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Abstract— Average consensus is a widely used algorithm for

distributed computing and control, where all the agents in the

network constantly communicate and update their states in

order to achieve an agreement. This approach could result in

an undesirable disclosure of information on the initial state

of agent i to the other agents. In this paper, we propose a

privacy preserving average consensus algorithm to guarantee

the privacy of the initial state and the convergence of the

algorithm to the exact average of the initial values, by adding

and subtracting random noises to the consensus process. We

characterize the mean square convergence rate of our con-

sensus algorithm and derive upper and lower bounds for the

covariance matrix of the maximum likelihood estimate on the

initial state. A numerical example is provided to illustrate the

effectiveness of the proposed design.

I. INTRODUCTION

Consensus has been an active research area over the past
decades. Early researches use consensus to model and ana-
lyze phenomena such as agreement of opinions by a group
of individuals [1] and decision making by decentralized pro-
cessors [2]. Applications of distributed averaging algorithms
include dynamic load balancing [3], coordination of groups
of mobile autonomous agents [4] and cooperative control of
vehicle formations [5]. A survey of theory and applications
of consensus problems in networked systems can be found
in [6]. Consensus problems in the context of distributed
signal processing applications, such as distributed parameter
estimation, source localization and distributed compression
have been reviewed in [7].

One commonly adopted consensus scheme is the deter-
ministic average consensus algorithm, where each agent
communicates with a fixed set of neighbors and follows
a time-invariant update algorithm to reach the average of
their initial values. In this approach, if one agent knows
the update rules of all the other agents, then under some
observability conditions, it can infer the entire trajectory of
state of the others. This may turn out to be desirable for some
applications, such as malicious intrusion detection and iden-
tification [8] and finite-step consensus [9], [10]. However, it
also implies that the exact initial value of one agent may be
computable by the other agents, which results in a disclosure
of information. For privacy concerns, the participating agents
may not want to release more information on its initial
value than strictly necessary to reach the average consensus.
For example, in social networks, a group of individuals can
employ consensus algorithm to compute the common opinion
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on a subject [1]. However, they may not want to reveal their
exact personal opinion on the subject. Another application is
the multi-agent rendezvous problem [11], where a group of
agents want to eventually rendezvous at a certain location.
In this application, the participating agents may want to keep
their initial location secret to the others.

In the database literature, the concept of differential pri-
vacy [12] has been extensively studied in the recent years. A
widely adopted differentially private mechanism is to return
a randomized answer to any database query to guarantee that
the data from any individual participant of the database will
only marginally change the distribution of the randomized
answer [13]. Recently, the concept of differential privacy has
been applied in dynamical systems. In [14], the authors con-
sider the design of differentially private filters for dynamical
system by adding white Gaussian perturbations to the system.
Xue et al. [15] consider the privacy problem autonomous ve-
hicle networks with a canonical Double-Integrator-Network
model. In the context of consensus problem, Huang et al. [16]
propose a differentially private consensus algorithm, where
an independent and exponentially decaying Laplacian noise
process is added to the consensus computation. However,
their consensus algorithm does not converge to the exact

average of the initial value, but to a randomized value. As
a result, it cannot be applied to the case where the exact
average consensus is required. Manitara and Hadjicostis [17]
propose a privacy preserving average consensus scheme by
adding correlated noise and discuss whether the initial state
of one agent can be perfectly inferred by the other agents.
However, they do not provide a quantitative result on how
good the initial state can be estimated.

In this paper, we propose a privacy preserving average
consensus algorithm, which computes the exact average of
the initial values and ensures that the initial value of an agent
cannot be perfectly inferred by the other participating agents.
We further derive upper and lower bounds on the estimation
performance of any agent on the initial states.

The rest of the paper is organized as follows: in Section II,
we provide a brief introduction of the average consensus
algorithm. A privacy preserving average consensus algorithm
is proposed in Section III and its properties are proved in
Section IV.An illustrative example on a simple network is
presented in Section V. Finally, Section VI concludes the
paper.

Notations: N0 is the set of non-negative integers. Rn⇥m

is the set of n by m matrices. Sn is the set of n by n
symmetric matrices. The ith diagonal entry of the matrix X
is denoted as X

ii

. All the comparisons between matrices in
this article are in positive semidefinite sense. range(X) is
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the column space of the matrix X . kvk indicates the 2-norm
of the vector v, while kXk is the largest singular value of
the matrix X . For a matrix-valued function X(k) : N0 !
Sn, X(k) = O(f(k)I) if there exists an M > 0, such that
X(k)  Mf(k)I for large enough ks. Furthermore, X(k) =
⇥(f(k)I) if there exist M1,M2 > 0, such that M1f(k)I 
X(k)  M2f(k)I for large enough ks.

II. PRELIMINARIES

In this section we briefly introduce the average consensus
algorithm, the notation of which will be used later in the
paper.

We model a network composed of n agents as a graph G =

{V, E}. V = {1, 2, . . . , n} is the set of vertices representing
the agents. E ✓ V ⇥V is the set of edges. (i, j) 2 E if and
only if agent i and j can communicate directly with each
other. In this paper we always assume that G is undirected

and connected. The neighborhood of agent i is defined as

N (i) , {j 2 V : (i, j) 2 E, j 6= i}.

Suppose that each agent has an initial scalar state x
i

(0). At
each iteration, agent i will communicate with its neighbors
and update its state according to the following equation:

x
i

(k + 1) = a
ii

x
i

(k) +
X

j2N (i)

a
ij

x
j

(k). (1)

Define x(k) , [x1(k), . . . , xn

(k)]0 2 Rn and A , [a
ij

] 2
Rn⇥n. The update equation (1) can be written in matrix form
as

x(k + 1) = Ax(k). (2)

In the rest of the paper, A is assumed to be symmetric. Define
the essential neighborhood N

e

(i) of an agent i to be the set
of neighboring agents whose information is used to compute
(1), i.e.,

N
e

(i) , {j 2 N (i) : a
ij

6= 0}. (3)

Furthermore, define the average vector and the error vector
to be

x̄ , 10x(0)

n
1, z(k) , x(k)� x̄.

where 1 2 Rn is a vector whose elements are all ones.
The goal of the average consensus is to guarantee that
z(k) ! 0 as k ! 1 through the update equation (2).
Let us arrange the eigenvalues of A in the decreasing order
as �1 � �2 . . . � �

n

. It is well known that the following
conditions are necessary and sufficient in order to achieve
average consensus from any initial condition x(0):

(A1) �1 = 1 and |�
i

| < 1 for all i = 2, . . . , n.
(A2) A1 = 1, i.e., 1 is an eigenvector of A.

For the rest of the paper, we assume that A satisfies assump-
tion (A1) and (A2).

III. PROBLEM FORMULATION

One issue for the average consensus algorithm is that an
agent in the network could potentially infer the other agents’
exact initial condition x

i

(0)s, which may not be desirable
when privacy is of concern.

To avoid privacy breaches while enforcing that x(k)
converges to x̄, we propose the following privacy preserving
average consensus algorithm:

1) At time k, each agent generates a standard normal
distributed random variable v

i

(k) with mean 0 and
variance 1. We assume that all the random variables
{v

i

(k)}
i=1,...,n, k=0,1,... are jointly independent.

2) Each agent then adds a random noise w
i

(k) to its state
x
i

(k), where

w
i

(k) =

(
v
i

(0) , if k = 0

'kv
i

(k)� 'k�1v
i

(k � 1) , otherwise
,

(4)
where 0 < |'| < 1 is a constant for all agents. Define
the new state to be x+

i

(k), i.e.,

x+
i

(k) = x
i

(k) + w
i

(k). (5)

3) Each agent then communicates with its neighbors and
update its state to the average value, i.e.,

x
i

(k + 1) = a
ii

x+
i

(k) +
X

j2N (i)

a
ij

x+
j

(k). (6)

Define

w(k) , [w1(k), . . . , wn

(k)]0 2 Rn, (7)
v(k) , [v1(k), . . . , vn(k)]

0 2 Rn, (8)
x+

(k) , [x+
1 (k), . . . , x

+
n

(k)]0 2 Rn. (9)

We can write (5) and (6) in matrix form as

x(k + 1) = Ax+
(k) = A(x(k) + w(k)). (10)

Remark 1. We choose the variance of v
i

(k) to be 1 to

simplify the notations. With proper scaling, all the results

in this article hold when Var(v
i

(k)) = �2
.

Without loss of generality, we only consider the case
where agent n wants to infer the other agents’ initial condi-
tions. Denote the neighborhood of agent n as

N (n) = {j1, . . . , jm}.

Define

C ,
⇥
e
j1 . . . e

jm e
n

⇤0 2 R(m+1)⇥n, (11)

where e
i

denotes the ith canonical basis vector in Rn with a
1 in the ith entry and zeros elsewhere. The information set
of agent n at time k can be defined as

I(k) , {x
n

(0), y(0), . . . , y(k)}, (12)

where
y(k) , Cx+

(k) = C(x(k) + w(k)). (13)

Notice that x
n

(k + 1), k = 0, 1, . . . is not included in the
information set since it can be directly computed from y(k)



using (6). We assume that agent n knows the A and C
matrices and all the variables in I(k) at time k.

Remark 2. Without the additional noise, i.e., w(k) = 0,

the consensus algorithm is deterministic and agent n can

perfectly infer ⇣ 0x(0), given that ⇣ 2 Rn

lies in the

observable space of (A, C), which illustrates the necessity

of the added noise.

Denote the maximum likelihood estimate of x(0) given
I(k) as x̂(0|k), the variance of which is defined as P (k).
Since I(k) ⇢ I(k + 1), we have the following proposition:

Proposition 1. P (k) is monotonically non-increasing, i.e.,

P (k2)  P (k1) if k1  k2.

Hence, the following limit is well defined:

P , lim

k!1
P (k). (14)

Since the noises v
i

(k) are independently Gaussian dis-
tributed, the maximum likelihood estimator is the minimum
variance unbiased estimator. As a result, the matrix P
determines the fundamental limit on how accurate x(0) can
be estimated by agent n. Thus, to preserve the privacy of the
initial condition x(0), we need to ensure that P is sufficiently
large.

IV. MAIN RESULTS

In this section, we first characterize the convergence rate
of the privacy preserving average consensus algorithm. We
then provide upper and lower bounds on the estimation
performance P .

A. Convergence Rate

We consider the impact of the added noise w(k) on the
performance of the consensus algorithm. Let us define the
mean square convergence rate ⇢ of our consensus algorithm
as

⇢ , lim

k!1

 
sup

z(0) 6=0

E
v

z(k)0z(k)

z(0)0z(0)

!1/k

, (15)

whenever the limit on the RHS exists. The notation E
v

indicates the expectation over noise process {v
i

(k)}. The
following theorem establish the convergence properties of
x(k):

Theorem 1. For any initial condition x(0), x(k) converges

to x̄ in the mean square sense. Furthermore, the mean square

convergence rate ⇢ equals

⇢ = max(|'|2, |�2|2, |�n|2). (16)

The following lemma is needed to prove Theorem 1:

Lemma 1. Define matrix A to be

A , A� 110/n.

The following equalities hold for all k � 0

Ak

(A� I) = Ak

(A� I), (17)
Ak � 110/n = Ak

(I � 110/n). (18)

Proof. The lemma can be proved by diagonalizing A and A.
The detailed proof is omitted due to space limit.

Proof of Theorem 1. Since max(|'|2, |�2|2, |�n|2) < 1, we
only need to prove (16). By (10),

x(k) = Akx(0) +
k�1X

t=0

Ak�tw(t)

= Akx(0) +
k�2X

t=0

'tAk�t�1
(A� I)v(t) +A'k�1v(k � 1).

Since x̄ = (110/n)x(0), by Lemma 1, we have

z(k) = Akz(0)+
k�2X

t=0

'tAk�t�1
(A�I)v(t)+A'k�1v(k�1).

(19)
The result of the proof can be derived by analyzing the RHS
of (19) and is omitted due to space limit.

B. Estimation Performance

In this subsection, we provide upper and lower bounds
on P . Notice that our goal is not to design an estimator
for agent n, but rather to prove a fundamental limitation on
the performance for all possible unbiased estimators, which
guarantees the privacy of x(0). We first reduce the state space
by removing x

n

(k), since it is always known to agent n. To
this end, let us define ˜A 2 R(n�1)⇥(n�1) as a principal minor
of A by removing the last row and column. As a result, the
matrix A can be written as

A =


˜A ⇣
⇣ 0 a

nn

�
, (20)

where ⇣ 2 Rn�1. The following lemma characterize the sta-
bility of ˜A, which can be proved using Cauchy’s interlacing
theorem. The detailed proof is omitted due to space limit.

Lemma 2.

˜A is strictly stable, i.e., k ˜Ak < 1. Furthermore,

for any i, ˜A
ii

< 1.

Let us further define

ṽ(k) ,
⇥
v1(k) . . . v

n�1(k)
⇤0 2 Rn�1, (21)

w̃(k) ,
⇥
w1(k) . . . w

n�1(k)
⇤0 2 Rn�1, (22)

˜C ,
⇥
ẽ
j1 . . . ẽ

jm

⇤0 2 Rm⇥(n�1), (23)

where ẽ
i

denotes the ith canonical basis vector in Rn�1. We
define the reduced state vector x̃(k) 2 Rn�1, which satisfies
the following update equation:

x̃(k + 1) =

˜A(x̃(k) + w̃(k)), (24)

with initial condition

x̃(0) ,
⇥
x1(0) . . . x

n�1(0)
⇤0 (25)



Finally, the reduced measurement ỹ(k) 2 Rm is defined as

ỹ(k) , ˜C(x̃(k) + w̃(k)). (26)

Remark 3. It is worth noticing that in general, x̃(k) 6=⇥
x1(k) . . . x

n�1(k)
⇤0

.

Throughout the subsection, we assume that (

˜A, ˜C) is
observable. Otherwise, one can always perform a Kalman
decomposition and consider only the observable subspace.
Define the information set based on the reduced measure-
ments

˜I(k) , {x
n

(0), w
n

(0), w
n

(k), ỹ(0), . . . , ỹ(k)}. (27)

The following theorem establishes the equivalence between
information set I(k) and ˜I(k), the proof of which is omitted
due to space limit.

Theorem 2. For any k � 0, there exists an invertible linear

transformation from the row vector

⇥
x
n

(0) y(0)0 . . . y(k)0
⇤

to the row vector

⇥
x
n

(0) w
n

(0) . . . w
n

(k) ỹ(0)0 . . . ỹ(k)0
⇤
.

By Theorem 2, ˜I(k) is a sufficient statistic for estimating
x(0). It is easy to see that {ỹ(0), . . . , ỹ(k)} is a sufficient
statistics for estimating x̃(0). Therefore, let us define ˜P (k) as
the covariance of the maximum likelihood estimate of x̃(0)
given ỹ(0), . . . , ỹ(k). Since x

n

(0) is known to agent n, we
have the following proposition:

Proposition 2.

P (k) =


˜P (k) 0
00

0

�
,

where 0 2 Rn�1
is an all zero vector.

We now try to explicitly write down the relationship
between x̃(0) and ỹ(k). By definition,

ỹ(k) = ˜C

 
˜Akx̃(0) +

kX

t=0

˜Ak�tw̃(t)

!
.

As a result
kX

t=0

ỹ(k) = ˜C(I � ˜Ak+1
)(I � ˜A)

�1x̃(0) +
kX

t=0

˜Ak�t'tṽ(t),

which implies that
2

6664

P0
t=0 ỹ(t)/'

0
P1

t=0 ỹ(t)/'
1

...P
k

t=0 ỹ(t)/'
k

3

7775
= H(k)x̃(0) + F (k)

2

6664

ṽ(0)
ṽ(1)

...
ṽ(k)

3

7775
, (28)

where

H(k) ,

2

6664

˜C(I � ˜A)

�1/'0

˜C(I � ˜A)

�1/'1

...
˜C(I � ˜A)

�1/'k

3

7775
�

2

6664

˜C ˜A(

˜A/')0(I � ˜A)

�1

˜C ˜A(

˜A/')1(I � ˜A)

�1

...
˜C ˜A(

˜A/')k(I � ˜A)

�1

3

7775
,

(29)

and

F (k) ,

2

6664

˜C
˜C ˜A/' ˜C

...
...

. . .
˜C(

˜A/')k ˜C(

˜A/')k�1 . . . ˜C

3

7775
. (30)

Hence, the covariance ˜P (k) of the maximum likelihood
estimate [18] is given by

˜P (k) =
⇥
H(k)0(F (k)F (k)0)�1H(k)

⇤�1
. (31)

Assume that the eigenvectors of the symmetric matrix (I �
˜A)

�1
˜C 0

˜C(I � ˜A)

�1 are  1, . . . , n�1 2 Rn�1. Without
loss of generality, we assume that { 1, . . . , n�1} forms an
orthonormal basis of Rn�1. Furthermore, by Lemma 2 and
(23), we know that

rank
h
(I � ˜A)

�1
˜C 0

˜C(I � ˜A)

�1
i
= m.

Hence, without loss of generality we assume that the
eigenvalues corresponding to the eigenvectors { 1, . . . , m

}
are non-zero and the eigenvalues corresponding to
{ 

m+1, . . . , n�1} are zero. Define the orthogonal matrix

Q ,
⇥
Q1 Q2

⇤
2 R(n�1)⇥(n�1), (32)

where

Q1 ,
⇥
 1 . . .  

m

⇤
2 R(n�1)⇥m, (33)

Q2 ,
⇥
 
m+1 . . .  

n�1

⇤
2 R(n�1)⇥(n�m�1). (34)

The following theorem provides upper and lower bounds
on ˜P by exploring the structure of F (k) and H(k) matrices.
The proof is reported in the appendix.

Theorem 3. If 1 > ' > k ˜Ak, then

 
1 +

k ˜Ak
'

!�2

�  ˜P 
 
1� k ˜Ak

'

!�2

� (35)

where

� , Q2

h
Q0

2(I � ˜A)

�1X (I � ˜A)

�1Q2

i�1
Q0

2, (36)

and X is the unique solution of the following Lyapunov

equation

X =

˜AX ˜A/'2
+

˜A ˜C 0
˜C ˜A. (37)

Combining with Proposition 2, we have the following
corollary:

Corollary 1.

 
1 +

k ˜Ak
'

!�2 
� 0
00

0

�
 P 

 
1� k ˜Ak

'

!�2 
� 0
00

0

�

It is worth noticing that rank(P ) = n � m � 1, which
implies that agent n can perfectly infer some linear combi-
nations of the initial state. The following theorem provides a



topological condition on the computability of x
i

(0) for agent
n:

Theorem 4. P
ii

= 0 if and only if i = n or N
e

(i)
S
{i} ✓

N (n)
S
{n}.

Proof. Consider the case where i 6= n. By Corollary 1, P
ii

=

0 is equivalent to

ẽ0
i

�ẽ
i

= 0, (38)

where ẽ
i

is the ith canonical basis vector. Since (

˜A, ˜C)

is observable, X is full rank. Hence, (38) is equivalent to
Q0

2ẽi = 0. As a result, ẽ
i

belongs to the null space of Q0
2,

which is also the column space of Q1 and (I � ˜A)

�1
˜C 0

matrices. Therefore,

ẽ
i

� ˜Aẽ
i

2 range( ˜C 0
).

By (23), a vector v 2 range( ˜C 0
) if and only if v

j

= 0 for
all j /2 N (n). By Lemma 2, the jth entry of ẽ

i

� ˜Aẽ
i

is
0 if and only if j /2 (N

e

(i)
S
{i}) \{n}. Hence, P

ii

= 0 is
equivalent to N

e

(i)
S
{i} ✓ N (n)

S
{n}.

By Theorem 4, as long as agent n cannot listen to agent
i and all its essential neighbors, agent n cannot estimate
the initial condition x

i

(0) perfectly. As a result, to enforce
privacy, we should enforce that for any pair of agents i and
j, the following holds:

N
e

(i)
[

{i} * N (j)
[

{j}. (39)

V. NUMERICAL EXAMPLES

We consider the following network consisted of 4 agents:

4

1

3

2

Fig. 1. Network Topology

Assume that a
ii

= a
ij

= 1/3 for all j 2 N (i). Hence,
k ˜Ak = 0.805. As a result, we choose ' = 0.9 > k ˜Ak. Fig 2
illustrates the trajectory of x

i

(k). It is worth noticing that all
x
i

(k)s converge to the true average of the initial condition
x(0).

Fig 3 shows P
ii

(k) of the maximum likelihood estimate
of agent 4. P33(k) is omitted since it equals P11(k) due
to symmetry. Notice that both lower bounds of P11(k) and
P22(k) are greater than 0. As a result, agent 4 cannot infer the
exact initial condition of agent 1 or agent 2, which complies
with Theorem 4. It is also worth noticing that the lower
bounds are actually quite lose, which we plan to investigate
in the future.

0 10 20 30 40 50

�2

�1

0

1

2

k

x
i

(
k
)

x1(k)

x2(k)

x3(k)

x4(k)

Fig. 2. The trajectory of each state xi(k). The blue, red, green, yellow lines
correspond to x1(k), x2(k), x3(k), x4(k) respectively. The black dashed
line corresponds to the average value of the initial x(0).

0 10 20 30

0

2

4

6

8

10

k

P
i
i

(
k
)

P11(k)

P22(k)

Lower Bound of P11(k)

Lower Bound of P22(k)

Fig. 3. Pii(k) v.s. k. The blue solid and dashed line correspond to P11(k)
and the lower bound of P11(k) respectively. The red solid and dashed line
correspond to P22(k) and the lower bound of P22(k) respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a privacy preserving average
consensus algorithm. We compute the exact mean square
convergence rate of the proposed algorithm. Furthermore,
we derive upper and lower bounds of the covariance matrix
of the maximum likelihood estimate, which guarantees the
privacy of the initial condition of agent i. Future research
includes exploring other possible average consensus algo-
rithms that preserves privacy and proving tighter bounds on
the covariance matrix for the proposed algorithm.

APPENDIX I
PROOF OF THEOREM 3

Several intermediate results are needed to prove Theo-
rem 3:



Lemma 3. If ' > k ˜Ak, then

 
1� k ˜Ak

'

!2

I  (F (k)F (k)0)�1 
 
1 +

k ˜Ak
'

!2

I.

Proof. The lemma can be proved using the same technique
in the proof of Lemma 1 in [19] and is hence omitted due
to space limit.

We are now ready to prove Theorem 3

Proof of Theorem 3. By Lemma 3, we only need to prove
that

� = lim

k!1
[H(k)0H(k)]

�1
, (40)

Let us write Q0H(k)0H(k)Q as

Q0H(k)0H(k)Q =


S11(k) S12(k)
S 0
12(k) S22(k)

�
,

where

S11(k) = Q0
1H(k)0H(k)Q1, S22(k) = Q0

2H(k)0H(k)Q2,

S12(k) = Q0
1H(k)0H(k)Q2.

Let us define

H1(k) , ˜C(I � ˜A)

�1/'kQ1,

H2(k) , � ˜C ˜A(

˜A/')k(I � ˜A)

�1Q1,

H3(k) , � ˜C ˜A(

˜A/')k(I � ˜A)

�1Q2.

Hence,

S11(k) =
kX

t=0

(H1(t) +H2(t))
0
(H1(t) +H2(t)),

S22(k) =
kX

t=0

H3(t)
0H3(t),

S12(k) =
kX

t=0

(H1(t) +H2(t))
0H3(t).

Now by matrix inversion lemma, we have

Q0
[H 0

(k)H(k)]
�1 Q =


R11(k) R12(k)
R0

12(k) R22(k)

�
,

where

R11(k) =
⇥
S11(k)� S12(k)S�1

22 (k)S 0
12(k)

⇤�1
,

R22(k) =
⇥
S22(k)� S 0

12(k)S�1
11 (k)S12(k)

⇤�1
.

By definition, S11(k) = ⇥('�2kI), S22(k) = ⇥(I). Fur-
thermore

S12(k)S�1
22 (k)S 0

12(k) =

8
>><

>>:

O

⇣
kÃk
'

2

⌘2k
I

�
, if k ˜Ak > '2

O(k2I) , if k ˜Ak = '2

O(I) , if k ˜Ak < '2

.

and lim

k!1 S 0
12(k)S�1

11 (k)S12(k) = 0. Therefore

lim

k!1
R11(k) = 0, lim

k!1
R22(k) =


lim

k!1
S22(k)

��1

. (41)

Since Q0
[H 0

(k)H(k)]�1 Q � 0, by (41) we know that

lim

k!1
R12(k) = 0.

One can verify that

lim

k!1
S22(k) = Q0

2(I � ˜A)

�1X (I � ˜A)

�1Q2.

On the other hand, by (32), (36) is equivalent to

Q0
�Q =

"
0 0

0

⇣
Q0

2(I � ˜A)

�1X (I � ˜A)

�1Q2

⌘�1

#
,

which finishes the proof.
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