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ABSTRACT
In this paper, we consider the problem of synthesizing correct-
by-construction controllers for discrete-time dynamical sys-
tems. A commonly adopted approach in the literature is to
abstract the dynamical system into a finite transition sys-
tem (FTS) and thus convert the problem into a two player
game between the environment and the system on the FTS.
The controller design problem can then be solved using syn-
thesis tools for general linear temporal logic or generalized
reactivity(1) (GR1) specifications. In this article, we pro-
pose a new abstraction algorithm. Instead of generating a
single FTS to represent the system, we generate two FTSs,
which are under- and over-approximations of the original
dynamical system. We further develop an iterative abstrac-
tion scheme by exploiting the concept of winning sets, i.e.,
the sets of states for which there exists a winning strategy
for the system. Finally, the e�ciency of the new abstraction
algorithm is illustrated by numerical examples.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods and Search]:
Control Theory; I.2.2 [Automatic Programming]: Pro-
gram Synthesis

1. INTRODUCTION
The systems that are considered for control purposes have
changed fundamentally over the last few decades. Driven
by the advancements in computation and communication
technologies, the systems of today have become highly com-
plicated with large amounts of components and interactions,
which proposes great challenges on controller design. This is
exemplified in [17] where the controller for an autonomous
vehicle grew so entangled that it was impossible to foresee
the failure of it, resulting in a crash.

In order to tame the complexity of the modern control sys-
tems, synthesis of correct-by-construction control logic based

on temporal logic specifications has gained a considerable
amount of attention in the past few years. A commonly
adopted approach is to construct an FTS which serves as a
symbolic model of the original control system, which typi-
cally has infinitely many states. The controller, which is rep-
resented by a finite state machine, can then be synthesized
to guarantee certain specifications on the system by leverag-
ing formal synthesis tools [8]. Such a design procedure has
been applied to various fields including robotics [4, 5, 2, 6,
3], autonomous vehicle control [16], smart-buildings [11] and
aircraft power system design [7].

One of the main challenges of this approach is in the ab-
straction of the control system into finite state models. Za-
mani et al. [19] propose an abstraction algorithm based on
approximate simulation relations and alternating approxi-
mate simulation relations. They prove that if certain con-
tinuity assumptions on the system trajectory hold, then an
FTS can be generated by partitioning the state space into
small hypercubes. Furthermore, the original system is ap-
proximately simulated by the FTS. Similar ideas are also
presented in [12] and [13].

Wongpiromsarn et al. [16][15] propose an iterative approach
to first generates a coarse model of the original system and
then refine the model based on reachability computations,
which has been implemented in a Python software package,
namely TuLiP [18].

Most of the algorithms proposed in the literature generate
the finite state model independently of the system speci-
fications. As such, the abstracted model can be used for
any possible specification. However, they typically tend to
partition the state space down to equally fine regions ev-
erywhere. As a consequence, the time complexity of such
general abstraction procedures is quite high and it increases
dramatically with the dimension of the system.

In this article, in hope to reduce the computational com-
plexity, we create the finite state models of the system by
exploiting the structure of the specifications. To be specific,
we will create two finite transition system models for the
control system, where one is an over-approximation of the
control system and the other is an under-approximation. By
solving the synthesis problem on both FTSs, we can cate-
gorize the points in the state space into winning, losing and
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maybe sets. Conceptually, the winning set contains those
points for which a“correct”controller is known, i.e., roughly,
a controller that can fulfill the given specifications. On the
other hand, the losing set contains those points for which we
know that no “correct” controller exists. Lastly, the maybe
set represents the points for which the existence of a “cor-
rect” controller is not yet known since the current model is
not fine enough to represent the original system. One can
view the winning and losing set as the “solved” region and
the maybe set as the “unsolved” region. We can thus focus
our computational power on refining the maybe set, while
leaving the current winning and losing set intact.

The main merits of our proposed algorithm are twofold:

1. Instead of partitioning the state space into equally fine
regions, we can concentrate the computational power
on the “unsolved” region, while leaving the “solved”
region intact.

2. Comparing to the abstract algorithm proposed in [16,
15, 18], for the case that the specifications are unre-
alizable, our algorithm can provide a proof that no
“correct” controller exists.

The rest of the paper is organized as follows: in Section 2,
we provide an introduction to transition systems and linear
temporal logic. The problem of abstracting a discrete-time
control system into FTSs is proposed in Section 3. The ab-
straction algorithm is then discussed in Section 4. Two nu-
merical examples are provided in Section 5 to illustrate the
e↵ectiveness of the proposed algorithm. Finally, Section 6
concludes the paper.

2. PRELIMINARIES
This section introduces the notation and concepts that will
be used for the rest of the article. We adopt the notation
of [16] for consistency with previous work in the field. Thus,
most of the definitions can be found in [16]. However, they
are included in this section for the sake of completeness. For
a more thorough presentation of the concepts, see [1].

2.1 Transition Systems and Linear Temporal
Logic

A central concept in this paper is that of a system:

Definition 1. A system consists of a set V of variables.
The domain of V , denoted by dom(V ), is the set of valua-
tions of V . A state of the system is an element v 2 dom(V ).

In this paper, we consider a system with a set V = S [ E of
variables. The domain of V is given by dom(V ) = dom(S)⇥
dom(E), where a state & 2 dom(S) is called the controlled
state and a state e 2 dom(E) the uncontrolled environmental
state. As a result, the state v can be written as (&, e). We
further assume that the set dom(E) is finite.

Definition 2. A transition system (TS) is a tuple T :=
(V,V

init

,!) where V ✓ dom(V ) is a set of states, V
init

✓

V is a set of initial states and !✓ V ⇥ V is a transition
relation. Given states ⌫

i

, ⌫

j

2 V, we write ⌫
i

! ⌫

j

if there
is a transition from ⌫

i

to ⌫
j

in T. We say that T is a finite
transition system (FTS) if V is finite.

Definition 3. An atomic proposition is a statement on
system variables ⌫ that has a unique truth value for a given
value of ⌫. Letting ⌫ 2 dom(V ) and p be an atomic propo-
sition, we write ⌫ |= p if p is true at the state ⌫.

To formulate specifications on a system, we will use linear
temporal logic (from here on referred to as LTL), which is
an extension of normal logic that introduces additional tem-
poral operators. Apart from the standard logical operators
negation (¬), disjunction (_), conjunction (^) and impli-
cation ()), it includes the temporal operators next (�),
always (⇤), eventually (⌃) and until (U). LTL formulas are
defined inductively as

1. Any atomic proposition p is an LTL formula.

2. Given the LTL formulas ' and  ; ¬', '_ , �' and
' U  are LTL formulas as well.

Definition 4. The satisfaction relation |= between an ex-
ecution � = ⌫0⌫1 . . . and an LTL formula is defined induc-
tively as

• � |= p if ⌫0 |= p.

• � |= ¬' if � does not satisfy '.

• � |= ' _  if � |= ' or � |=  .

• � |= �' if ⌫1⌫2 . . . |= '.

• � |= ' U  if there exists an i � 0, such that ⌫
i

⌫

i+1 . . . |=
 and for any 0  k < i, ⌫

k

⌫

k+1 . . . |= '.

For a more in depth explanation of LTL, see [1].

It is well known that the complexity of synthesizing a con-
troller for a general LTL formula is double exponential in the
length of the given specification [9]. However, for a specific
class of LTL formulas, namely those known as Generalized
Reactivity(1) (GR1) formulas, an e�cient polynomial time
algorithm [8] exists. As a result, in this article, we will re-
strict the specification ' to be a GR1 formula, which takes
the following form:

' =
M^

i=1

⇤⌃p
i

!
N^

j=1

⇤⌃q
j

, (1)

where each p

i

, q

j

is a boolean combination of atomic propo-
sitions.



2.2 Winning Controllers and Winning Sets
Definition 5. A controller for a transition system (V,Vinit,

!) and environment E is an ordered set of mappings �
t

:
S ⇥ Et ! S,

� , (�1, �2, . . . , �t, . . . ),

each taking the initial controlled state &[0] and all the en-
vironmental actions up to time t� 1, e[0] . . . e[t� 1], giving
another state in S as output. Furthermore, a controller � is
called consistent if for all t and &[0], e[0], . . . , e[t + 1], the
following transition relation is satisfied:

(�
t

(&[0], e[0], . . . , e[t� 1]), e[t])

! (�
t+1(&[0], e[0], . . . , e[t]), e[t+ 1]).

Definition 6. Given an infinite sequence of environmental
states e[0]e[1] . . . , a controlled execution � using the con-
troller � and starting at &[0] is an infinite sequence

� = ⌫0⌫1 · · · = (&[0], e[0])(&[1], e[1]) . . . ,

such that &[t+ 1] = �

t

(&[0], e[0], . . . , e[t+ 1]).

Definition 7. A set of controlled states W is winning if
there exists a consistent controller �, such that for any infi-
nite sequence of e[0]e[1] . . . and any initial controlled state
&[0] 2 W, the controlled execution � using controller � start-
ing at &[0] satisfies '. The corresponding controller � is
called a winning controller for W.

The following observations are important for the rest of the
paper:

Proposition 1. Let {W
i

}
i2I be a collection of winning

sets, then the set
S

i2I W
i

is also winning.

Proof. Let us define an index function h :
S

i2I W
i

! I,
such that for any & 2

S
i2I W

i

, the following set inclusion
holds:

& 2 W
h(&).

Now assume that the winning controller for the set W
i

is
�

(i) = (�(i)
1 , �

(i)
2 , . . . , �

(i)
t

, . . . ). We can define the new con-
troller � = (�1, �2, . . . ) as

�

t

(&[0], e[0], . . . , e[t� 1]) = �

(h(&[0]))
t

(&[0], e[0], . . . , e[t� 1]).

It is easily verified that � is a winning controller forS
i2I W

i

.

As a result, there exists a largest winning set, which leads
to the following definition:

Definition 8. The largest winning set, W , of a transition
system T, for the specification ', is defined as the union of
all winning sets, i.e.,

W (T,') =
[

W is winning

W. (2)

The losing set, L, is defined as

L(T,') = dom(S) \ W (T,'). (3)

A state & is called a losing state if & 2 L(T,').

Remark 1. Notice that the controllers defined in Defini-
tion 5 have infinite memory (since they require all environ-
mental actions e[0]e[1] . . . ). However, from [8], we know that
for a finite transition system, if a winning controller exists,
there will also exist a winning controller with finite memory.

3. PROBLEM FORMULATION
We consider the following discrete-time control system:

s[t+ 1] = f(s[t], u[t]),

u[t] 2 U, s[t] 2 dom(S),

s[0] 2 Sinit,

(4)

where dom(S) ✓ Rn, Sinit ✓ dom(S) is the set of possible
initial states, U ✓ Rm is the admissible control set and f the
system dynamics (possibly non-linear). It is evident that the
discrete-time control system is completely characterized by
f, U, dom(S) and Sinit, which leads to the following formal
definition:

Definition 9. A discrete-time control system ⌃ is a quadru-
ple ⌃ , (f, U, dom(S), Sinit).

A discrete-time control system ⌃ can be converted into a
transition system in the following manner:

Definition 10. Let ⌃ , (f, U, dom(S), Sinit) be a discrete-
time control system. The transition system TS(⌃) = (V,V

init

,

!) associated with ⌃ is defined as:

• V = dom(S)⇥ dom(E).

• V
init

= Sinit ⇥ dom(E).

• For any (s1, e1), (s2, e2) 2 V , (s1, e1) ! (s2, e2) if and
only if there exists u 2 U , such that s2 = f(s1, u).

The problem of controller synthesis for the discrete-time con-
trol system ⌃ can be written as a controller synthesis prob-
lem for TS(⌃) as follows:

Problem 1. Realizability: Given TS(⌃) and a specifica-
tion ', decide whether S

init

is a winning set.

Problem 2. Synthesis: Given TS(⌃) and a specification
', if S

init

is winning, construct the winning controller �.

In general, Problem 1 and 2 are very challenging, even for
a very simple formula ' [14, 10]. As a result, we will attack
this problem by leveraging the tools developed for controller
synthesis for FTSs. The main di�culty in directly applying
these techniques is that TS(⌃) has infinitely (uncountably)
many states. In the next section, we develop abstraction
techniques to convert TS(⌃) into FTSs.

4. ABSTRACTION ALGORITHM
In this section, we abstract TS(⌃) into two FTSs with the
same set of states by partitioning the state space into equiv-
alence classes. We will refer to s 2 dom(S) as a continuous
state for TS(⌃) and any state & of the FTSs as a discrete
state.



4.1 Constructing the Initial Transition Systems
Our proposed method builds upon the idea of creating an
over-approximation and an under-approximation of the reach-
ability relations of the system. To this end, we (iteratively)
construct two FTSs. One that we will refer to as the pes-
simistic FTS and one that we will refer to as the optimistic

FTS. We introduce the notation D(i)
o

= (V(i)
,V(i)

init,!
(i)
o

) and

D(i)
p

= (V(i)
,V(i)

init,!
(i)
p

), respectively, for the ith iteration of
these systems.

To simplify the notation, we define two reachability relations
as:

Definition 11. The relation R
p

: 2dom(S) ⇥ 2dom(S) !
{0, 1} is defined such that R

p

(X,Y ) = 1 if and only if for
all x 2 X, there exists an y 2 Y and u 2 U , such that
f(x, u) = y.

Definition 12. The relation R
o

: 2dom(S) ⇥ 2dom(S) !
{0, 1} is defined such that R

o

(X,Y ) = 1 if and only if there
exist x 2 X, y 2 Y and u 2 U , such that f(x, u) = y.

Remark 2. Informally, R
p

indicates whether there is some
control action for every continuous state in a region X that
takes that state to some state in the region Y in one time
step. R

o

indicates whether there is some point in X that
can be controlled to Y in one time step. The results can be
generalized to longer horizon lengths, but for simplicity we
only consider reachability in one time step.

We further define a partition function of the continuous state
space dom(S):

Definition 13. A partition function of dom(S) is a map-
ping TS : dom(S) ! S. The inverse of TS is defined as
T

�1
S : S ! 2dom(S), such that

T

�1
S (&) = {s 2 dom(S) : TS(s) = &}.

Definition 14. The partition function TS on dom(S) is
called proposition preserving if for any atomic proposition
p and any pair of continuous states s

a

, s

b

2 dom(S), which
satisfy TS(sa) = TS(sb), we have that s

a

|= p implies that
s

b

|= p.

If TS is proposition preserving, then we can label the discrete
states with atomic propositions. To be specific, we say & |= p

if and only if for every s 2 T

�1
S (&), we have that s |= p.

To initialize the abstraction algorithm, we assume that we
are given the atomic propositions on the continuous state
space dom(S). We can create a proposition preserving parti-
tion function TS(0) , a set of discrete states S(0) = {&0, &1, . . . ,
&

n

}, and a set of initial states S(0)
init ✓ S(0). The state space

V(0) and the initial state V(0)
init

are defined as

V(0) = S(0) ⇥ dom(E),

V(0)
init

= S(0)
init

⇥ dom(E).

Next, we perform a reachability analysis to establish the
transition relations in D(0)

o

and D(0)
p

: for every pair of states,

⌫

a

= (&
a

, e

a

), ⌫
b

= (&
b

, e

a

), we add a transition in D(0)
p

from
⌫

a

to ⌫

b

if and only if R
p

(T�1

S(0)(&a), T
�1

S(0)(&b)) = 1 and a

transition in D(0)
o

if and only if R
o

(T�1

S(0)(&a), T
�1

S(0)(&b)) = 1.

Remark 3. D(0)
o

is optimistic in the sense that even if only
some part of a region corresponding to a discrete state can
reach another, we consider there to be a transition between
these two discrete states. In D(0)

p

we require every point in a
region corresponding to a discrete state to be able to reach
to some point in the other for there to be a transition.

The idea is illustrated in Figure 1. We assume that we are
given an initial proposition preserving partition of the con-
tinuous state space, corresponding to the four colored quad-
rants. The dashed and solid lines in the continuous state
space separate regions with di↵erent reachability properties,
which the arrows are meant to illustrate. An arrow from a
region to another means that there are control actions that
can take the system state from any point in the region it
originates from to some points in the region it terminates
in. For simplicity, we assume that the environment is triv-
ial, i.e., without any variables.

&2

&4&3

&1

D(0)
p

and

&2

&4&3

&1

D(0)
o

=)

Figure 1: Construction of D(0)
p

and D(0)
o

given an
initial proposition preserving partition of the state
space (assumed to correspond to the four colored
quadrants) and a reachability analysis (illustrated
with arrows in the state space). For simplicity, the
environment is assumed to have no variables.

We now provide two theorems regarding the (largest) win-

ning sets of D(0)
p

, D(0)
o

and TS(⌃), the proofs of which are
reported later in this subsection for the sake of legibility.

Theorem 1. For any discrete state &[0] 2 W (D(0)
p

,')

that is winning for the pessimistic FTS D(0)
p

, the correspond-
ing continuous state is also winning in TS(⌃), i.e., T�1

S(0)(&[0])
✓ W (TS(⌃),').

Theorem 2. For any continuous state s[0] 2 W (TS(⌃),')
that is winning for TS(⌃), the corresponding discrete state

is also winning in D(0)
o

, i.e., TS(0)(s[0]) 2 W (D(0)
o

,').

Proof of Theorem 1. Suppose the winning controller
for W (D(0)

p

,') is �
p

= (�
p,1, �p,2, . . . , �p,t, . . . ). Consider

a discrete state &[0] = TS(0)(s[0]) 2 W (D(0)
p

,'). For all
possible environmental actions e[0]e[1] . . . , we can create the
controlled execution using �

p

. This gives a sequence of states
(&[0], e[0])(&[1], e[1]) . . . , which satisfies the specification '.



Consider now a continuous state s[0] 2 T

�1

S(0)(&[0]). From

the construction of D(0)
p

, we know that

R
p

(T�1

S(0)(&[t]), T
�1

S(0)(&[t+ 1])) = 1.

Thus, we can recursively define the continuous consistent
controller � = (�1, �2, . . . ) to be

1. �1(s[0], e[0]) returns an s[1] 2 T

�1

S(0)(&[1]) such that
there exists an u[0] 2 U and f(s[0], u[0]) = s[1].

2. �
t+1(s[0], e[0], . . . , e[t]) returns an s[t+1] 2 T

�1

S(0)(&[t+
1]) such that there exists an u[t] 2 U and

f(�
t

(s[0], e[0], . . . , e[t� 1]), u[t])

= �

t+1(s[0], e[0], . . . , e[t]).

As a result, we have a sequence (s[0], e[0])(s[1], e[1]) . . . , where
TS(0)(s[t]) = &[t]. Hence, the controller � is also winning at
s[0], which completes the proof.

Proof of Theorem 2. Suppose � = (�1, �2, . . . ) is win-
ning for W (TS(⌃),') and s[0] 2 W (TS(⌃),'). For all
possible environmental actions e[0]e[1] . . . , we create a con-
trolled execution using �: (s[0], e[0])(s[1], e[1]) . . . , which is
winning.

Now consider the discrete state &[t] = TS(0)(s[t]). By the
definition of R

o

, we know that

(&[t], e[t]) !(0)
o

(&[t+ 1], e[t+ 1]).

As a result, we can construct a consistent controller �
o

=
(�

o,1, . . . ) for &[0] = TS(0)(s[0]) as

�

o,t

(&[0], e[0], . . . , e[t� 1]) = TS(0) (�
t

(s[0], e[0], . . . , e[t� 1]) .

Thus, we get a sequence (&[0], e[0])(&[1], e[1]) . . . , where &[t] =
TS(0)(s[t]). Hence, the controller �

o

is winning at &[0], which
completes the proof.

We now define the following sets:

W(i) = W (D(i)
p

,'), (5)

referred to as the winning set,

L(i) = L(D(i)
o

,') (6)

as the losing set and

M(i) = S(i)\
⇣
W(i) [ L(i)

⌘
. (7)

which we will call the maybe set. It will be clear from the
context to which iteration i of these sets we refer to. We can
further define the inverse image of the sets W(i)

,L(i)
,M(i)

on dom(S) as

W(i)
c

= T

�1

S(i)(W(i)),

L(i)
c

= T

�1

S(i)(L(i)),

M(i)
c

= T

�1

S(i)(M(i)).

By Theorem 1 and 2, it is clear that

1. If S
init

✓ W(0)
c

, then S

init

is a winning set for TS(⌃).
Furthermore, the winning controller can be constructed
in a similar fashion as is discussed in the proof of The-
orem 1.

2. If S
init

T
L(0)

c

6= ;, then S

init

is not a winning set for
TS(⌃).

3. If neither 1) nor 2) is true, then we cannot give a defini-
tive answer on whether S

init

is winning or not. As a
result, a finer partition function is needed to answer
the Realizability Problem.

For case 3), one may naively create a finer partition function
and the corresponding pessimistic and optimistic FTS. In
the next subsection, we show how to iteratively generate
the pessimistic and optimistic FTS in order to reduce the
computational complexity of the abstraction algorithm by
exploiting the properties of the winning set.

4.2 Refinement Procedure
We define a refinement operation as

split
m

: 2dom(S) ⇥ {1, . . . ,m} ! 2dom(S) (8)

such that 8X ✓ dom(S) and i, j 2 {1, . . . ,m}, i 6= j and it
has the following properties:

split
m

(X, i) ⇢ X,

split
m

(X, i) \ split
m

(X, j) = ;

and
mS

k=1
split

m

(X, k) = X.

Remark 4. The index m on split
m

is the number of chil-
dren that a region should be split into upon refinement.

We will focus our computational resources on the states in
the maybe set M(i). Intuitively, these states have the po-
tential to become winning when we create finer partitions.
Assuming that S(i) and TS(i) are the set of discrete state and
the partition function of the ith iteration, we define S(i+1)

and TS(i+1) in the following way:

1. If & 2 W(i)SL(i), then (&, 1) 2 S(i+1) and

T

�1

S(i+1)((&, 1)) = T

�1

S(i)(&).

2. If & 2 M(i), then (&, j) 2 S(i+1) for all j = 1, . . . ,m
and

T

�1

S(i+1)((&, j)) = split
m

(T�1

S(i)(&), j).

Remark 5. One can consider the discrete state spaces S(0),
S(1), . . . to form a forest (a disjoint union of trees), where
the states in S(0) are the roots and (&, j) 2 S(i+1) is the jth
child of & 2 S(i).



An example of the refinement procedure is provided in Fig-
ure 2. An initial preposition preserving partition is con-
structed from the continuous state space dom(S), which in
this case, results in three discrete states (and correspond-
ing regions in the continuous state space). The discrete
states are marked as to belonging to either the winning
(crosshatched green), maybe (solid yellow) or losing (dot-
ted red) set. To refine the partition, the split3-operator
is applied to the state in the maybe set, &2. The refined
partition can be seen in the rightmost figure, where a new
reachability analysis has been performed. The next step of
the procedure would further refine (&2, 3).

(&2, 1) (&2, 2) (&2, 3)

(&3, 1)

(&1, 1)

&3

&2

&1

dom(S)

=)

=)

Figure 2: An example of the proposed refinement
procedure. An initial preposition preserving parti-
tion is constructed in the first step. The regions are
labeled with their corresponding discrete state. The
states are colored di↵erently depending on if they
belong to the winning (crosshatched green), maybe
(solid yellow) or losing (dotted red) set. The split3-
operator is used to further refine the states in the
maybe set (only one iteration is illustrated).

Given the discrete states, the state space V(i+1) can be de-
fined as

V(i+1) = S(i+1) ⇥ dom(E),

and the initial states V(i+1)
init

can be defined in a similar fash-
ion.

We now define the transition relations of the two FTSs. We
begin with the relations in the pessimistic FTS. For any two
states (&

a

, j), (&
b

, k) 2 S(i+1) and environmental states e

a

,

e

b

, we have that ((&
a

, j), e
a

) !(i+1)
p

((&
b

, k), e
b

) if and only
if one of the following statements holds:

1. WW-transition: &
a

, &

b

2 W(i), j = k = 1 and

(&
a

, e

a

) !(i)
p

(&
b

, e

b

).

2. MW-transition: &
a

2 M(i), &
b

2 W(i), k = 1 and

R
p

(T�1

S(i+1)( (&a, j) ), T
�1

S(i+1)( (&b, 1) ) ) = 1.

3. MM-transition: &
a

, &

b

2 M(i) and

R
p

(T�1

S(i+1)( (&a, j) ), T
�1

S(i+1)( (&b, k) ) ) = 1.

Remark 6. Here, WW stands for a transition between two
winning states, and analogously for MW and MM.

Remark 7. Notice that we omit many possible transitions.
For example, if &

a

2 W(i) and &
b

2 M(i), then no transitions
will be added even if (&

b

, k) is reachable from (&
a

, 1). This
allows us to focus our computational resources on the critical
transitions that a↵ects the computation of the winning set.

The update rule for the optimistic FTS is similar. We have
that ((&

a

, j), e
a

) !(i+1)
o

((&
b

, k), e
b

) if and only if one of the
following three statements holds:

1. WW-transition: &
a

, &

b

2 W(i), j = k = 1 and

(&
a

, e

a

) !(i)
p

(&
b

, e

b

).

Notice that we are using the transition relation !(i)
p

instead of !(i)
o

for this case.

2. MW-transition: &
a

2 M(i), &
b

2 W(i), k = 1 and

R
o

(T�1

S(i+1)( (&a, j) ), T
�1

S(i+1)( (&b, 1) ) ) = 1.

3. MM-transition: &
a

, &

b

2 M(i) and

R
o

(T�1

S(i+1)( (&a, j) ), T
�1

S(i+1)( (&b, k) ) ) = 1.

We will now expand upon Theorem 1 and 2 to provide a
characterization of the winning setsW (D(i)

p

,') andW (D(i)
o

,').
The proofs of the following theorems are deferred to the ap-
pendix for the sake of legibility.

Theorem 3. For any discrete state &[0] 2 W (D(i)
p

,') that

is winning for the pessimistic FTS D(i)
p

, the corresponding
continuous state is also winning in TS(⌃), i.e.,

T

�1

S(i)(&[0]) ✓ W (TS(⌃),'). (9)

Furthermore, its child (&[0], 1) is also winning for D(i+1)
p

,
i.e.,

(&[0], 1) 2 W (D(i+1)
p

,'). (10)

Theorem 4. For any continuous state s[0] 2 W (TS(⌃),')
that is winning for TS(⌃), the corresponding discrete state

is also winning in D(i)
o

, i.e.,

TS(i)(s[0]) 2 W (D(i)
o

,'). (11)

Furthermore, if the discrete state &[0] 2 L(D(i)
o

,') is losing

for D(i)
o

, then its child is also losing in D(i+1)
o

, i.e.,

(&[0], 1) 2 L(D(i+1)
o

,'). (12)

Combining Theorem 3 and 4, we have the following corol-
lary:

Corollary 1. W(0)
c

✓ W(1)
c

✓ · · · ✓ W (TS(⌃),') ✓
· · · ✓ dom(S) \ L(1)

c

✓ dom(S) \ L(0)
c

.



With these results, we can concisely write the algorithm as:

• If S
init

✓ W(i)
c

, then S

init

is a winning set for TS(⌃).
A winning controller can be constructed in a similar
fashion as is discussed in the proof of Theorem 1.

• If S
init

T
L(i)

c

6= ;, then S

init

is not a winning set for
TS(⌃). Thus, we can stop the refinement procedure
because there is no winning controller.

• If neither of the above statements is fulfilled, then we
cannot give a definitive answer on whether S

init

is win-
ning or not at the ith iteration. As a result, we create
the FTSs D(i+1)

p

and D(i+1)
o

and try to solve the win-
ning sets for them.

Remark 8. It is worth noticing that we do not use any
properties of the f function or the sets U, dom(S) and S

init

.
As a result, the algorithm presented in this article can be
used to handle any transition system.

5. SIMULATION RESULTS
In this section, we do a comparison between the current
algorithm in TuLiP and our proposed algorithm. All the
simulations are performed on a MacBook Air (1.3 GHz, 4
GB RAM).

We first consider an example included with the TuLiP pack-
age (namely, robot_continuous.py). The dynamical equa-
tions describing the system are

s[t+ 1] =


1 0
0 1

�
s[t] +


1 0
0 1

�
u[t],

u[t] 2 U = {v 2 R2 : |v|1  1},
s[t] 2 dom(S) = [0, 3]⇥ [0, 2],

s[0] 2 Sinit = [0, 3]⇥ [0, 2].

(13)

Two regions in the state space are marked with propositions:

propositions =

(
[0, 1]⇥ [0, 1] as home,

[2, 3]⇥ [1, 2] as lot
(14)

and the environment is equipped with a boolean variable,
park. The specification of system is the following:

' = ⇤⌃home ^⇤(park ! ⌃lot),
which can be converted into GR1 form (1). Roughly speak-
ing the specification implies that the system should visit the
parking lot whenever the environment sets park true, and
always returns back home.

In the algorithm employed in TuLiP, described in [16], the
whole state space is discretized according to a reachability
analysis until no region corresponding to a discrete state
can be refined further without going below a pre-specified
threshold volume. This leads to a problem when the thresh-
old volume is set too high, since not enough transitions can
be established on a discrete level. As illustrated by the red
crosses in Figure 3, TuLiP fails to find a controller realiz-
ing the specification when the threshold volume is taken
larger than 0.2. When the threshold is chosen below 0.2,
it succeeds in finding a controller and announces that the
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Figure 3: Timing data for the current algorithm
in TuLiP and our proposed algorithm. The specifi-
cations that we are considering for the continuous
system are realizable, but TuLiP cannot synthesize a
controller until the threshold volume is below 0.2.
The dots and crosses indicate the time for TuLiP to
discretize the state space and then try to synthesize
a controller, giving a positive or a negative answer,
respectively, on whether the specifications are re-
alizable. Our algorithm concludes that the specifi-
cations are realizable without taking any threshold
volume as input, illustrated by the dashed blue line.

specifications are realizable (green dots). Note that the cu-
mulative sum of the times testing to see if the specifications
are realizable using a smaller and smaller threshold is large.
Our implementation will iteratively refine the partition of
the state space until a controller can be synthesized. Fur-
thermore, our algorithm only refines the “interesting” areas
of the state space, which results in less computational time
comparing to the time that TuLiP used to give a correct
answer. This is illustrated by the dashed blue line.

The next example shows the actual partition that results
from the two methods. Consider the system

s[t+ 1] =


1 0
0 1

�
s[t] +


1 0
0 1

�
u[t],

u[t] 2 U = {v 2 R2 : |v|1  1},
s[t] 2 dom(S) = [0, 4]⇥ [0, 4],

s[0] 2 Sinit = [3, 3.5]⇥ [3, 3.5].

(15)

Let us introduce the concept of an invariant set : a set ⌦
is invariant if s(t0) 2 ⌦ =) s(t) 2 ⌦, 8t � t0 and for all
possible controls u(t). A simple application of the triangle
inequality will show that the region R2 \ [0, 2]2 is invari-
ant for the system under consideration. We consider the
following set of propostions

propositions =

(
[0, 0.5]⇥ [0, 0.5] as goal ,

[3, 3.5]⇥ [3, 3.5] as start .
(16)

In this example, we assume that the environment has no
variables. The initial assumption on the system is

start (17)



(a) (b)

Figure 4: (a) shows the discretization by TuLiP on
the second example when the threshold volume is
chosen to be 1.0. Regions of the same color are
considered as one discrete state. (b) shows the dis-
cretization resulting from our algorithm, with the
winning (green), maybe (yellow) and losing (red)
sets marked. Here, every region is its own discrete
state.

and the progress specification of the system is

⇤⌃goal . (18)

This means that the systems starts in start and should al-
ways eventually reach goal. Since start lies in an invariant
region, that does not contain goal, we know that there does
not exist a winning controller.

The resulting discretizations can be seen in Figure 4. (a)
shows the discretization that TuLiP provides when the thresh-
old volume is set to 1.0. Note that the invariant region is
finely partitioned. The runtime of the algorithm is 620 s.
No controller that fulfills the specifications can be synthe-
sized using this discretization. Note that from the output of
TuLiP, it is not possible to say whether no winning controller
exists, or if a winning controller of the original system exists
but TuLiP cannot find it because of the partition being too
coarse.

The output of our algorithm can be seen in Figure 4.(b). The
coloring illustrates the winning (green), maybe (yellow) and
losing (red) states. The states in the maybe set are marked
as such since some of the continuous states in them lie within
the invariant region, and some lie within the region that can
reach goal. Since start lies in the losing set, the algorithm
terminates and concludes with a definitive answer that there
is no winning controller. This takes 25 s.

6. CONCLUSION
We have in this paper presented an iterative method for
abstracting a discrete-time control system into two FTSs,
representing an under- and over-approximation of the reach-
ability properties of the original dynamical system. We have
provided theorems regarding the existence of controllers ful-
filling specifications given in LTL for the continuous systems,
based on the existence of such controllers for the two FTSs.
Our proposed algorithm provides a way of focusing the com-
putational resources on refining only certain areas of the
state space, leading to a decrease in the time complexity of
the abstraction procedure compared to previous methods.

We have made a comparison between the proposed algo-
rithm and the one currently used in Python package TuLiP

on numerical examples with positive results.
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APPENDIX
A. PROOFS OF THEOREM 3 AND 4
Before proving Theorem 3 and 4, we need the following lem-
mas:

Lemma 1. For any two sequences � = ⌫0⌫1 . . . , �
0 =

⌫

0
0⌫

0
1 . . . , such that � |= ' and �0 |= ', where ' is a GR1

formula defined in (1), the following properties hold:

1. Define a time-shifted sequence �

t

= ⌫

t

⌫

t+1 . . . , then
�

t

|= '.

2. Suppose that there exists ⌧ � 0, such that ⌫
⌧

= ⌫

0
0, then

the following sequence ⌫0 . . . ⌫⌧⌫
0
1⌫

0
2 . . . |= '.

Proof. By definition, � |= ' if and only if

� |=
 
¬

M^

i=1

⇤⌃p
i

!
_
 

N^

j=1

⇤⌃q
j

!
. (19)

The lemma follows directly from the fact that the right hand
side of (19) is a liveness formula.

Lemma 2. Consider an FTS T and a GR1 formula '. If
the controller � is winning for some non-empty set W, then
for any initial condition &[0] 2 W and environmental actions
e[0]e[1] . . . , the controlled execution (&[0], e[0])(&[1], e[1]) . . .
satisfies

&[t] 2 W (T,'), 8t = 0, 1, . . . .

Proof. This result follows directly from Lemma 1.

Proof of Theorem 3. By the recursive definition of D(i)
p

and D(i)
o

, we know that for any &
a

, &

b

2 S(i),

(&
a

, e

a

) !(i)
p

(&
b

, e

b

)

implies that

R
p

(T�1

S(i)(&a)), T
�1

S(i)(&b))) = 1.

Hence, (9) can be proved in a similar way as Theorem 1.

We now prove (10). For the FTS D(i)
p

, suppose the winning

controller for W(i) = W (D(i)
p

,') is �(i)
p

= (�(i)
p,1, �

(i)
p,2, . . . ).

We can define the controller �(i+1)
p

= (�(i+1)
p,1 , �

(i+1)
p,2 , . . . ) for

the FTS D(i+1)
p

as

�

(i+1)
p,t

((&[0], 1),e[0], . . . , e[t� 1])

= (�(i)
p,t

(&[0], e[0], . . . , e[t� 1]), 1).

Thus, the controlled execution of the FTS D(i+1)
p

is given by

((&[0], 1), e[0])((&[1], 1), e[1])((&[2], 1), e[2]) . . . ,

which satisfies the specification '. Therefore, we only need
to prove that the controller �(i+1)

p

is consistent.

By Lemma 2, we know that for any &[0] 2 W(i), the con-
trolled execution (&[0], e[0]) . . . satisfies

&[t] 2 W(i)
,

which implies that the transition from ((&[t], 1), e[t]) to ((&[t+

1], 1), e[t + 1]) in D(i+1)
p

is a WW-transition and hence it

exists. Hence, �(i+1)
p

is consistent, which completes the
proof.

Proof of Theorem 4. We first prove (12). Notice that

by the construction of D(i+1)
o

, if &[0] 2 L(i) = L(D(i)
o

,'), then

((&[0], 1), e[0]) has no successors in D(i+1)
o

. Thus, (&[0], 1) 2
L(D(i+1)

o

,') since no consistent controller exists for (&[0], 1).

We now prove (11) by induction. Notice that we cannot use
the same argument as Theorem 2 since s

a

! s

b

does not
necessarily imply TS(i+1)(s

a

) !(i+1)
o

TS(i+1)(s
b

).

By Theorem 2, we know that (11) holds when i = 1. For
the transition system TS(⌃), suppose that the controller
� = (�1, �2, . . . ) is winning for W (TS(⌃),'). For any s[0] 2
W (TS(⌃),') and environmental actions e[0]e[1] . . . , we cre-
ate a controlled execution using �: � = (s[0], e[0])(s[1], e[1]) . . . ,
which is winning.

Let us define a hitting time ⌧ as

⌧ = inf{t 2 N0 : TS(i�1)(s[t]) 2 W(i�1)}.

In other words, ⌧ is the first time that TS(i�1)(s[t]) enters
the winning setW(i�1). We further assume that the infimum
over an empty set is 1.

For the FTS D(i�1)
p

, suppose that the controller �
p

= (�
p,1, . . . )

is winning for W (D(i�1)
p

,') = W(i�1). If ⌧ < 1, we define
&

p

[0] = TS(i�1)(s[⌧ ]) and e

p

[t] = e[t + ⌧ ]. Now we create
a controlled execution using �

p

with environmental actions
e

p

[0]e
p

[+1] . . . : �
p

= (&
p

[0], e
p

[0])(&
p

[1], e
p

[1]) . . . , which is
also winning.

We now construct a controller �
o

= (�
o,1, . . . ) of the FTS



D(i)
o

, such that it is winning at &[0] = TS(i)(s[0]). The con-
struction can by divided into two steps:

1. If t  ⌧ , then �
o

follows the winning controller � of the
FTS TS(⌃), i.e.,

�

o,t

(&[0],e[0], . . . , e[t� 1])

= TS(i)(�
t

(s[0], e[0], . . . , e[t� 1])).

2. If t > ⌧ , we switch to the winning controller �
p

of the

FTS D(i�1)
p

, i.e.,

�

o,t

(&[0], e[0], . . . , e[t� 1])

= (�
p,t�⌧

(&
p

[0], e
p

[0], . . . , e
p

[t� ⌧ � 1]), 1).

Now we prove that �
o

is winning at &[0]. Define the con-

trolled execution using �
o

on the FTS D(i)
o

to be

�

o

= (&
o

[0], e[0])(&
o

[1], e[1]) . . . .

We need to prove that �
o

satisfies the specification and �
o

is consistent. The proof is divided into two cases depending
on whether ⌧ = 1 or ⌧ < 1.

Case 1: ⌧ = 1

By the definition of �
o

, we know that

&

o

[t] = TS(i)(s[t]).

Since � is winning, we only need to check the consistency
of �

o

, i.e., whether the transition from (&
o

[t], e[t]) to (&
o

[t+

1], e[t+ 1]) exists in D(i)
o

. By Lemma 2, we know that

s[t] 2 W (TS(⌃),').

And hence, by the induction assumption,

TS(i�1)(s[t]) 2 M(i�1)
[

W(i�1)
.

By the fact that ⌧ = 1,

TS(i�1)(s[t]) 2 M(i�1)
.

As a result, there exists an j

t

2 {1, . . . ,m}, such that &
o

[t]
is the j

t

th child of TS(i�1)(s[t]), i.e.,

&

o

[t] = (TS(i�1)(s[t]), j
t

).

Furthermore, since there exists an u[t], such that f(s[t], u[t]) =
s[t+ 1], we know that

R
o

(T�1

S(i)(&o[t]), T
�1

S(i)(&o[t+ 1])) = 1,

Hence, the transition from (&
o

[t], e[t]) to (&
o

[t + 1], e[t + 1])

is an MM-transition and it exists in D(i)
o

. And thus, �
o

is
consistent.

Case 2: ⌧ < 1

By the construction of �
o

, �
o

satisfies

&

o

[t] =

(
TS(i)(s[t]) if t  ⌧,

(&
p

[t� ⌧ ], 1) if t > ⌧.

By Lemma 1 and the fact that both � and �
p

satisfy ', we
only need to check the consistency of �

o

, i.e., whether the
transition from (&

o

[t], e[t]) to (&
o

[t+1], e[t+1]) exists in D(i)
o

.
This can be done in three steps:

1. t < ⌧ � 1:

By the same argument as for the case where ⌧ = 1,
we know that the transition from (&

o

[t], e[t]) to (&
o

[t +

1], e[t+ 1]) is an MM-transition and it exists in D(i)
o

.

2. t = ⌧ � 1:

By the definition of ⌧ , we know that

TS(i�1)(s[⌧ � 1]) 2 M(i�1)
, TS(i�1)(s[⌧ ]) 2 W(i�1)

.

Hence, the transition from (&
o

[⌧�1], e[⌧�1]) to (&
o

[⌧ ], e[⌧ ])

is an MW-transition and it exists in D(i)
o

.

3. t > ⌧ � 1:

By Lemma 2, we know that

&

p

[t] 2 W (D(i�1)
p

,') = W(i�1)
.

Hence, the transition from (&
o

[t], e[t]) to (&
o

[t+1], e[t+

1]) is a WW-transition and it exists in D(i)
o

.

Therefore, �
o

is consistent and we can conclude the proof.


