ideal gas constant(8.31)

Cair J/kgK Specific heat capacity of air

Cmetal J/kgK Specific heat capacity of metal in HX

Mx kg Mass of metal in the heat exchanger

Vfork m3 volume of the fork

Vc m3 Volume of the cabin

AHX m2 Cross-sectional area of HX

Ah m2 Surface area of air/metal interface on hot side of HX

Aa m2 Surface area of air/metal interface on cold side of HX

2) Mass flow rate equation for valve 2:

Wv =

8
><

>:

4.72 ⇥ 10�4 ⇥ C2 (pv + 2pc)

r
1
T
e

⇣
1 � p

c

p
v

⌘
pc > 0.5pv

6.67 ⇥ 10�4 ⇥ C2pv

q
1
T
e

pc  0.5pv

. (28)
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3) Equations for the fork [22] (i.e., the point where the pipe splits into two):

pv � pc =
K

2⇢airA2
HX

W 2
h (29)

ṗv =
RTe

MVfork
(Wi � Wv � Wh), (30)

where AHX is the cross-sectional area of the heat exchanger, K a constant and ⇢air the density of air, which

is given by

⇢air =
M(pv + pc)

R(Te + Th)
.

M is the molar mass of air and Vfork the volume of the air in the fork.

4) Equations for the heat exchanger:

Ṫx =
1

MxCmetal
(hhAh(Te � Tx) � haAa(Tx � Ta)) (31)

WhTe � WhTh =
hhAh

Cair
(Te � Tx). (32)

5) Equation for the cabin:

MpcVc

R

Ṫc

Tc
= (Te � Tc)Wv + (Th � Tc)Wh +

Qpassenger

Cair
+

�Q

Cair
, (33)

with Qpassenger as the heat flux from passengers, �Q the heat flux from sunlight et.c. in the cabin.

Combining all of these equations results in a piecewise affine system, with dynamics dependent on pv . These

can be listed as

ṗv =
RTe

MVfork
[Wi � Wv � Wh] (34)

Ṫc =
RTc

Mpc


Te(Wv + Wh � hhAh

Cair
� (Wh + Wv)Tc +

hhAhTx + Qpass + �Q

Cair

�
(35)

Ṫx =
1

MxCmetal
[hhAh(Te � Tx) � haAa(Tx � Ta)] (36)

2) Linearized model: This section computes a linearized version of the non-linear equations above, which is

usable for demonstrating techniques for systems on the standard state-space form. The equations given in (34), (35),

(36) in the last section are piecewise smooth in pv , with four regions given by

R1 :

8
><

>:

pv  0.5pe

pc  0.5pv

, R2 :

8
><

>:

pv > 0.5pe

pc  0.5pv

, R3 :

8
><

>:

pv  0.5pe

pc > 0.5pv

, R4 :

8
><

>:

pv > 0.5pe

pc > 0.5pv

In order to transform these into a manageable linear model on the standard state-space form, we make the

following assumptions.

• The density of air ⇢air is constant in the heat exchanger. See for instance [9] for density values in the relevant

ranges.

• The heat transfer coefficients are affine in their respective flow rates and temperatures, i.e., hh = ahWi + bh +

chTe and ha = aaWa + ba + caTa.
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Using this, we linearize the system (34)-(36) around equilibrium points in each region. Denoting equilibrium

values with stars, this gives four different sets of dynamics valid on different polytopes in the phase space.

R1 :

ṗv =
RTe

MVfork
k1c1 � k2p

⇤
vRTe

MVfork
c2 � pv

RTe

MVfork

✓
k2c

⇤
2 +

p
k3

2
p

p⇤v � pc

◆

Ṫc
MpcVc

R
= Tc


(Te � 2T ⇤

c )
⇣p

k3(p⇤v � pc) + k2c
⇤
2p

⇤
v

⌘
+

hhAh(T ⇤
x � Te) + Qpass + �Q

Cair

�
+

+
ahAhT ⇤

c (T ⇤
x � Te)k1c1

Cair
+ c2k2p

⇤
vT

⇤
c (Te � T ⇤

c ) + Tx
hhAhT ⇤

c

cair
+

+ pv(Te � T ⇤
c )

✓
T ⇤
c

p
k3

2
p

p⇤v � pc
+ k2c

⇤
2

◆

Ṫx =
1

MxCmetal
(�Tx(h

⇤
hAh + h⇤

aAa) + TeahAhk1c1 + TaAaaaWa)

R2 :

ṗv =
RTe

MVfork
k4c1(pe + 2p⇤v)

r
1 � p⇤v

pe
� RTe

MVfork
k2c2p

⇤
v

+
RTe

MVfork

0

@k4c
⇤
1

2

42

r
1 � p⇤v

pe
� pe + 2p⇤v

pe

1

2
q

1 � p⇤
v

p
e

3

5�
p

k3

2
p

(p⇤v � pc)
� k2c

⇤
2

1

A pv

Ṫc
MpcVc

R
= Tc


(Te � 2T ⇤

c )
⇣p

k3(p⇤v � pc) + k2c
⇤
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where
k1 =

6.67 · 10�4

p
Te

k2 = k1

k3 =
2⇢A2

HX

K

k4 =
4.72 · 10�4

p
Te

k5 = k4

(37)

C. Numerical model

In this section, we provide numerical values for all the parameters listed in Table III and list the resulting

piecewise affine dynamics. The values are given in Table IV and should only be seen as example values giving

interesting and non-trivial system behaviour. Tuning of the model can be performed by changing the parameter

values and inserting into the piecewise affine equations in the last section.

If we let

x =

0

BBB@

Tc

Tx

pv

1

CCCA
, u =

0

BBB@

c1

c2

Wa

1

CCCA
(38)

and �x = x � x⇤, �u = u � u⇤, equations (34)-(36) can be summarized as ẋ = f(x, u) which linearizes to

ẋ ⇡ @f(x⇤, u⇤)

@x
�x +

@f(x⇤, u⇤)

@u
�u + f(x⇤, u⇤) = Ax + Bu + F. (39)

Because of the numerical values of pe and pc, R1 is empty, giving a total of three regions with different dynamics.

These are described by R2 = {[Tc, Tx, pv]T 2 R3 : 202.65  pv  275.79}, R3 = {[Tc, Tx, pv]T 2 R3 : 101325 
pv  137895}, R4 = {[Tc, Tx, pv]T 2 R3 : 137895  pv  202650}. Evaluating equation (39) in each of

R2, R3, R4 yields the data given in Table V.
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Table IV

NUMERICAL VALUES FOR THE SYMBOLS USED IN THE LINEARIZED MODEL.

Symbol Value Description

Measurable states

Tx 297.2 K Equilibrium value

Tc 268 K Equilibrium value

Non-measurable state

pv 136791 Pa Equilibrium value

Controllable variables

C1 0.155 Calculated value

C2 0.18 Calculated value

Wa 2.49 kg/s Calculated value

Switched variables

Ta 234 K Arbitrary value

Te 480 K Arbitrary value

Constant variables

pe 275790 Pa Arbitrary value

pc 101325 Pa Arbitrary value

Qpassenger 90 · 200 W Data provided by iCyPhy team

�Q 8792 W Data provided by iCyPhy team

M 28.97 g/mol Physical constant

R 8.31 J/(mol · K) Physical constant

Cair 1003.5 J/kgK Physical constant

Cmetal 837 J/kgK Data provided by iCyPhy team

Mx 13.61 kg Data provided by iCyPhy team

Vfork 0.004916 m3 Data provided by iCyPhy team

Vc 141.6 m3 Data provided by iCyPhy team

AHX 0.00161 m2 Data provided by iCyPhy team

Ah 5 m2 Arbitrary value

Aa 5 m2 Arbitrary value

ah 174.026 J/m2kg K Interpolated from lookup tables

bh 8.8312 W/m2 K Interpolated from lookup tables

ch 0.3109 W/m2 K2 Interpolated from lookup tables

aa 52.7525 J/m2kg K Interpolated from lookup tables

ba 46.7809 W/m2 K Interpolated from lookup tables

ca 0.3677 W/m2 K2 Interpolated from lookup tables
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Table V

TABLE SHOWING THE SYSTEM MATRICES A,B, F IN EACH OF THE REGIONS R2, R3, R4 FOR THE PWA SYSTEM.

Region A B F

R2

2

664

1.005 0.0007144 0.002339

0 0.979 0.0005619

0 0 0

3

775

2

664

10.13 0.1892 0.000194

30.61 �0.06435 0.5361

6.738 �3.34 0

3

775

2

664

0.000058

�0.1591

�2.483662

3

775

R3

2

664

1.005 0.0007144 0.002231

0 0.979 0

0 0 0

3

775

2

664

10.1 0.1787 0.000194

30.46 0 0.5361

5.21 �2.311 0

3

775

2

664

�0.00237196

�0.159101

�1.530935

3

775

R4

2

664

1.005 0.0007144 0.002239

0 0.979 0.0004362

0 0 0

3

775

2

664

10.11 0.1779 0.000194

30.58 �0.04497 0.5361

5.232 �2.318 0

3

775

2

664

�0.00237196

�0.159101

�1.85701

3

775
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